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Abstract

The bootstrap method for estimating the standard error of the kappa statistic in the presence of
clustered data is evaluated. Such data arise, for example, in assessing agreement between
physicians and their patients regarding their understanding of the physician-patient interaction and
discussions. We propose a computationally efficient procedure for generating correlated
dichotomous responses for physicians and assigned patients for simulation studies. The simulation
result demonstrates that the proposed bootstrap method produces better estimate of the standard
error and better coverage performance compared to the asymptotic standard error estimate that
ignores dependence among patients within physicians with at least a moderately large number of
clusters. An example of an application to a coronary heart disease prevention study is presented.

Keywords
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1. Introduction

The kappa statistic is a commonly used measure of inter-rater agreement. The kappa statistic
was originally proposed by Cohen [1] to quantify the degree of agreement beyond chance
when two raters simultaneously score the same subjects on a nominal or ordinal scale. Inter-
observer reliability is measured by comparing the observed proportion of agreement, 2,
with the proportion of agreement expected by chance, £, and scaling the difference so that a
value of one indicates perfect agreement and a value of zero indicates no agreement beyond
that expected by chance.

Many extensions to the kappa statistic have been proposed including weighting to account
for the seriousness of misclassification errors [2, 3], allowing more than two raters [4], using
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stratified samples [5], comparing a single rater to a consensus group of raters [3], and
allowing for multiple observations per subject and multiple categorizations [6].

Recent work has focused on the study of correlated kappa statistics. For example, when two
or more raters evaluate the same subjects at different time points or under different
conditions and the equality of the kappa statistics is of interest, the correlation between the
kappa statistics must be addressed. McKenzie [7] proposed resampling techniques for
comparing correlated kappa statistics, considering the case of pairwise comparisons of
kappa statistics when the observations were evaluated by three raters. VanBelle and Albert
[8] extended these methods using the bootstrap method to allow the comparison of more
than two kappa statistics. Model-based procedures for comparing two dependent kappa
statistics calculated from two observers from the same data when the outcome is binary were
proposed by Donner, Shoukri, Klar and Bartfay [9]. GEE methods for comparing correlated
kappa statistics have been proposed for dichotomous [10] or categorical [11] outcomes.
Methods for weighted correlated kappas have also been developed [12] using GEE methods
which allow for modeling of covariate effects. Barnhart and Williamson [13] proposed a
weighted least squares method for comparing correlated kappa coefficients in the case of
categorical covariates. Rather than comparing correlated kappa statistics, our research
focuses on inference for individual kappa parameters in the presence of correlated binary
outcomes.

Clustered binary data can result, as in our motivating example, when investigators are
interested in the agreement between ratings by physicians and their patients regarding the
same event. Since each physician can see more than one patient, patients seen by the same
physician form a cluster. In other words, the responses of a physician for his/her patients
tend to be more similar than those from other physicians, which results in clustered
responses within a physician. We propose a bootstrap method to address the correlated data
structure in such cases.

In our example, 24 physicians and their 157 patients evaluated clinical discussions regarding
coronary heart disease (CHD) prevention [14]. Cluster sizes ranged from 1 to 20 patients per
physician. Following the physician-patient discussion, each participant was surveyed
regarding discussion content and resulting decisions. Each member of a physician-patient
pair reported whether or not CHD was discussed. For pairs in which at least one of the
physician/patient pair reported that CHD was discussed, agreement was evaluated for
several outcome measures including whether medication was recommended or change in the
patient’s lifestyle for CHD prevention was recommended. The kappa statistic was used as a
measure of physician-patient agreement regarding their discussion, and the bootstrap method
was used to estimate the standard errors accounting for the clustered data structure.

While methods for analysis have been proposed for clustered data, research has focused
primarily on extensions to McNemar’s test or estimates of association, such as the odds ratio
[15, 16, 17] rather than the kappa statistic. Oden [18] and Schouten [19] proposed a pooled
kappa for situations in which two raters evaluate a set of paired units, such as pairs of eyes.

Bootstrap confidence intervals for kappa statistics have been proposed previously to address
small sample sizes when observations are independent [20] and for comparing correlated
kappa statistics [7, 8]. To our knowledge, the properties of the bootstrap method have not
been studied for inference on individual kappa parameters in the context of clustered data.

