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Abstract
In many biological and environmental studies, measured data is subject to a limit of detection. The
limit of detection is generally defined as the lowest concentration of analyte that can be
differentiated from a blank sample with some certainty. Data falling below the limit of detection is
left-censored, falling below a level that is easily quantified by a measuring device. A great deal of
interest lies in estimating the limit of detection for a particular measurement device. In this paper
we propose a change-point model to estimate the limit of detection using data from an experiment
with known analyte concentrations. Estimation of the limit of detection proceeds by a two-stage
maximum likelihood method. Extensions are considered that allow for censored measurements
and data from multiple experiments. A simulation study is conducted demonstrating that in some
settings the change-point model provides less biased estimates of the limit of detection than
conventional methods. The proposed method is then applied to data from an HIV pilot study.
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1. Introduction
In many laboratory assays, interest resides in quantifying very dilute analyte concentrations
in solution. At some low concentration level, a measured response cannot accurately be
distinguished from background noise, the measured response from a blank sample. This low
concentration point is called the limit of detection (LOD), a point that is specific to each
particular measurement device [1]. Though the general definition given above for the limit
of detection is widely accepted, the methodology used to determine the limit of detection is
quite varied. In this paper we consider the estimation of the limit of detection using repeated
measurements from known analyte concentrations. This analysis is motivated by the need to
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determine the LOD of a novel assay that was developed to detect changes in low-level HIV
expression after a drug intervention. In many assays, as concentrations decrease the resulting
measured levels become more precise. In contrast, the assay measuring HIV expression
becomes less precise as the concentration of HIV decreases. Additionally, operational
restrictions related to the length of time required to perform the assay impose a limit on the
measured HIV expression. As a result, measured HIV expression is censored at low levels,
and assay measurements cannot be obtained from a blank sample. In this paper we consider
estimating the LOD for this assay based on replicate measurements from several different
known concentrations of HIV.

The rest of this article is organized as follows. In Section 2 we discuss past research on
estimating the LOD, and develop the notation for the rest of the paper. We explain how
previously considered models may mis-specify the error distribution for a measurement
device, leading to biased estimates of the LOD. In Section 3, we introduce the proposed
change-point model and discuss a two-stage estimation approach for obtaining maximum
likelihood estimates of the LOD from the model. We also introduce a mixed model
extension to the proposed approach to obtain global LOD estimates using data from multiple
experiments. In Section 4, we examine the proposed change-point model using a simulation
study. We apply the proposed model to the aforementioned HIV assay in Section 5. We
conclude this article in Section 6 with a discussion.

2. Background
To distinguish between low analyte concentrations and those of a blank sample, many
estimation approaches aim to quantify the distribution of measurements obtained from a
blank sample. The distribution of assay measurements for a blank sample is often assumed

to be Gaussian, with mean μblank and variance  [2]. A limit of detection is then chosen
to fall a “reasonable” distance outside of this blank distribution. Consequently, many
definitions of LOD take the following form [3]:

(1)

where K is a definition-specific constant, usually in the range of 2 to 3 ([4], [5], [6]). When
K = 3, it is expected that 99.9% of measurements from a blank sample will fall below the
limit of detection. Clearly, the larger value of K that is chosen, the higher the LOD will be,
and the lower the chance that a value from a blank will fall above the LOD. Using this
definition, many estimation approaches are designed to accurately estimate μblank and σblank.
In practice, such estimation is straightforward when many repeated measurements can be
obtained from a blank sample, by taking the sample mean and standard deviation (SD) as
estimates of μblank and σblank.

