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Abstract

In this paper, we propose a class of Box-Cox transformation regression models with
multidimensional random effects for analyzing multivariate responses for individual patient data
(IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-
analysis model with multivariate random effects, in which each response is allowed to have its
own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation
parameters as well as the regression coefficients in this complex model, and the Deviance
Information Criterion (DIC) is used to select the best transformation model. Since the model is
quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to
sample from the joint posterior of the parameters. This model is motivated by a very rich dataset
comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly
model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-
C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C,
TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact
quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature,
these three variables are usually analyzed univariately: however, a multivariate approach would be
more appropriate since these variables are correlated with each other. A detailed analysis of these
data is carried out using the proposed methodology.
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1. Introduction

Millions of Americans are struggling with high cholesterol which is well known to
contribute to heart disease and other cardiovascular disease. A great deal of effort has been
put forth in clinical trials studying cholesterol lowering drugs. Endpoints in such trials
typically focus on one or more of three primary endpoints, these being Low Density
Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and
Triglycerides (TG) (LDL-C, HDL-C, TG). In the clinical literature, these endpoints have
been primarily studied and reported individually, without consideration of their joint effects
and their associations within an aggregate meta-analysis framework. If one wishes to jointly
model these outcomes within a meta-analysis framework and capture their joint associations,
an aggregate meta-analysis framework will not suffice. In this case, an individual patient
data (IPD) meta-analysis is required. Meta-analysis of IPD data is common in settings where
the data analyst has access to the raw data from all the studies, as is often the case when all
of the data come from the same institution or pharmaceutical company, for example.
However, access to study-level data is a more common scenario than an IPD analysis since
the data analyst usually has access to statistical summaries from several studies as reported
in the literature. Among meta-analyses reported in the literature, univariate meta-analyses
are most common primarily due to the relative simplicity and availability of software to
conduct such analyses. Multivariate IPD meta-analyses are less common due to
methodological challenges, complexity and lack of appropriate software. In this paper, we
propose a unified framework for carrying out IPD meta-analysis for multivariate response
data, which is primarily motivated by 26 clinical trials for cholesterol lowering drugs
measuring (LDL-C, HDL-C, TG) as the primary outcomes of interest along with several
covariates. The challenges posed here are that these response variables have very different
distributions, which are not symmetric or normally distributed, and therefore one has to
consider transformations on each of the 3 response variables to achieve normality.

Meta analysis of individual patient data (IPD) is a useful and effective statistical tool for
synthesizing evidence across studies. It offers greater flexibility for meta-analysis and
improves investigation and explanation of heterogeneity. Availability of IPD allows
regression modeling for examining relationships between treatment effects and covariates
that can explain the variability in terms of clinical and other factors. Whitehead et al. [1]
considered IPD meta-analysis of ordinal outcomes. Their approach is based on the
proportional odds model where the treatment effect is represented by the log-odds ratio.
Khana et al. [2] demonstrated and highlighted the benefits of IPD meta-analysis in
evaluation of diagnostic tests. Edwards et al. [3] carried out a meta-analysis using IPD to
determine the analgesic efficacy and adverse effects of single-dose rofecoxib in primary
dysmenorrhoea. Gorman et al. [4] conducted meta-analysis on the data from 3272 Caucasian
patients with rheumatoid arthritis to examine the role of specific shared epitope genotypes in
the development of rheumatoid nodules and to investigate the influence of covariates, such
as disease duration and gender. Smith et al. [5] investigated heterogeneity in an IPD meta-
analysis of time to event outcomes. Simmonds and Higgins [6] investigated the power of
meta-regression and IPD methods to detect treatment-covariate interactions. Ziegler and
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Grossarth-Maticek [7] conducted IPD meta-analysis of survival and psychosomatic self-
regulation for long-term therapy of breast cancer patients with mistletoe preparation.

The Box-Cox transformation with parameter A on a response variable y is defined as

. B ifazo0,
9= log(y) if A=0.

The literature on Box-Cox transformations for multivariate meta-analysis is essentially non-
existent. There have been a few papers that address Box-Cox transformations within a
univariate meta-analysis framework, however. Lipsitz et al. [8] examined Box-Cox
transformations in longitudinal data settings with missing data. Hoffmann et al. [9] used the
Box-Cox transformation in analyzing dietary intake data in epidemiological studies. There
have been several statistical papers addressing various issues in Box-Cox transformations,
but none of these papers address Box-Cox transformations in meta-analysis settings. In
addition to the classic paper by Box and Cox[10], Gurka et al. [11] examined Box-Cox
transformations in linear mixed models, and Terasaka and Hosoya [12] extended the Box-
Cox transformation to the multivariate time series model. Bayesian papers include [13] and
[14] who examined the choice of prior distribution for the Box-Cox transformed linear
model. Lee et al. [15] carried out Bayesian analysis of Box-Cox transformed linear mixed
models and Gottado and Raftery [16] developed a Bayesian approach for simultaneous
variable and transformation selection. Due to the complexity of Box-Cox transformation
models, Bayesian methods may be preferred over the classical methods due to the recent
advance in Bayesian computation and the recent development of Bayesian model
comparison criteria.