In this paper, we evaluate the bootstrap method for calculating the kappa statistic and

estimating its standard error in the presence of clustered binary outcomes. In Section 2, we
provide background information regarding the kappa statistic, its asymptotic standard error,
and the bootstrap method. We describe the generation of correlated dichotomous responses
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specifically for our simulations in Section 3. Simulation results are presented in Section 4.
An applied example of the method follows in Section 5. Finally, Section 6 contains a
discussion of the results.

2. Method

2.1. The kappa statistic and its asymptotic standard error (ASE)

In this section, we briefly describe the kappa statistic and its asymptotic standard error
(ASE) for the case of independent subjects. Suppose that (Y, X) represents a pair of
dichotomous responses from two raters, for example, a physician and a patient. Data on
subjects can be depicted ina 2 x 2 table. Let g, 1, Mo and 1 represent the cell counts
for (Y, X)=(0, 0), (0, 1), (1, 0), (1, 1), respectively. Let r.g = myg + Mo, M= = Moo + M1, M1

1
= Moy + My, and /1. = mo + 1y, and ”1»:”1O+”11'N:Zi,j:0”if denotes the number of
noo+n11 n.0) x (no.) + (n.1) x (n1.)

subjects under study. Define Fo=—+——"and Pe:< 5 , the kappa
statistic  introduced by Cohen [1] is calculated as follows:

A_Po_Pe
“1-p @
We also define
g= {1 — (B5) x (L= R) P8 x {1 = (B+5) x (1= R)},
r= (-8 (g () e (e + )"

s= (R—P.x(1-7))>

Following [21] and [22], ASE of the kappa statistic can be estimated by

qg+r —s

ASE (%) = TN

@

Note that (1) and (2) can be obtained using SAS PROC FREQ.

2.2. Bootstrap sampling algorithm

The ASE calculation introduced in the previous section was developed based on the
assumption of independence. Therefore, ASE is not appropriate for the clustered data since
responses within clusters tend to be positively correlated which results in underestimating
standard error of kappa statistic. To resolve this problem, we propose adopting a bootstrap
method [23] by randomly sampling the clusters with replacement and taking all observations
belonging to the sampled clusters. This bootstrap method is called the cluster bootstrap
method since bootstrap sampling is conducted on clusters only [24, 25, 26]. In our study, a
cluster is a physician, and observations within the cluster are patients.

2.2.1. Bootstrap sampling of clusters (physicians)—

1. 1. Assume that there are n clusters (physicians), and they are indexed by {1, ... ,
n}. Draw a random sample of 2 clusters with replacement from the original data.
The selected clusters are indexed by {1*, 2*, ..., /7*}, where the /> (/=1, ..., )
are elements of {1, ... , 77}

Stat Med. Author manuscript; available in PMC 2014 September 20.
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2. For each sampled cluster, take all observations belonging to cluster 7. Let /1
denote the size of cluster /%, Y = (a1, ..., ¥p )T and X = (Xpe 1, ..., Xp ) -
In our example, Y’* represents a vector of responses from physician 7 for his/her
np patients and X" represents a vector of responses from the 77« patients of
physician /. The bootstrap sample Z consists of (Y*,X*), where Y* = (YA*T .
Y™ N and X* = (X7, . xT T,

3. Repeat steps 1 and 2 Btimes to generate B independent bootstrap samples Z1, ...,
ZB,

4. Calculate the kappa statistic b corresponding to each bootstrap sample, zb,
following formula (1).

5. Eb

i N B
Calculate bootstrap estimate by HB:Z,,:1§

Ty | S (R —Rp)’
Estimate bootstrap standard error by 5 (kp)= B_1 =

2.2.2. Confidence interval. The 95% confidence intervals are obtained by—

95% bootstrap confidence interval based on percentiles = (E 0'025),29'975)> ,

B

where SE (#,, ) denotes bootstrap standard error estimate of 7, and Eg*“) is the 100(1 -
a)™ empirical percentile using the bootstrap samples.