When blank measurements are not available, alternative estimation approaches can be
utilized. One approach involves taking repeated measurements of a known low
concentration of analyte and using these measurements as proxy measurements for a blank
sample. In this case, the LOD definition is similar to (1). With μlow and σlow representing the
mean and standard deviation of the distribution of measurements at the low concentration
(again assumed to follow a Gaussian distribution), the limit of detection is defined as:

(2)

The previous definition of the LOD in (1) includes only a specification of the distribution of
a blank sample. Using this definition enables direct control of the type I error, the chance of
incorrectly specifying a blank sample as containing some concentration of analyte. For
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example, when K = 3 the chance of a type I error is only 0.1% for any particular blank
measurement. However, this specification does not control for type II error, the chance of
incorrectly specifying a sample containing analyte as coming from a blank. If the type II
error is high, clearly there is still difficulty in conclusively distinguishing a concentration
value near the LOD from a blank. Consequently, many definitions of the LOD take both
type I and type II error into account. To ensure that measured values for concentrations at
the LOD are unlikely to fall in the range of a blank sample, alternative definitions of LOD
account for the distribution of measurement values at some known small concentration of
analyte. For example, the limit of detection is sometimes ([7], [4]) defined as:

(3)

Under the assumption that measurements from a blank sample has a normal distribution with
mean μblank and standard deviation σblank, 95% of blank samples will fall below μblank +
1.645σblank (called the “limit of blank”, or “limit of decision”). Assuming that
measurements from concentrations at the limit of detection defined by (3) have a normal
distribution with mean equal to the LOD and standard deviation σlow, 95% of concentration
measurements from concentrations at the limit of detection will fall above the limit of blank.
It should be noted that definition (3) is only needed when it is assumed that the measurement
standard deviation for a blank sample is different from the standard deviation for any other
“low” concentration sample at or around the LOD (i.e. σblank ≠ σlow). Many authors ([2], [8],
[4]) assume a constant measurement error variance for any true concentrations near or below
the limit of detection. In this case, the choice of K in (1) specifies the chance of a type I or
type II error. When K = 3.29, the chance of either type of misclassification is 5%; when K =
3, the chance is 7%. Alternative (but similar) definitions to (3) calculate a pooled
measurement standard deviation from both blank and low samples, using the pooled
estimate in place of both σblank and σlow [5].

The LOD definitions displayed in equations (1) and (3) usually are employed under the
assumption that the measurement distribution for a blank sample is Gaussian. Estimation of
the LOD using a Gaussian assumption can be more efficient than nonparametric methods if
the Gaussian assumption approximates the underlying distribution of a blank sample. In
reality, characteristics of the measurement device often result in non-Gaussian measurement
distributions for a blank. In such cases, nonparametric methods have been proposed [9],
which involve estimating quantiles from the observed blank distribution. For definition (3),
a nonparametric estimate of the 95th quantile can be used in place of μblank + 1.645σblank. In
this case, the value σlow can still be estimated with parametric methods when it is reasonable
to assume a Gaussian distribution for a low concentration sample. If the low concentration
cannot be assumed Gaussian, nonparametric estimation of the 5th and 50th quantiles of the
low concentration sample can be used to complete equation (3). In practice, the limited
number of replicates obtained make nonparametric estimation of quantiles less efficient than
estimation that relies on parametric assumptions. Consequently, most analyses rely on the
Gaussian distribution assumption, and define the limit of detection as in (3).

In practice, data analysts often do not have access to replicates of data from blank or “low”
concentrations. This is the case for the HIV pilot study data considered in Section 5, in
which the number of polymerase chain reaction (PCR) cycles needed to obtain a blank
sample measurement is too high to be operationally feasible. In this case it is difficult to
directly estimate the distribution of measurements for a blank sample, or the distribution of
any low concentration sample. In such settings estimation often proceeds using higher
analyte concentrations from which measurements are more easily obtained. A regression
line is then fit to (X1, Y1), ..., (Xn, Yn), the n observed pairs of analyte concentrations X and
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measured responses Y. This fitted regression line is known as a linear calibration curve.
Assuming a linear relationship between X and Y, we have the following model specification
([10], [11]):

(4)

The assumptions of (4) specify the distribution of Yi|Xi ~ N(β0 + β1Xi, σ2). Clearly, the
parameter estimates of the model can be used to directly estimate the distribution of Y|Xi = 0,
the response for a blank sample. We have:

Using the definition of LOD in equation (1) with K = 3, the LOD under model (4) is:

The above specification is conditional on the true values of the model parameters β0, β1, and

σ2. Let ,  and  denote the maximum likelihood estimates (MLE's) for β0, β1, and σ2

(and denote the estimated variance of  by ). The response distribution for a blank
sample can be estimated as follows:

Consequently, the limit of detection can be estimated as ([12], [11]):

(5)

In practice, the limit of detection is usually defined in terms of the concentration X instead of
the measurement Y. To obtain the limit of detection for concentration, a simple linear

transformation on  is performed [13], to obtain:

(6)

The standard analysis for estimating the LOD with a linear calibration curve assumes that
the variance of measured responses is constant at all concentration values. In many practical
applications this is not the case, and it is common for a measurement device to become more
(or less) precise as the concentration of analyte increases. In this case, it may be more
appropriate to allow the measurement standard deviation (or variance) to change with
analyte concentration. In the most basic case (or possibly under suitable transformation), the
measurement standard deviation is assumed to change linearly with the concentration as
follows:
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(7)

Using this specification, the limits of detection LODX and LODY are again estimated as in
equations (5) and (6).

The previously discussed methods for estimating the limit of detection with a linear
calibration curve either assume a constant standard deviation for measurement error as in
(4), or a change in measurement standard deviation by concentration as in (7). As noted by
several authors ([8], [11], [1], [4]), a more realistic assumption may be that the measurement
standard deviation changes for sufficiently high concentration values above the limit of
detection, while remaining effectively constant for sufficiently low concentration values.
Under this assumption, the use of a constant standard deviation model like (4) for all
concentration values may result in underestimation (if precision increases with
concentration) or overestimation (if precision decreases with concentration) of the limit of
detection. The use of a linear standard deviation model like (7) could provide the opposite
effect, overestimating the LOD when precision increases with concentration and
underestimating when precision decreases with concentration. One solution to this issue was
proposed by Rocke and Lorenzato [14], who partitioned measurement error terms into
proportional and additive terms. Taking ηi and εi as the component error terms, the Rocke
and Lorenzato model is written as:

(8)

For low concentrations (with Xi close to zero), the measurement error is approximately
constant as in (4). For larger concentration values, the measurement error is proportional to
the true concentration as in (7). While this approach provides a more flexible framework for
the error distribution than either the constant standard deviation model (4) or the linear
standard deviation model (7), the measurement error distribution is not specified as constant
for low concentrations below the LOD. If in fact the error standard deviation is constant
below the LOD, assuming the Rocke-Lorenzato model could yield biased LOD estimates. In
the next section a change-point model is proposed that includes models (4) and (7) as special
cases and allows for the possibility that the error standard deviation becomes constant at
concentration levels below the LOD.

3. Proposed Change-Point Models
3.1. Regression Model

Because measurements below the LOD are indistinguishable from a blank, it follows that
the measurement standard deviation may be constant for low analyte concentrations. Such a
distribution can be modeled using a change-point for the measurement standard deviation.
While the literature on change-point models in both regression ([15], [16]) and mixed [17]
modeling is quite rich, to our knowledge no published articles have looked at models with a
change-point on the standard deviation of the error. Here we consider the model:

(9)

where
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Here, λ represents the change-point for measurement standard deviation. As noted in Section
2, a common definition for the LOD is three standard deviations away from the expected
value of a blank sample. Adopting this convention, under model (9) the standard deviation
and expected value of a blank sample are σ0 and β0, such that the LODs for the measurement
(Y) and true concentration (X) are:

(10)

(11)

Taking , , , and  as the MLE's for their respective parameters, the limit of detection

is estimated following equations (5) and (6) with  replaced by . In the HIV pilot study
motivating this paper the measured assay responses Y are right-censored at a constant upper
limit (here denoted as γ). Accounting for this censoring, the log-likelihood for an individual
observation is:

where Φ() is the cumulative distribution function of a standard normal random variable.
Therefore the log-likelihood for the model can be expressed as:

(12)

In order to estimate the LOD under model (9), we maximize the log-likelihood (12) with
respect to the parameter vector (β0, β1, σ0, σ1, λ). Maximization of the log-likelihood is done
under the following constraints. First, the change-point (λ) must be constrained within the
range of the observed Xi. Taking x(1), . . . , x(n) as the order statistics for the observed Xi, this
is expressed as x(1) ≤ λ ≤ x(n). The rationale for this constraint is that the parameters σ0 and λ
become unidentifiable when λ ≤ x(1), and the parameters σ1 and λ become unidentifiable
when λ ≥ x(n).