In this paper, we develop a new methodology for analyzing IPD multivariate responses.
Similar to trial level aggregate responses, trial random effects and trial-by-treatment random
effects are incorporated into the models. Assuming the distributions of some or all of the
response variables to be highly skewed, we propose a class of Box-Cox transformations for
multivariate responses data within a meta-analysis framework involving IPD. Our Bayesian
approach is quite innovative in the sense that we allow a different Box-Cox transformation
on each response, different Box-Cox transformation parameters on each trial, coupled with a
multivariate meta-regression model. The multivariate meta-regression model along with two
sets of the multivariate random effects for regression coefficients and transformation
parameters poses a great computational challenge. To this end, we develop novel Bayesian
computational methods for fitting this model via several modified collapsed Gibbs samplers
([171,[18]). In addition, we derive the deviance information criterion for comparing several
variations of the proposed multivariate meta-regression model and the Bayesian residuals for
examining the goodness-of-fit of these models and demonstrate the novelty of the proposed
methodology with a series of 26 clinical trials for cholesterol lowering drugs.

The rest of the paper is organized as follows. A summary and an exploratory analysis of the
meta-individual patient data are presented in Section 2. The methodological development of
the meta-analysis for multiple responses with Box-Cox transformations is given in Section
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3. The computation algorithm to carry out Bayesian inference is developed in Section 4. The
meta-data discussed in Section 2 is analyzed in detail in Section 5. We conclude the paper
with brief discussion and some extensions of the proposed methodology in Section 6.

2. The Data

2.1. Description of the Data

The individual patient data used here to demonstrate the applications of our proposed
models come from 26 Merck sponsored double-blind, randomized, active or placebo-
controlled clinical trials on adult patients with primary hypercholesterolemia. The primary
goal of these clinical trials was to evaluate the LDL-C lowering effects of Ezetimibe (which
works in the digestive tract) in combination with statin (which works in the liver) in
comparison to statin alone on treatment-naive patients at baseline (on a first line therapy)
and those continuing on statins at baseline (on a second line therapy). In our analyses,
different statins and their doses are combined to form the “statin” and “statin+Ezetimibe”
treatment groups. Ezetimibe (EZE) is available at only one dose of 10mg and the statins
used in these trials included simvastatin, atorvastatin, lovastatin, rosuvastatin, pravastatin,
and fluvastatin. The covariates include treatment (trt) (0 = “statin” and 1 = “statin
+Ezetimibe™), baseline LDL-C (bl_IdIc), baseline HDL-C (bl_hdic), baseline TG (bl_trig),
age, race (white (reference), black, hispanic, and other), gender (Male (reference), Female),
diabetes (DM, 0 = No, 1 = Yes), CHD (0 = No, 1 = Yes), body mass index (BMI), statin
potency (low (reference), med (potency?2), high (potency3)), and trial duration. In this
analysis, we include only the patients whose covariates were available.

The meta-individual patient data considered in our analyses is a subset of the meta-data
published in [19]. The citations of primary published papers in clinical journals for the 26
trials considered in this paper can be found in [19]. Leiter et al. [19] carried out a meta
analysis based on the pooled data. Instead of the pooled data, we fit the meta-data via
multivariate Box-Cox transformation models with multi-dimensional random effects for
treatments and transformation parameters, which account for heterogeneity among the trials.
A detailed summary of the covariates for these 26 clinical trials is given in Tables 1 and 2.
From Tables 1 and 2, we can see a considerable amount of heterogeneity in the covariates
across the trials. Specifically, the ranges of the within trial means of the continuous
covariates are (89.2, 186.0), (43.1, 55.3), (127.0, 199.5), (52.3, 71.2), and (27.2, 33.6) for
baseline LDL-C, baseline HDL-C, baseline TG, age and BMI, respectively. We also see
drastically different proportions of the categorical covariates across trials. For example,
trials 15, 17, 20, 22, 23, 24 only included CHD patients while trial 21 had no CHD patients
at all. Also, there was only medium statin potency in trials 13, 15, 16, 17, 21, 23, 24, and 25
while there were no low or high statin potencies in some other studies. We further observe
that the proportions of DM patients and the distributions of race were quite different across
the 26 trials. This descriptive summary shows that in order to examine the treatment effects,
there is a need to adjust for these covariates. More importantly, the within-trial adjustment
of covariate effects may not be feasible due to the fact that the effects for some covariates
are not estimable. In addition, due to the nature of the randomized trials, the within-trial
adjustment of covariate effects may not be needed. This observation motivates us to develop
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meta-analytic regression models with common regression coefficients for the covariates
across trials to adjust for heterogeneity of the covariate distributions.