In addition to the two confidence intervals above, we calculate bias-corrected and
accelerated (BC,) intervals which is an improved percentile method by automatically
correcting the bias of the bootstrap estimator and provides second-order accuracy [23, 27,
28]. We computed the BC, confidence interval following [23] with some modification since

our resampling unit is clusters (physicians), not individual subjects. Let G (c) denote the

N B 1 {Eb<c}
empirical cumulative distribution of ¢, & (¢) =), " | ———. Define
zo—i—z(o‘)

a 1 —a(20+2(®) / [, where ® denotes the standard normal distribution
(CDF), Z9 denotes the 1004t percentile point of a standard normal distribution, and for
some 2 and a Then, 95% bootstrap confidence interval using the BC, method is defined as
follows:

7o) g icp -

95% bootstrap confidence interval based on BC, = (220‘025) E(0'975)). N

Cq Y BCq4

11Rb<R

B

/2\0:(1)71 Z { }

The constant z, can be computed by b=1 B . Next, we calculate a
following [23]. Since our resampling unit is a cluster (physician) /=1, ... , n, we define

Ui=R( — R(_s) where R)=0_, R(_i/n and #(_sis a kappa statistic computed by the
original sample deleting all subjects belonging to A1 cluster. Then we compute
_ 1 zﬂleig

6 (S, up)*

~
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Note that both the standard and the percentile methods are not second-order accurate, so
relatively larger number of bootstrap replications are required for the BC, method compared
to the standard and the percentile methods. Efron and Tibshirani [23] suggest that at least 1,
000 bootstrap replications are needed for the BC, method.

3. Simulation set-up

In this section, we provide a detailed description of the data generation procedure for the
simulation study based on the clustered data structure in which the cluster is a physician and
observations within a cluster are the patients of the physician. The calculation of the kappa
statistic, estimation of standard error of the kappa statistic, and construction of the
confidence intervals of the kappa statistic follows. Suppose that a pair of dichotomous
responses is obtained for each physician-patient encounter. For example, the dichotomous
response could denote survey-response of the physician-patient discussion or an assessment
of the treatment.

3.1. Generating dichotomous responses for physician-patient pairs

3.1.1. Notation and assumptions—Suppose we have 7 clusters representing 7
physicians, and each cluster consists of /7 pairs of dichotomous responses from the
physician-patient pairs. For patient 7 of a physician, let Y;and Xjbe random variables
representing the physician’s assessment and the patient’s assessment of the same discussion,
respectively. Note that ¥; {0, 1} and X; {0, 1} with ¥;=1 or X;= 1 denoting “yes” for
a given question. Let Y= (Y3, ..., Y Tand X= (X, ..., X, 7 denote the random vectors
representing dichotomous responses for a physician and his/her patients, and 1, = (444, ... ,
My "= (A Y1=1}, o (Pm=10"= E[Y1and x = (U, - s M) "= (PEX =1}, oo
P{X,,=1}) "= A X] denote the corresponding marginal mean vectors. The correlation

R,, R,
. . . Rc: (Tij) = v Y
matrix of the response vectors is define as Rey Rep ), where Ry, =
(Corn(Y;, Yj)): Rxy = (Corn(Y;; )(/)): and Ry = (Corn( X, )(/))

In this simulation, a homogeneous cluster size is assumed for simplicity although the same
simulation procedure can be applied to the case of the heterogeneous cluster size. We
assume that all physicians have the same mean vector, 1/, = ... = tym, = Uy, and all patients
have the same mean vector, (il = ... = Uy, = Uy Also, all physicians have the same
correlation matrix and same strength of agreement with patients. An exchangeable
correlation structure is assumed within-physician and between physician and patient. Hence
we define p,, = Corr(Yj, Y)), 7# jto be the within-physician correlation and pp = Corr('Y;;
X)) to be the physician-patient correlation. The parameter pj is related to kappa as explained
in subsection 3.1.3. Since all physicians are assumed to have the same mean and correlation
matrix, we generate /7 independent sets of responses for the 7 physicians by repeating the
following data generating procedure 77 times independently.

3.1.2. Generating correlated dichotomous responses within physicians—Note
that each physician could have their own practice pattern, so it is reasonable to assume that
the responses from a physician for different patients are correlated. We generate an m x 1
vector of correlated dichotomous responses Y for each of the 7 physicians following Qagish
[29]. Qaqish [29] introduced the conditional linear family of multivariate Bernoulli
distributions which is useful for simulating correlated binary random variables with
specified marginal mean vector ¢/ = (14, ... , ) " and correlation matrix, R = (73)- The
algorithm has been implemented in the R-package binarySimCL F [30], which we used to
generate responses for physicians.