The second model constraint is that the error standard deviation σi cannot be negative at x(1),
and the third model constraint is that σi cannot be negative at x(n). Together, the second and
third constraints specify that σi is nonnegative at all points in [x(1), x(n)]. These constraints
are satisfied by requiring σ0 ≥ 0 and σ0 + σ1(x(n) – λ) 0. All constraints on the model are
given below:

i. x(1) ≤ λ ≤ x(n)

ii. σ0 ≥ 0

May et al. Page 6

Stat Med. Author manuscript; available in PMC 2014 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



iii. σ0 + σ1(x(n) – λ) ≥ 0

Constraints (i) and (ii) are both linear, so are straightforward to implement when
maximizing (12). However, constraint (iii) is not linear, as it involves the term σ1λ.
Therefore, maximizing (12) subject to (i), (ii), and (iii) is challenging since many standard
optimization routines only allow for linear constraints. To get around this issue, we instead
use a two-stage optimization routine [18]. For ease of exposition, define σx(n) = σ0 + σ1(x(n)
– λ), the standard deviation at x(n), the maximum observed concentration value. For generic
parameter ϕ, we denote ϕ(t) as the parameter estimate at the t-th iteration of the estimation
routine. The proposed two-stage optimization routine is as follows:

1. Fix λ = λ(t–1). Maximize (12) with fixed λ, subject to the linear constraints:

i. σ0 ≥ 0

ii. σ0 + σ1(x(n) – λ) ≥ 0

2.
Taking  and  as the estimates from step 1, fix .
Maximize (12) with fixed σx(n) subject to the linear constraints:

i. x(1) ≤ λ ≤ x(n)

ii. σ0 ≥ 0

Obtain estimates , , , λ(t), set 

Steps 1 and 2 in the above procedure are repeated until convergence is achieved for all
parameter estimates. The convergence criterion used for parameter ϕ specifies that |ϕ(t) –
ϕ(t–1)| ≤ k, with k representing a generic constant. The proposed optimization routine is
relatively simple to implement, as the likelihood in (12) is not overly complex. For model
(9) analysis results presented in Sections 4 and 5, optimization in each stage was performed
using R software [19] with the constrOptim() function.

Standard large sample approximations of the distribution of the MLE are in general not
justified in this setting as the change-point parameter is not regular [20]. Alternatively,
various forms of the bootstrap have been shown to be theoretically justified and to perform
well empirically in change-point problems. Therefore, in the HIV example presented in
Section 5 the bootstrap is employed to estimate the standard error of the LOD estimate.

3.2. Mixed Model
The regression model (9) can be used to estimate the limit of detection for any individual
experiment. Extending this approach, a linear mixed effects model was also considered to
allow simultaneous estimation of a single limit of detection from multiple experiments. The
model specification is given as follows:

(13)

where Yij is the measured assay response and Xij is the true analyte concentration for
experiment i and measurement j, and BV N denotes a bivariate normal distribution. The
parameters β0 and β1 represent the main effect parameters, with bi0 and bi1 representing the
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experiment-specific random effects. The values of σ0 and σ1 are not experiment-specific, to
allow estimation of a population-averaged limit of detection. The change-point λi is
experiment-specific. In the presence of right-censored data, model (13) can be modified in a
manner analogous to the approach used for model (9). Maximum likelihood estimation for
this model was performed using PROC NLMIXED in SAS software version 9.3. Unlike the
PROC MIXED procedure (which is more commonly used to fit linear mixed effects
models), the NLMIXED procedure can account for right-censored data and the change-
point standard deviation in model (13). In Section 5, this model is applied to data from an
HIV pilot study.