2.2. Exploratory Analysis of the Data

We consider three primary outcome variables including percent changes from baseline in
LDL-C, HDL-C, and TG. For ease of presentation, we simply denote these three outcome
variables by LDL-C, HDL-C, and TG. For each of LDL-C, HDL-C, and TG, we first added
100 to the outcome variable to ensure it to be positive and then we fit 26 regression models,
one for each trial, using all possible covariates listed above as long as they were estimable
within each trial. Using the SAS procedure TRANSREG, we obtained the maximum
likelihood estimates of the 26 trial-wise Box-Cox transformation parameters (4’s) for each
of LDL-C, HDL-C, and TG. The boxplots of these estimates are shown in Figure 1. From
this figure, we see that there is a substantial variation among the estimated transformation
parameters. This variation may be partially explained by the different proportions of certain
types of patients such as CHD patients across trials. For example, the estimated
transformation parameters for TG were —0.37 and —0.37 for trials 15 and 20 and 0.22 and
0.33 for trials 4 and 25. From Tables 1 and 2, we see that trials 15 and 20 included only
CHD patients while trials 4 and 25 had more balanced proportions of CHD patients and no
CHD patients. These exploratory analyses suggest that there is a need to transform all three
outcome variables and the transformation parameters vary from trial to trial.

3. Methods for Meta-analysis with Multivariate Responses and Multi-

Dimensional Random Effects

3.1. The Multivariate Meta-analysis Regression Model

Consider K randomized trials, where each trial has two treatment arms (“Statin” or “Statin +
EZE”), and patients in each trial were either all on statin or all not on statin prior to the trial.
The sample size of the individual patient data for the k! trial is ny. Let yix = (Vitk, --» Vi)
denote a J-dimensional vector of the responses for the it patient in the ki trial. In our
application, K = 26 and J = 3. Also let trt;, = 1 if the it patient received “Statin + EZE” and
0 if “Statin” alone, and onstatiny = 1 if patients were on statin and 0 if not on statin prior to
the trial. Also let xjjx denote a pj-dimensional vector of covariates for the jth response
corresponding to the ith patient.

We propose the following multivariate random effects transformation regression model for
the meta-analysis:

95k (Yijk) =2 5B+ Viro+ Ve trtie] (1—onstating ) +[ vira+7yjrstrtic]onstating +eye,  (3.2)

where gjk(.) is a function of yjjx and 4 = (4, ..., ﬁjpj)/ is the vector of fixed effects regression
coefficients corresponding to the p; covariates. For j =1, ..., J, we consider the Box-Cox
transformation for gj as follows:
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b
Wyk—aj) ik -1 Fho 20
9ik(Yi)= Py ) 1 ik # 0, 32)
log(yir—a;) if Ajr=0,

where g; is a pre-specified constant such that yjjx — ¢j > 0. In our application, we take aj =
—100. Let yk = (yjko» %k, Yjk2: 7jk3)’ SO that ¥ represents the vector of random effects in
(3.1). Also let g = (&1k, ---» €ik)’- We assume &g, %k, and Ajx are independent. We further
assume

€ix~IV, (0, Z)v (3.3)

independently, fori=1, ..., ngand k =1, ..., K, where X is a J x J unstructured covariance
matrix, which captures the dependence among the J responses Viik, Yizk ---» Yidks

PijNNAl(PYj’ ‘/j)a (3.9)

where ¥ = (30, %1, 72, %3)" denotes the vector of the overall treatment and onstatin effects
for the jt response, and

AN (N 77), (35)

where 4; denotes the overall parameter in the Box-Cox transformation and 7]2 captures the
between-trial variability of the Box-Cox transformation for the jt response. To ensure
model identifiability, we assume

Vioo Vjor O 0
Vie Viii O 0 vi o
V.= J J = J .
J 0 0 ‘/j?2 ‘/'],23 0 ‘/}2 (3.6)
0 0  Viaz Vias

In (3.6), Vjoo and Vjy capture the variabilities of yjko and yjk1, and Vjoy captures the
correlation between yjxo and yjx1 among the trials in which patients were not on statin; and
similarly, Vjp, and Vjs3 capture the variabilities of yjxo and yjks, and Vjp3 captures the
correlation between yj, and yjx3 among the trials in which patients were on statin. A flow
diagram of the proposed model specified by (3.1), (3.2), (3.3), and (3.5) is shown in Figure
2.