Stat Med. Author manuscript; available in PMC 2014 September 20.
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Before proceeding with the description of the data generating procedure, we briefly describe
some restrictions that any valid (¢, /) should satisfy as [29] noted. First, the correlation
matrix /= (r;) should be positive definite, and secondly, restriction on r;;are imposed by y;

Hi
and y. Defining Yi= V1= the correlations must satisfy

-1 i j . .
max (—W/Jj, W) < riy < min <Z—, %) C#7).
i Yj J g

For example, if we assume an homogeneous mean (/,= 0.4 for all Y;, (5) implies

2
~3 < pw < 1 Since we assume an exchangeable and positive correlation between
physician’s responses within a physician, both conditions are satisfied.

3.1.3. Generating responses for patients given responses for physician—Once
dichotomous responses for physicians, Y, are generated, dichotomous responses for patients
given responses for physicians, .X; can be generated in such a way that kappa and the
marginal means have their stipulated values. We assume that responses for patients are
conditionally independent given the physician’s responses, and naturally, this implies that,
marginally, responses for patients are correlated within physicians.

Let us consider a 2 x 2 table, where Y;denotes dichotomous response for a physician about
patient /, and Xjdenotes the corresponding patient’s response. Then, a= A'Y;=0, X;=0)
and c= A Y;=1, X;=0). Also, dand b can be expressed as follows:

d =P Yi=1X;=1) =pyps+py [ty (1 — py) V1o (1 = piz),

b =P (Y;=0,X;=1)=p, —d,

and we define &y and &, by
_ b _PYi=0,X;=1)_ YV —
bo == ngz-:o) =P (X;=1|Y;=0), o
P(Y;=1,X;=1
b =L bozp(TD) — by=P (X;=1|Y;=1) — P (X;=1]Y;=0).

This implies that £[.X}| Y]] = &y + by Y. Therefore, we generate Xj, /=1 ... ,mas
independent Bernoulli variables with conditional means &y + b, Y}, /=1, ... ,m. The
correlation coefficient between responses for physician and patient should satisfy the
restriction given in (5). In the simulation, we set £4,= 0.4 and 4/, = 0.5, so

AT -, V3and Y= T . L Therefore,
2 \/5
— /= < pp < 4/ =-=0.816497.
\/; == V3

We calculate «p and pp, as follows:

atd—[py pro+(1—py) (1—pr)]
1= pypre+(1—py ) (1—pz)]
d—piypx

¢#y(17#y) \/,U‘I(lf'u,l.) :

Ko =

Po =
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-1
(1 (e
From the above two formulae, &y and pp are related by “°~ " 2 \ 3, " v, .

Setting ), = 0.4 and /= 0.5, the maximum value of available p is 0.816497, and hence the
maximum value of «y we can use is 0.816497/1.02062 = 0.8. This is a reasonable boundary
in practice. For more details on parameter restrictions, see [29]. Detailed calculation for the
marginal correlation between patients within a physician is given in APPENDIX 1. Using
this simulation algorithm, for each configuration we generated A/= 1, 000 independent data
sets (Monte-Carlo simulations), with 7 clusters each.

3.2. Calculate the kappa statistic and the bootstrap kappa statistic

Coverage rate (%)=

After generating (Y, X), we calculate the kappa statistic  assuming independent
observations by formula (1) and ASE () by formula (2). A 95% confidence interval is
constructed as ( — 1.96 x ASE (r),k+1.96 x ASE (&)). We calculate the bootstrap kappa

statistic, % ,, and bootstrap standard error estimate, SE (%, ), as described in Section 2.2.
95% bootstrap confidence intervals based on the normal approximation, 95% bootstrap
confidence interval based on percentiles, and 95% bootstrap confidence interval by using the
BC, method are constructed by formula (3) and (4). M independent data sets are simulated,
and the coverage rate can be calculated as follows:

Number of times the true kappa value (ko) lies within the confindence interval

Total number of simulations (M)

A method whose coverage rate is closer to the target nominal coverage probability, for
example, 95%, has better coverage performance.