4. Simulation Study
A simulation study was conducted to analyze the performance of the proposed change-point
model. The data for this simulation study was generated using model (9), with a parameter
specification that mirrored the HIV data analysis presented in Section 5. Only five different
values of concentration Xi were used at 1, 2, 3, 4, and 5. For each of the concentration
values, repeated measurements (Yi) were generated. The number of Yi generated for each of
the five concentration values was equal, a balanced allocation. For all simulations, the
parameter values were specified as follows: β0 = 45, β1 = –3.7, σ0 = 1.1. Four different sets
of simulations were run using a different value for the change-point (denoted as Case 1, 2, 3,
and 4), with λ taking values 1.5, 2.5, 3.5, and 4.5. The value of σX(n), the standard deviation
at the maximum concentration value, was kept constant at 0.25 for all simulations (again
mirroring results from the HIV data analysis). The specified values of σ0, λ, and σX(n)
determined the parameter value of σ1 for each simulated data set. Following the data set in
Section 5, all values of Yi falling above 42 were set as right-censored. For comparison, data
was simulated from two additional specifications for σi not involving a change-point. The
first (Case 5) used a constant value for σi, following the specification given by (4). The
second (Case 6) used the linear specification for σi given by (7).

For each simulation scenario, 10,000 data sets of size n = 80, 150, and 300 were generated.
The proposed change-point model was then fit to the data, using the two-stage estimation
approach described in Section 3.1 to obtain maximum likelihood estimates of all the model
parameters. For comparison, model (7) assuming a linear change in standard deviation with
no change-point and model (4) assuming constant standard deviation were also fit to the
simulated data sets. Both comparison models were modified slightly to account for
censoring of the response variable, similar to the method for the change point model
presented in Section 3.1.

Table 1 presents the empirical bias and standard deviation (SD) of the 10,000 estimates for
selected parameters in each model. Under the change-point specification for σi in Cases 1-4,
the change-point model exhibited less bias in estimating the LODX than both the linear
standard deviation and constant standard deviation models, for every sample size
considered. The change-point model tended to slightly underestimate the limit of detection,
particularly when the change-point was small relative to the range of the observed
concentration values. As expected, the constant standard deviation model (4) provided a
poor estimate of the LODX, with a negative bias for all cases considered. The magnitude of
this bias tended to increase when the change-point was low relative to the range of observed
data. The linear standard deviation model (7) also provided a poor estimate of the LODX, by
overestimating the LODX for all cases considered. This bias increased when the change-
point was high relative to the range of observed data. The change-point model also produced
LODX estimates with a smaller standard deviation than the linear standard deviation model
for all sample sizes considered. Similar relationships were seen for the estimates of σ0 and
σ1, with the change-point model generally providing estimates with the least bias, and
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estimates with smaller standard deviation than the linear model. Increased sample size did
not seem to affect the bias in any of the models considered, though the standard deviations
of the LODX estimates decreased.

Under alternative specifications for σi not involving a change-point (Cases 5 and 6), the
benefits of the change-point model were less clear. In Case 5, with a constant specification
for σi, the constant standard deviation model understandably provided estimates with the
least bias. Correspondingly, the linear standard deviation model provided estimates with
least bias in Case 6, which used a linear specification for σi. However, in neither case did the
change-point model give the most biased estimates, providing less bias than the linear model
in Case 5 and less bias than the constant model in Case 6. The precision of estimates
followed the trend seen in Cases 1-4, with the constant model providing the most precise
estimates and the linear model providing the least precise estimates.