In our application, the yjjk’s include the percent changes of LDL-C, HDL-C, and TG. The
covariates include baseline LDL-C (bl_lIdIc), baseline HDL-C (bl_hdIc), baseline TG
(bl_trig), age, race (white (reference), black, hispanic, other), gender (female versus male),
diabetes (DM), CHD, BMI, statin potency (potency?2, potency3), and trial duration.

The meta-analysis regression model defined in (3.1), (3.3), and (3.4) is a multivariate
random effects model that captures several sources of between-trial variation involving
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several treatments, while simultaneously accommodating trial level covariates. First, yjxo is
the random intercept for those not on statin, and yj, is the random effect for treatment
across trials for those not on statin. Similarly, y is the random intercept for those on statin,
while k3 is the random effect of treatment for those on statin. The resulting model will
require estimation of the covariance matrix of the random effects, denoted by Vj, which is a
block diagonal matrix. Simultaneous estimation of (8, ..., 83, X, %1, ---» ¥3, V1, ooy V3, A1, -1,

Ao T, ,rf) is not trivial and requires a sophisticated and computationally intensive Gibbs
sampling algorithm.

3.2. The Complete-Data Likelihood Function

Write fw;k:((l—onstatink), trt;, x (1—onstating ), onstating, trt;, x onstatiny)and

(yip—a;) V" =1

37
" @7

Yiik = gik(Yik)=

Let

;. ’ ’

Y=Y -5 Y,) » Xie=diag (®i1p, .- 2, ), B=(B4,..-,8,), Wi=diag(wy, .., wiy), Vi F=(Yipo - --

,and Af=(\;,...,A,,)" Then, from (3.1) and (3.3), we have
Y =X B+ Wiy +€ik, N, (0, ).

Thus, given g, %, 3, and A%, the joint density of 7, is of the form

‘ |71/2

* 7 1 7 ! —1 * 7
FERIBARED AT, Xig, Wik)= WGXP {—g(yfk—Xikﬁ—”ik‘mR) > (yik_Xikﬁ_T"/ik')’]?)}- (3.8)
Vs

The Jacobian of the transformation (3.7) is given by

J
/(y:k - yzk H Yijk—aj *17 (3.9
where Vik = Yiik ---» Yigk)’- Combining (3.8) and (3.9) gives the density of yj,, which takes
the form:
Tl B 7D 5 AF, Xk Wik)

\Zl_w ) T Ajp—1
775 exp{—-(ylk XieB—Wiuv) Z Ny ikﬁ—Wiﬂk)} 1 (yip—ay)™
(2m)° j=1

(3.10)

Further, the complete-data likelihood function is given by
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K ng
L(B. 27" 4 VAT A 7 D)= T1{ | T £(walBvf S i )|

k=1 i

1=

J 4 1 I

X [4H1(27T)5|Vj| 2exp {—%(’ij—%’) Vj 1(7jk_7j)}:| (3.11)
j=

exp {—T;Z(Ajk—/\j)z}} }

where f (il B, Y& Y AR Xiw, W) is defined by (3.10),

M

J _
X |: 11 (27T7'jz)
j=1

’

PR ) ) s A=) s V = diag(Vy, .. Vi) AR=(AR) L (AR,

A=y, .., Ag), and 72=(72, ..., 72)

YLyt

3.3. Prior and Posterior

We assume that S, 2, 7, V, A, and 72 are independent a priori. Thus, the joint prior for (5, 2,
%V, A, and #) is of the form

w8, 7 VoA m)=n(B)r (Y )w(v)m(V)m(N)a(T?).  (3.12)

J
We further assume B~ Np(0, Co1lp), where P:ijll’j, ¥~ Naj (0, coolag), A~ Ny (0, cosly),
=1 ~ Wishart 5(do, So), V;' ~Wisharts(ao, Vg") forh=1,2andj=1, ..., J, and

T]?NIG(bm,bog) forj=1, ..., J, where cg1, Cop, Co3, do, So, @p, Vi, V2 bo1, and by, are
prespecified hyperparameters. Further, we have