3.3. The number of Monte-Carlo simulations

The number of Monte-Carlo simulations, denoted by A, can be determined by

21720—
— 2
M_< 6 ) following [31], where o denotes the variance of «; Jis the permissible

ath

difference between &g and £, and Zy-g denotes the (1 - 5) quantile of the standard
normal distribution. The standard error estimates of ~ and %, from data analysis results
presented later in this study are between 0.053 ~ 0.091. With M= 500, the permissible
difference between «g and % (§) is between 0.0046 ~ 0.0080. In our simulation study, M= 1,

000 and the corresponding dis 0.0033 ~ 0.0056, which is a reasonably small difference.

4. Simulation results

In this section, we present simulation results for examining the performance of the bootstrap
estimates with clustered data under various scenarios of the number of physicians (number
of clusters), the number of patients per physician (cluster size), and strength of agreement
between physician and patient (kappa value). We also present the results under independent
assumption. The simulation was performed using R (Version 2.15.1) and the R-package
binarySimCLF.

4.1. Determine the number of bootstrap replications B

Before we proceed with comparing two methods, a simulation study was conducted to
decide the number of bootstrap replications B. We generated 1, 000 independent data sets as

Stat Med. Author manuscript; available in PMC 2014 September 20.
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described in Section 3. Each data set consists of 25 clusters (physicians), and each cluster
consists of 20 pairs of the dichotomous responses for physician and patient. For each
simulated data set, different numbers of replications B ranging from 50 to 2, 000 were
explored. For this simulation study, marginal mean of the dichotomous responses for
physicians () and patients (4,) were 0.4 and 0.5, respectively. The correlation coefficient
within a physician (o,) was 0.3. We calculated Monte-Carlo Standard Error estimate

~ = 2
Y1 (a(m) - 9)
(MCSE) of %, and SE (%,,) over M= 1, 000 simulations by M(M-1) ,where

= M é\(m)
QZZmIIW and () denotes estimate of parameter of interest, 6, obtained from the /77"

simulation.

Table 1 provides summary statistics using the bootstrap method for various number of
bootstrap replications B. Bootstrap estimate of kappa statistic (mean and MCSE of ),

bootstrap error estimate of %, (mean and MCSE of SE (%)), and 95% confidence interval
coverage rate using the bootstrap confidence interval based on normal approximation

(CR§>, the bootstrap confidence interval based on percentiles (CRl;) and the bootstrap

confidence interval using the BC, method (CREC“) for &, are presented. We observed that

there was no notable change in 7, SE (%,,), and coverage rates based on the bootstrap
confidence interval using normal approximation and percentile methods by increasing the
numbers of bootstrap replications. However, coverage rate based on the BC, method was
improved by increasing the number of bootstrap replications until 8= 1, 000 which is the
minimum number of bootstrap replications suggested by [23]. Therefore, we concluded that
1, 000 is a reasonable number for bootstrap replications, and simulation results with B=1,
000 are presented for the remaining simulation results.

4.2. Varying strength of agreement between raters, the number of clusters, and cluster size

4.2.1. Simulation set-up and summary statistics—We generated 1, 000 independent
data sets, and each data set consists of different numbers of clusters 7= (10, 25, 50, 100) and
different cluster size m = (5, 20, 50, 100). Poor (ky = 0), fair (0.3), moderate (0.5) and
substantial (0.8) strength of agreement associated with kappa statistics between two raters
(physician and patient) were investigated. Marginal mean of the dichotomous response for
physicians (4,) and patients () were 0.4 and 0.5, respectively. The correlation coefficient
of the responses for physician within a physician (p,) was fixed at 0.3 (exchangeable
correlation structure). As we discussed in Section 3.1.3, 0.8 is the maximum possible value
for ky for given 1= 0.4, 1= 0.5 and p,, = 0.3.

Table 2 provides the kappa statistics assuming independent observations (mean and MCSE
of ), asymptotic standard error estimates of the kappa statistics assuming independence
(mean and MCSE of ASE (%)), empirical standard deviations of the kappa statistics using 1,
000 simulations (std (%)), 95% confidence interval coverage rates using the 95% confidence
interval based on normal approximation (CR®) in addition to summary statistics using
bootstrapping on the physicians introduced in Section 4.1.

4.2.2. Simulation result—Figures 1(a) and 1(b) display average of bias of ; over 1,000
Monte-carlo simulations. Both methods produced better point estimates of xkwith larger
number of physicians and number of patients for each physician. No marked difference
between the two methods was observed in the point estimates, but kappa statistics assuming

Stat Med. Author manuscript; available in PMC 2014 September 20.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Kang et al.