In addition to parameter estimates, the Akaike Information Criterion (AIC, [21]) was also
calculated for each of the three models fit to every simulated data set. For each set of 10,000
simulated data sets, the AIC value for the change-point, constant, and linear models was
calculated. Of these three models, the one with the lowest AIC was selected as the best fit
for the current data set. Table 1 displays the proportion of the 10,000 simulated data sets that
resulted in a particular model having the best fit. For example, in Case 4 with n = 80, the
change-point model had the best model fit in 96.0% of the simulated data sets, compared to
0.6% for the linear standard deviation model and 3.4% for the constant standard deviation
model. The results displayed in Table 1 show that under the change-point specification in
Cases 1-4, the change-point model produces the best fit to the data a much higher proportion
of the time than either the linear standard deviation or constant standard deviation models.
This “relative fit” of the change-point model tended to increase with increasing change
point, and also with sample size, from 60.3% in the n = 80, λ = 1.5 simulation (Case 1) to
100% in the n = 300, λ = 4.5 simulation (Case 4). Results were more mixed under the
alternative specifications (Cases 5 and 6). Under a constant standard deviation specification
in Case 5, the change-point model provided the best fit only 3% of the time when n = 80,
and only 1% of the time when n = 300. Under the linear standard deviation specification in
Case 6, the change-point model provided the best fit only 18% of the time when n = 80, but
56% of the time when n = 300.

5. HIV Data
Data for this analysis comes from a pilot study analyzing the effects of a drug on HIV
transcription. Resting cells from HIV infected patients were treated with the drug, with
interest in the degree to which HIV transcription was increased. HIV RNA in general is too
unstable and must be reverse transcribed into the more stable form, cDNA. The
concentration of HIV RNA in patient samples was much too low to be directly measured,
and following conversion to cDNA subsequent amplification by real-time PCR was
necessary ([22], [23]). The region of the HIV genome that was amplified in this assay codes
for a highly conservative region known as gag which was measured with primers and probes
as described by Agarwal et al. [24]. RNA from patient samples was quantified using a linear
calibration curve based on known concentrations of HIV cDNA. The PCR machine
measures unknown quantities through fluorescence that is proportional to sample
concentration and amplifies over many cycles. A cycle-threshold is defined as the PCR
cycle that results in the highest increase in fluorescence. By comparing the cycle-threshold
value for a given unknown concentration of RNA to a linear calibration curve for different
known HIV concentrations, the unknown concentration was estimated.

May et al. Page 9

Stat Med. Author manuscript; available in PMC 2014 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For each patient in the pilot study, a linear calibration curve was created by measuring the
cycle-threshold value for different known concentrations of HIV. Data for the study consists
of calibration curve data for six experiments (one for each patient, six patients total), with
each experiment consisting of 20 measurements for each of four or five known
concentrations of HIV. The goal of this analysis was to estimate the LOD for the
concentration of HIV individually for each experiment. Complicating the analysis is the
restriction that each sample was run for a maximum of 42 cycles of PCR amplification; HIV
concentrations resulting in more than 42 cycles were right-censored.

It is important to note here that the concentration of HIV (X) is inversely related to the cycle-
threshold value (Y) in the analyzed data. A lower concentration of HIV in general takes
more PCR cycles to fluoresce, resulting in a higher cycle-threshold value. This relationship
is the opposite of what is usually observed when relating known concentrations to measured
values, where measurement (Y) usually increases with analyte concentration (X). Because of
the inverse relationship between Y and X in the current data, the LOD estimates will be
slightly altered from (5) and (6), taking the form:

(14)

Analysis of the data was performed in two ways. First, the change-point model proposed in
Section 3.1 was fit separately for each individual experiment, generating experiment-
specific LOD estimates. As with the simulation study, both linear standard deviation and
constant standard deviation models were included for comparison. The model fit was again
analyzed using the AIC. In addition, the mixed model proposed in Section 3.2 was fit to data
from all six experiments simultaneously, to generate a population-averaged estimate of the
LOD.

Parameter estimates for both the regression and mixed model approaches are given in Table
2, and a plot of the model fit for experiments 1 and 3 is given in Figure 1. The dashed lines
about the predicted regression line in Figure 1 represent 95% prediction intervals for the
data, with the vertical and horizontal dashed lines representing the estimated LOD.