-1 —1 (do—J—1)/2
(> ldo,So) o< [ |

(7_]42)7(1701 +1)

exp (—3tr (55132 )) and

p(Tj2|b01, bpa) o< eXp(—bog/sz) forj=1, ..., J. Although independent normal
priors are specified for g, y, and A, multivariate normal priors may also be specified.
However, when cq1, Cg2, and cqs are large, independent normal priors are adequate since we
essentially specify non-informative priors for 5, ¥, and A. Using (3.11) and (3.12), the
posterior distribution is given by

(B, Z’ 'YRa vV, AN, T2|D01)S) o L(B, Z’ 'YRv vV, AN, T2|D(,bs)7'l'(,3, Z’ 7, Vi A, 72)~ (3.13)

3.4. Model Comparison via DIC
Let

’
! ’

)‘I}?:(}‘lkv A ) Y=Y - vynk,k) Ye=((Y1e) - - (y:%,k) ) Xi=(Xqp, - -- ’Xnk,k)

,and W=(Wp,, ..., lf’l/’,,'Lk,k) . Write = (B, 7 %, V, AR). We define the deviance function as
follows

Stat Med. Author manuscript; available in PMC 2014 October 12.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kim et al. Page 9

K
D(lf}):—ZZlOg (f(yk|/63 v Za Vv, AkRa Xk, VVk)) , (3.14)
k=1

where f(yx| 3,7, Z, V, /\kR, X, W) is the marginal distribution of yj, which is given in
Appendix A. Then, the Deviance Information Criterion (DIC) proposed by Spiegelhalter et
al. [20] is given by

DIC=D()+2p,,, (3.15)

where y= E[¢4Dops] and pp = E[D(%)|Dops] — D(%), which is the effective number of model
parameters.

We will use DIC to compare the following three models:
M, Aik=1forj=1,..,Jandk =1, ..., K (no transformation model);

M Aik=4jforj=1,..,Jandk =1, ..., K (fixed transformation
parameters model); and

Ms random /ljk forj=1,...,Jand k=1, ..., K (random transformation
parameters model).
4. Computational Development

We consider the following one-to-one transformations:
Y= o Y ok YT, =vE—yfork=1, .., K. Thus, ¥k = yx— % forj=1, ..., J

andk=1, ..., K. Write v*E=((vi) ..., (v'7) ) . Also, let X7, =(Xy, Wy) fori=1, ..n
andk=1, ..., Kand 8= (8, v)'. Then, we have

(0,5, 7, Vo N X, 72| Doys)

K on —% 1% _X*O0—W: *R -1 *_X* Q=T *R
o8 kHI’H1|Z| exp g(yik ik kYL ) > (yik ik kYL )
—= 1=
K ng J N1 Ko L e ol
x I1ITIT (waw—a) ™ x T1IT IV 2exp (= 3(v3) V)
k=1li=1j=1 k=1j=1
L 2173 1 )2 el vy
kaI ‘th—j| exp _FZ(/\J"C_/\J) xexp | =557 ) X exp | —3.L
=1)= J

X eXp <— 2’\0,0);> X |Z*1\(d0_‘]_1>/26xp {—%tr (50712*1)}

@.1)

J 2 _ag—2-1 B B J —(bo1 +1
<ILIVPT 2 exp {—3tr (VP)1) ) TLG2) ™ Pexp (—boo/72).
j=1h=1 =1

Although an analytical evaluation of the above posterior distribution is not possible, the
proposed model allows us to develop an efficient Gibbs sampling algorithm in Appendix B
to sample from the joint posterior distribution in (4.1).
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5. Analysis of the Meta Individual Patient Data

In this section, we present a detailed analysis of the meta individual patient data discussed in
Section 2. In the following discussion, these meta-data will be referred to as MIPD. In (3.1),
Xijk consists of 14 covariates, including bl_ldlc, bl_hdlc, bl_tg, BMI, age, duration, Female,
DM, CHD, potency?2, potency3, black, hispanic, and other. The outcome variables were
LDL-C, HDL-C, and TG, which were defined as percent changes from baseline in LDL-C,
HDL-C, and TG. We model these three outcome variables jointly via (3.1) to (3.6) with J =
3 and K = 26. The hyperparameters of the prior in (3.12) were specified as cg; = 1000, cgp =
1000, cg3 = 1000, dg = J +0.01, Sp = 0.01, ag = 2.01, V;=0.01, V;2=0.01, bo1 = 0.1, and bp;
= 0.1. In all of the analyses, we standardized all of fourteen covariates, in which each
covariate was subtracted from its sample mean and divided by its sample standard deviation
computed using the pooled data, for numerical stability in the posterior computation.