Page 9

independent observations were slightly closer to &g than those by the bootstrap method over
all strength of agreements between raters, especially with small number of physicians (7=
10). This bias is negligible according to [23].

Table 2 and Figures 1(c), 1(d), 1(e), and 1(f) present 95% coverage rates, the average ratio
of the ASE (%) to the empirical standard deviation std (<) and the average ratio of the

bootstrap standard error estimate (SE (Es)) to the empirical standard deviation for the
number of clusters 7= (25, 50, 100). Empirical standard deviation was calculated based on
1, 000 estimates of «; which can be considered as the ‘true’ standard deviation of kappa

statistics. Overall the average ratio of the ASE (k) to std () decreased rapidly while the

average ratio of SE (7, ) to std (%) stayed close to 1 as we increased the strength of the
agreement between physician and patient. This indicates that standard error calculation of
kappa statistics assuming independent observations tends to underestimate the standard error
of kappa statistics on average, particularly when there is a strong agreement between raters.
The underestimated standard error of the kappa statistic assuming independent observations
resulted in a narrower confidence interval as the strength of agreement between raters
increased while the coverage rate based on the bootstrap method was close to the target
nominal level (95%) as long as the number of physicians was not very small, even under
substantial agreement between raters. The advantage of the cluster bootstrap method was
more obvious in the larger number of physicians and larger number of patients for each
physician (Figures 1(e) and 1(f)). Overall BC, method produced confidence interval which
is similar to or slightly better than percentile and normal approximation methods except for
the case with small number of physicians (7= 10) under no agreement between raters.

4.3. Varying strength of correlation within cluster (physician), the number of clusters, and

cluster size

So far, we examined the performance of the two methods to calculate kappa statistics for
various strength of agreement between raters while keeping within-cluster correlation fixed.
In this section, we varied values of the correlation coefficient within cluster (o,,) under fixed
moderate strength of agreement between raters (kp = 0.5). Table 3 and Figure 2 provide the
simulation results for p,,= 0.1, 0.3, 0.5 and 0.8. Calculating ASE of the kappa statistic
assuming independent observations tended to underestimate the standard error on average
for at least moderately positively correlated subjects within physician while the clustered
bootstrap method did not. This pattern is more obvious in Figure 2. Similar to the result by
varying strength of agreement between raters, however, the bootstrap method produced
poorer coverage rates than those obtained by using ASE assuming independent observations
when both the number of physicians and the number of patients for each physician were
very small under weak within-physician correlation.

5. Example

5.1. Data Description

Clustered data structure occurred in our motivating example in which investigators were
interested in the agreement between physicians and their patients regarding the content of
discussions about CHD during a clinic visit. Our study consisted of subset of physician/
patient pairs from a larger randomized trial. This larger study [32] compared control patients
who received usual care with intervention patients who received a computerized decision aid
regarding heart disease prevention followed by several adherence reminders. The patients in
the larger study were seen for three visits and evaluated at the third visit for predicted CHD
risk and adherence.

Stat Med. Author manuscript; available in PMC 2014 September 20.
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Our nested study focused on the discussions between 24 physicians and their 157 patients
during the second visit. Complete eligibility criteria, described elsewhere [14], included no
history of CHD or diabetes but at least a moderate risk of developing CHD within the next
10 years as predicted by risk factors such as age, gender, smoking status, diabetes status,
presence/absence of enlarged heart, blood pressure, total cholesterol and LDL using
Framingham risk calculator. Among the physician/patient pairs who participated in the
larger study and also eligible for the sub-study, almost all participated in this smaller study
(100% of physicians and 97% of patients).

Following the second clinic visit, each physician and his/her patient was surveyed regarding
the content of their discussion during that visit. Patients were surveyed immediately
following the visit, and the majority of the physicians completed the survey on the same day
as the clinic visit. Items of interest were the agreement between the patient and physician
about whether CHD was discussed, whether the physician recommended taking medicine,
and whether the physician recommended changing lifestyle. For each of these binary
measures, the kappa statistic was computed assuming independence. Because each physician
could have more than one patient (1-20 patients per physician), the cluster bootstrap method
was used to account for the correlated data structure in calculating the standard error for the
kappa statistic. Physicians were sampled with replacement, and all patients corresponding to
the selected physician were included. Tables 4, 5, and 6 provide cell counts of the 2 x 2 table
for three topics: Discussed CHD, MD recommended medication, and MD recommended
lifestyle change.