Estimates of experiment-specific LODs (denoted  in Table 2) using the change-point
model range from 0.468 to 1.195, which correspond to LOD estimates on the untransformed
HIV concentrations of 2.94 to 15.68 copies of gag. LOD estimates from the change-point
model were lower than those from the linear standard deviation model, and were higher than
estimates from the constant standard deviation model, for all experiments. The AIC for the
change-point model was lower than the AIC for the linear standard deviation model in only
one of the six experiments tested, suggesting that the linear standard deviation model
generally provided a better fit to the data when the regression model was utilized. In
experiments 1, 2, 5, and 6, the change-point estimates equal 1.0, the lowest observed
concentration value. This makes the likelihood for the model identical to the linear standard
deviation model (notice the identical parameter estimates for β0 and β1), only with more
parameters estimated in the change-point model. This results in the higher AIC value for the
change-point model.

The mixed model results also give LOD estimates for the change-point model that are higher
than the constant standard deviation model, and lower than the linear standard deviation
model. The untransformed LOD estimate of 15.49 is in the range of LOD estimates for the
regression change-point models on each experiment, as expected. The AIC results indicate
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that the change-point model provides a better fit to the available data than does the linear
standard deviation or constant standard deviation mixed models.

6. Discussion
In this paper a change-point model is proposed to estimate the limit of detection with a
linear calibration curve. In certain settings, the proposed approach may provide a more
realistic model of the underlying distribution of measurement errors in a linear calibration
curve. Estimation is performed via a two-stage estimation technique, such that the nonlinear
constraints on the model parameters are satisfied. Application of the proposed model was
demonstrated using both an individual regression model and a mixed model.

The simulation results presented in Table 1 demonstrate that the proposed change-point
model can improve estimation of the limit of detection when compared to both the linear
standard deviation and constant standard deviation models. When measurement error is
constant for low concentrations of analyte, the linear standard deviation model tends to
overestimate the measurement error for a blank sample, and consequently tends to
overestimate the limit of detection. This is shown in Table 1, where estimates using the
change-point model exhibit smaller bias than the linear standard deviation model,
particularly when some of the observed concentrations fall below the true change-point. The
constant standard deviation model was shown to underestimate the LOD for all simulations
considered, with a substantially larger bias than the change-point model. When AIC fit
statistics were analyzed, the change-point model was correctly identified as the model
providing the best fit for all cases where the data were simulated under this model.

The key assumption of the proposed change-point model is that the measurement error
standard deviation is constant below some low concentration value. If this assumption does
not hold (the standard deviation instead continues to increase or decrease with
concentration), the change-point model would be expected to exhibit a greater bias than the
linear standard deviation model. In this case, when the measurement error increases with
concentration, the change-point model would tend to overestimate the limit of detection.
When the measurement error decreases with concentration, the change-point model would
tend to underestimate the LOD.

The proposed change-point model specifies a linear relationship between analyte
concentration and measurement standard deviation for concentrations above the change-
point. Often in the analysis of linear calibration curves it is common to instead specify the
error distribution in terms of the measurement variance. This approach was first considered

by Oppenheimer et al. [25], who modeled the error variance  as a function of

concentration Xi via . Such an approach could easily be extended to
incorporate a change-point if it was thought that changing measurement error could more
accurately be modeled in terms of the variance. Our choice to model the measurement
standard deviation instead of variance was motivated by an inspection of measurement error
in the available HIV data.