We fit the three models discussed in Section 3.4 to the MIPD. These three models differ
only in the transformation parameters. For the MIPD, the values of D(z//),_pD, and DIC were
540,908.78, 72.88, and 541,054.53 for model +:; 528,295.55, 70.83, and 528,437.22 for
model *:; and 526,891.09, 122.21, and 527,135.51 for model M. Although model s has
the largest pp value, it has the smallest values of D(z//)_and DIC. The no transformation
model, i.e., M1, has the largest DIC value. These DIC values indicate that (i) the
transformation model with random A did fit the data better than the transformation model
with fixed Ajx, which implies that the transformation parameters vary from trial to trial; and
(i) both the transformation models fit the data better than the no transformation model.

To further examine the goodness-of-fit of these three models, we computed Bayesian
residuals, which were defined as rx=E[ (g3 (yijk) | Dobs )] — E[ (2 ,8+wixy ;)| Dobs), where

Gijk(Yij) is given in (3.2), w;k is defined in Section 3.2, and the expectation is taken with
respect to the posterior distribution in (3.13). The boxplots of these Bayesian residuals for
each of the three outcome variables under models M: to Ms are shown in Figure 3. From
Figure 3, we see that the Bayesian residuals under both the models M: and s are much
more symmetric and smaller than those under model .. Figure 3 also shows that both
models M- and Ms had a great improvement in the residuals for the outcome variable TG
over model .. These results were consistent with the ones obtained based on the DIC
criterion, which further confirms the need of transformations for all three outcome variables.

The posterior estimates, including the posterior means, posterior standard deviations (SDs),
and 95% highest posterior density (HPD) intervals of the parameters under model M- are
reported in Table 3. From this table, we see that baseline LDL-C and baseline TG were
significant for the percent change from baseline in LDL-C with 95% HPD intervals (-0.092,
-0.067) and (0.006, 0.019), which do not include 0; baseline HDL-C and baseline TG were
significant for the percent change from baseline in HDL-C with 95% HPD intervals (-0.090,
-0.052) and (0.022, 0.041); and only baseline TG was significant for the percent change
from baseline in TG with 95% HPD interval (-0.131, —0.107). In addition, BMI was
significant only for the percent changes from baseline in HDL-C and TG with 95% HPD
intervals (-0.028, —0.014) and (0.013, 0.023), and age was significant for all three outcome
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variables. The other significant covariates were gender, statin potency, and race for the
percent change from baseline in LDL-C; gender, DM, CHD, and race for the percent change
from baseline in HDL-C; and gender, statin potency, and race for the percent change from
baseline in TG. The trial duration was not significant for all three outcome variables.

Based on the signs of the coefficients of significant terms in the fitted model, we can
conclude the following concerning the directions of percent changes in LDL-C, HDL-C, and
TG. First, increase in bl_Idlc, age, and potency results into higher percent reduction in LDL-
C from baseline. Also, there is a higher percent reduction in LDL-C from baseline for DM
(vs. non-DM), white (vs. black and vs. hispanic) while an increase in bl_trig results into a
lower percent reduction in LDL-C from baseline. Second, increase in bl_hdlc and BMI
results into lower percent increase in HDL-C from baseline. There is a lower percent
increase in HDL-C from baseline for DM (vs. non-DM), CHD (vs. non-CHD), black (vs.
white) and hispanic (vs. white) while an increase in bl_trig and age results into a higher
percent increase in HDL-C from baseline. Third, increase in bl_trig, age, and potency results
into higher percent reduction in TG from baseline. Also, there is a higher percent reduction
in TG from baseline for black (vs. white), white (vs. hispanic) and male (vs. female) while
an increase in BMI results into a lower percent reduction in TG from baseline. The above
mentioned directions in percent changes in LDL-C, HDL-C and TG corresponding to
changes in covariates are consistent with what we observed in our previous univariate
pooled modeling without any transformation.