5.2. Analysis Results

Table 7 presents the kappa statistics to describe agreement between physician and patient
regarding CHD discussion for both the method assuming independence and the cluster
bootstrap method as we presented in Section 4. Of the 157 discussions, 103 physician/
patient pairs agreed that CHD had been discussed and 27 pairs agreed that CHD was not
discussed, resulting in a moderate agreement between physician and patient. The 130
discussions in which at least one of the physician/patient members reported that CHD was
discussed were further analyzed. Moderate agreement was found in whether the physician
recommended taking medicine and fair agreement in whether the physician recommended
lifestyle modification. We note that the SEs associated with the kappa statistic for
“Discussed CHD” and “MD recommended medication” are smaller based on the bootstrap
method than those based on the kappa method assuming independent patients while the SE
for “MD recommended lifestyle change” shows greater SE using the bootstrap method. The
kappa statistic is a function of the first two moments, hence its asymptotic standard error
involves third- and fourth-order moments which could make the bootstrap standard error
larger or smaller than those assuming independence.

5.3. Additional simulation to understand data analysis result

To further demonstrate the possibility to have smaller bootstrap standard error than ASE in a
particular data analysis, we conducted a small investigation through simulation in which
data were generated mimicking “Discussed CHD” data in terms of the marginal mean of the
dichotomous responses (the marginal mean responses for physicians and patients were 0.752
and 0.732, respectively), kappa statistic (0.55) and heterogeneous number of patients per
physician. The number of physicians and average number of patients per physician in the
data are 24 and 6.5, respectively. We compared standard error estimates and coverage rates
by varying the number of physician (24 or 72), the average number of patients per physician
(6.5 and 13) and within-physician correlation (o, = 0.1, 0.3, 0.7).
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Table 8 summarizes results of the simulation study mimicking “Discussed CHD” data. With
the same number of physician (7= 24) and the average number of patients per physician (/m
= 6.5) with “Discussed CHD” data, the reduction in estimating standard error of the kappa
statistic by using the cluster bootstrap method was slightly greater on average than ASE
assuming independent observations under weak within-physician correlation. The bootstrap
method improved upon ASE of kappa statistic assuming independent observations by
increasing the number of physicians or within-physician correlation rather than the number
of patients per physician. 53.7%, 41.9%, and 19.9% of simulation results showed greater
ASE than the bootstrap SE for strong (o, = 0.7), fair (0.3), and weak (0.1) within-physician
correlation, respectively. This simulation result shows the possibility that bootstrap standard
error estimates of kappa statistic can be smaller than ASE of kappa statistics assuming
independence for a particular data analysis, especially for the data set with small number of
clusters and small cluster size.

6. Discussion

In this article, our study focuses on the evaluation of the bootstrap method to calculate kappa
statistic and its standard error for clustered dichotomous responses. For the simulation study,
we adopted a computationally efficient procedure to generate correlated dichotomous
responses for physicians and their patients. Through simulation studies, we have
demonstrated that the asymptotic standard error of the kappa statistic assuming independent
observations tends to underestimate the standard error of the kappa statistic on average,
particularly when there is a strong agreement between physician and patient or a strong
within-physician correlation. This underestimation yields confidence intervals that are too
narrow and have poor coverage performance. The proposed bootstrap method produced
nearly unbiased standard error estimates and coverage rates that are close to the target
nominal level by taking account of correlation within physicians except for the case when
both the number of physicians and the number of patients per physician are small.