The proposed linear regression change-point model is quite straightforward to implement,
and convergence of the parameter estimates was achieved very quickly in both the
simulation and HIV analyses. The mixed model approach in Section 3.2 also converged very
quickly, making the proposed approaches quite feasible. However, the profile likelihood
plots for the change-point parameter λ (not shown) indicate that the likelihood surface may
in some instances not be very well-behaved, and that estimation by iterative procedures may
not always be straightforward. The plots also reinforce the importance of using the bootstrap
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to estimate standard errors. Further theoretical investigation may shed some additional light
on this potential issue.
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Figure 1.
Change-point model results for experiments 1 and 3
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Table 2

Parameter estimates and bootstrap standard errors for HIV study, using regression models and mixed models

Regression Model

Experiment β̂0 β̂1 σ̂0 σ̂1 λ̂ LOD̂ X 10
LOD̂ X AIC

Change-Point Model

1 43.19 (0.26) −3.661 (0.077) 1.147 (0.106) −0.278 (0.038) 1.000 (0.00) 0.959 (0.083) 9.10 (1.70) 181.68

2 45.20 (0.29) −4.104 (0.079) 1.612 (0.181) −0.452 (0.067) 1.000 (0.09) 1.195 (0.131) 15.68 (4.94) 235.64

3 45.68 (0.16) −3.579 (0.049) 0.537 (0.092) −0.115 (0.051) 2.000 (0.22) 0.468 (0.077) 2.94 (0.50) 85.41

4 45.35 (0.17) −3.472 (0.047) 0.747 (0.109) −0.255 (0.042) 1.699 (0.32) 0.661 (0.093) 4.58 (1.04) 118.93

5 42.42 (0.22) −3.395 (0.065) 1.186 (0.100) −0.262 (0.037) 1.000 (0.06) 1.063 (0.084) 11.57 (2.22) 291.30

6 43.17 (0.22) −3.684 (0.064) 1.262 (0.089) −0.310 (0.033) 1.000 (0.00) 1.041 (0.074) 11.00 (1.86) 286.98

Linear Standard Deviation Model

1 43.19 (0.25) −3.661 (0.076) 1.425 (0.138) −0.278 (0.037) - 1.183 (0.108) 15.23 (3.74) 179.68

2 45.20 (0.30) −4.104 (0.081) 2.062 (0.243) −0.452 (0.066) - 1.522 (0.173) 33.25 (14.21) 233.64

3 45.74 (0.18) −3.593 (0.061) 0.676 (0.230) −0.085 (0.078) - 0.580 (0.181) 3.80 (1.42) 86.88

4 45.43 (0.18) −3.492 (0.048) 1.118 (0.152) −0.239 (0.038) - 0.971 (0.126) 9.36 (2.82) 118.10

5 42.42 (0.21) −3.395 (0.065) 1.448 (0.143) −0.262 (0.039) - 1.292 (0.120) 19.60 (5.50) 289.30

6 43.17 (0.22) −3.684 (0.064) 1.572 (0.118) −0.310 (0.033) - 1.291 (0.097) 19.55 (4.46) 284.98

Constant Standard Deviation Model

1 43.26 (0.37) −3.688 (0.118) 0.920 (0.096) - - 0.776 (0.074) 5.96 (0.99) 219.63

2 44.95 (0.39) −4.004 (0.118) 1.199 (0.136) - - 0.927 (0.109) 8.46 (2.18) 294.05

3 45.66 (0.14) −3.563 (0.043) 0.464 (0.060) - - 0.409 (0.052) 2.56 (0.30) 88.08

4 45.27 (0.19) −3.424 (0.056) 0.622 (0.083) - - 0.565 (0.075) 3.67 (0.62) 156.98

5 42.44 (0.26) −3.406 (0.083) 0.920 (0.080) - - 0.830 (0.064) 6.76 (0.99) 326.45

6 43.53 (0.29) −3.825 (0.095) 0.972 (0.076) - - 0.781 (0.058) 6.04 (0.79) 339.77

Mixed Model

Experiment β̂0 β̂1 σ̂0 σ̂1 λ̂i LOD̂ X 10LOD̂ X
AIC

Change-Point Model

All 44.37 −3.698 1.342 −0.313 * 1.190 15.49 2955.9

Linear Standard Deviation Model

All 44.38 −3.703 1.459 −0.250 - 1.273 18.75 2994.0

Constant Standard Deviation Model

All 44.43 −3.725 0.973 - - 0.910 8.13 3240.4

*
λ is experiment-specific in this model
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