The results shown in Table 3 under model M: further indicate that patients on “statin +
EZE” had significantly more percent changes from baseline in both LDL-C and TG than
those on statin alone in both first and second line therapy studies. We note here that a
posterior estimate is considered to be statistically significant at a significance level of 0.05 if
the corresponding 95% HPD interval does not contain 0. the significance of the regression
coefficients, that is, whether the 95% HPD interval contains O or not. The corresponding
95% HPD intervals were (-0.476, —0.335) in the first line therapy and (-0.583, —0.358) in
the second line therapy for the percent change from baseline in LDL-C; and (-0.125,
—0.059) in the first line therapy and (—0.130, —0.059) in the second line therapy for the
percent change from baseline in TG. However, the significant improvement with a 95%
HPD interval (0.018, 0.084) in HDL-C from baseline for patients on “statin + EZE” over
those on statin alone only was observed only in the first line therapy studies. From Table 3,
we also see that the 95% HPD intervals for 14, A, and A3 were (0.078, 0.178), (0.132,
0.267), and (-0.032, 0.054), respectively, which implies that all three outcome variables
require transformations in order to achieve normality. Figure 4 shows the marginal posterior
densities for these three transformation parameters. These marginal posterior densities
appear to be unimodal and symmetric. Furthermore, the 95% HPD intervals of the standard
deviations of the 4j’s were (0.074, 0.131) for 7, (0.069, 0.122) for 7, and (0.070, 0.122)
for z3. The posterior estimates of the 7; ’s indicate that there was substantial heterogeneity in
the transformation parameters across the trials, which further explains why model M: fit the
MIPD better than model -. In addition, the posterior estimates of > under model M= are
given in Table 4. From this table, we see that there were moderate correlations among these
three outcome variables. In particular, the percent change from baseline in LDL-C was

Stat Med. Author manuscript; available in PMC 2014 October 12.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kim et al.

Page 12

positively correlated with both the percent changes from baseline in HDL-C and TG while
the percent change from baseline in HDL-C was negatively correlated with the percent
change from baseline in TG.

Finally, we compare the posterior estimates of the model parameters under model M- to
those under model #: shown in Tables 5 and 6. The noticeable differences of the posterior
estimates between models +: and s are the 95% HPD intervals of 5, 17, and S,
corresponding to covariates bl_hdlc, Female, and CHD. The 95% HPD intervals of S, 17,
and fg were (—0.531, —0.021), (0.134, 0.604), and (0.040, 1.022) under model *: and
(-0.012, 0.001), (-0.001, 0.011), and (=0.002, 0.009) under model s, Thus, bl_hdlc and
Female were two significant predictors for LDL-C and CHD was a significant predictor for
TG under model *: while these covariates were not significant under the best model M.
Although the results under - are not reported here, the posterior estimates of the
parameters under model M- were similar to those under model s and these two models
consistently yield the same set of significant covariates. We also note that the absolute
values of the posterior estimates of the correlations, g;j/s, between the three outcome
variables LDL-C, HDL-C, and TG under model +: were consistently smaller than those
under model s, We further considered the univariate fixed transformation parameters
model, namely, .z;: ik = 4jforj=1,..,Jandk =1, ..., Kand X is a diagonal matrix. The
values of D(z//),_pD, and DIC under this model were 530,675.97, 68.62, and 530,813.20.
Thus, model +: did fit the data better than .z, indicating that the correlations among three
outcome variables cannot be ignored. Comparing the posterior estimates of the model
parameters under model .~ shown in Table A.1 to those under model *: shown in Table 3,
we see some noticeable differences. Specifically, the 95% HPD intervals of Sz,
corresponding to covariate CHD for TG, and V5p1, corresponding to the covariance between
y2ko @nd yo1 for HDL-C, were (0.0006, 0.0101) and (-0.0032, —0.0003) under model
and (-0.002, 0.009) and (-0.022, 0.013) under model Ms. Thus, CHD was a significant
predictor for TG and there was a significant correlation between y5, and y¢q for HDL-C
under model .z while CHD and V5o, were not significant under the best model . These
results indicate that the model without transformation or the univariate fixed transformation
parameters model may understate the size of dependence among the outcome variables as
well as potentially incorrectly identify the association between the outcome variables and
covariates, yielding a misleading conclusion in terms of the clinical importance of
covariates.

In all the Bayesian computations, we used 20,000 Gibbs samples, which were taken from
every fifth iteration, after a burn-in of 4,000 iterations for each model, to compute all the
posterior estimates, including posterior means, posterior SDs, 95% HPD intervals, and
DICs. The convergence of the Gibbs sampling algorithm was checked using several
diagnostic procedures discussed in [18]. The Gibbs sampling algorithm converged much
earlier than 4,000 iterations for all the parameters under the three models considered in this
section. The HPD intervals were computed via the Monte Carlo method developed by Chen
and Shao [21]. Computer code was written for the FORTRAN 95 compiler, and we used
IMSL subroutines with double precision accuracy. The FORTRAN code is available from
the authors upon request.
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6. Discussion

In this paper, we have proposed a multivariate response Box-Cox regression model for
modeling individual level patient data in meta-analysis and developed an efficient Gibbs
sampling algorithm via the collapsed Gibbs technique of Liu (1994) to carry out the
challenging posterior computation due to the large size of the meta-data and high-
dimensions of the random effects. As was seen from the analysis of the (LDL-C, HDL-C,
TG) data, the proposed model is quite useful and highly needed since the outcome measures
have skewed distributions and appropriate transformations are needed for modeling. In all of
our analyses, we demonstrated that the best fitting model is the model for which random
transformations are needed. Our proposed model provides a first attempt at modeling
multivariate IPD data within a Box-Cox framework.