Bootstrap methods could be computationally intensive. One alternative to the bootstrap
method is to use asymptotic approximation. To do that, one needs to establish the
asymptotic distribution of the kappa statistic with clustered data. The most difficult part
would be to determine the asymptotic variance of the kappa statistic taking into account the
correlation within clusters. In the case of independent samples, formulas for the variance of
the kappa statistic in situations with different sets of raters [33] or with small number of
subjects [34] have been proposed. Feder [35] proposed a Taylor linearization to estimate the
variance of kappa statistic when each individual is interviewed on two occasions. The kappa
statistic is a function of the first two moments, hence its asymptotic standard error involves
third- and fourth-order moments, which are not easily modeled or estimated. The bootstrap
offers an automatic way of adjusting the standard errors without explicit modeling of high-
order moments. We will explore developing variance formulae for the kappa statistic in
clustered data setups in future research.
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Appendix1: 1. Marginal correlation between responses from two patients of
the same physician

The marginal correlation between responses of any two patients of a physician can be
expressed as follows:
_E(XiX;) — 42

Corr (X;, X;) =——F+—L1—— 2
( J) pe (1 — pa)

and

E(X;X;) =E[E[X;X;|V;,Y;]]
= E[(bo+01Y;) (bo+b1Y5)]
= bg+200b1 E (Y;) +b1 E (YiY;)
= b3+2boby p1,+b3d.

®

The second equation holds because of the assumption that X; X} ¥;, Y} Given marginal
means (/y, and Ly, correlation within physicians p,,and correlation between physician’s and
patient’s responses g, (or equivalently ), the marginal correlation between any two patients
within physicians is automatically determined by the above relationship. These marginal
correlations generally increase with p,, and pp The within-physician patient-patient

correlation is approximately p,, p.
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Comparisons between  assuming independent observations (denoted by Indeps of physicians)

and %, using the cluster bootstrap method (denoted by Bootsy of physicians) for the numbers of

physicians=(10,25,50,100) at different p,,, values (within-physician correlation coefficient).
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Simulation results for determining the number of bootstrap replications B (v, = 0.4, = 0.5, p,= 0.3, Ko =
0.5, the number of cluster= 25, and cluster size= 20)

Bootstrap B %B é\E(/’\(B) 95% confidenceinterval coveragerate
S P BC,
CRB CRB C/-?B a
50 Mean 0.4947 0.0407 91.9 92.7 90.4
MCSE 0.0014 0.0002
100 Mean 0.4946 0.0408 92.6 93.2 91.8
MCSE 0.0014 0.0002
200 Mean 0.4947 0.0410 92.9 92.2 925
MCSE 0.0014 0.0002
300 Mean 0.4947 0.0411 93.1 92.3 92.7
MCSE 0.0014 0.0002
500 Mean 0.4947 0.0412 93.2 92.9 92.6
MCSE 0.0014 0.0002
1000 Mean 0.4947 0.0412 93.2 93.0 93.1
MCSE 0.0014 0.0002
1500 Mean 0.4948 0.0411 93.2 93.0 93.5
MCSE 0.0013 0.0002
2000 Mean 0.4947 0.0411 93.2 93.2 93.1
MCSE 0.0013 0.0002

Note: Mean of K 1 denotes the average bootstrap kappa statistic.
MCSE of K 5 denotes the Monte-Carlo Standard Error estimate of the bootstrap kappa statistic.

Mean of SE (R , ) denotes the average bootstrap standard error estimate of bootstrap kappa statistic.

MCSE of SE (R ; ) denotes the Monte-Carlo Standard Error estimate of SE (R, ).

CRB denotes the 95% confidence interval coverage rate (%) using the 95% confidence interval based on normal approximation.
P . . . ) . .
CR  denotes the 95% confidence interval coverage rate (%) using the 95% confidence interval based on percentiles.

BC, . . . . .
CR g denotes the 95% confidence interval coverage rate (%) using the 95% confidence interval based on BCa.
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Table 4

Cell counts of the 2 x 2 table for Discussed CHD

Physician

Patient
No Yes
No  27(0.172) 12 (0.076) 39 (0.248)
Yes 15(0.096) 103 (0.656) 118 (0.752)

42(0.268) 115 (0.732) 157
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Table 5

Cell counts of the 2 x 2 table for MD recommended medication

Physician

Patient
No Yes
No 29(0.223) 19(0.146) 48 (0.369)
Yes 17(0.131) 65(0.500) 82 (0.631)

46 (0.354) 84 (0.646) 130
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Cell counts of the 2 x 2 table for MD recommended lifestyle change

Patient

No Yes

Physician ~ No

51(0.392) 15(0.115) 66 (0.508)

Yes

18 (0.139) 46 (0.354) 64 (0.492)

69 (0.531) 61 (0.469) 130
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