As discussed in Section 5, the directions of the regression coefficients as well as the
treatment effects under the transformation model are consistent with those in our previous
univariate pooled modeling without any transformation. However, the point estimates after
transformation are difficult to interpret. This is perhaps one of the major challenges with the
transformation model. One possible solution to this challenge is to transform the point
estimates under the transformed outcome variable to the ones under the original scale of the

. . . . ) 1/7;
outcome variable. To this end, we consider the transformation hj(b):)\}”f [b+%} " ta;.

Using the first-order Taylor expansion, we obtain 7 (b) ~ hj(boj)+h;(boj)(b—b0j), where

B (b ) =AY (b2 ) and g is a fixed value. Let by = X8 + [0 + yiatrt](L -
(boj)=A; ( 0_j+>\—j) and b is a fixed value. Let bj = x 7% + [0 + ytrt](
onstatin) + [y2 + yatrt]onstatin for j = 1, 2, 3. Based on the above approximation, the

regression coefficients and treatment effects except for intercepts in the original scale are

approximately the point estimates under the transformation model multiplied by h;(boj). We
took byj to be the average of X7, + [1j0 + »utrt](1 — onstatin) + [ + yatrtJonstatin over all
observed data points evaluated at the posterior means of (4, %) and used the posterior

estimate of 4; for computing h;.(boj). Then, the approximate values of yJI and ng in the
original scale were —15.20 and —17.61 for LDL-C, 2.08 and 0.96 for HDL-C, and -7.11 and
—7.50 for TG and these values were in a similar scale as those given in Table 5. Also, using
the same approach, for HDL-C, the approximate values of (ﬂ{z ﬂzg, /32;, ﬂ2A5, /3{7, ﬂzé, /32;,
,32?12, ﬂzj]_g,) in the original scale, which were significant based on their 95% HPD intervals,
were (-2.87, 1.29, —0.83, 0.67, 0.54, —0.62, —0.33, —0.37, —0.29). These values were very
close to (-2.86, 1.31, -0.88, 0.61, 0.57, —0.65, —0.33, —0.42, —0.28) given in Table 5.

A caution applicable to meta-analysis is worth noting here. There are always vagaries of the
individual trials that lead to particularities in the analysis, and there are variations in
reporting (e.g., of non-significant associations or covariates) that make external analysis
conducted by third parties difficult and perhaps misleading. This is an important issue in

IPD meta-analysis and must be treated with care; indeed, it may be exacerbated in
multivariate analysis. In addition, there should be a sufficiently large sample size within
each trial and a sufficiently large number of trials in order to estimate various random effects
in the proposed model.

Stat Med. Author manuscript; available in PMC 2014 October 12.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kim et al.

Page 14

One of the future research work is to develop a more refined computational algorithm to
transform the point estimates under the transformation model to the ones in the original
scale of the outcome variable. Other future work in this area includes analyzing multivariate
aggregate meta-data. In this case, several additional challenges arise in modeling and
estimating the correlations between the multivariate outcome measure, as well as
appropriately defining the aggregate regression model and Box-Cox transformation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Boxplots of the maximum likelihood estimates of Box-Cox transformation parameters (1’s)
for LDL-C, HDL-C, and TG.
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Figure 2.
A flow diagram of the proposed model.
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Boxplots of Bayesian residuals for LDL-C, HDL-C, and TG.
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Plots of the marginal posterior densities of the 4;’s under model .
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Posterior estimates of X (Covariance Matrix and Correlations) under M:

Parameter Mean  SD  95% HPD interval
Ty 0.152  0.020 (0.115, 0.191)
o 0.079 0.023 (0.043, 0.126)
Ya3 0.092  0.009 (0.075, 0.110)
21 0.008 0.002 (0.006, 0.011)
Y13 0.021  0.002 (0.017, 0.025)
s -0.021 0.003  (-0.028, -0.016)
P12 0.077  0.007 (0.064, 0.091)
13 0.177  0.007 (0.164, 0.190)
s -0.253 0.006  (-0.265, -0.240)
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Posterior estimates of > (Covariance Matrix and Correlations) under

Par ameter Mean SD  95% HPD interval
i 251.085 2444  (246.164, 255.747)
o 134.641 1310 (132.017, 137.155)
Ya3 792167 7.621 (777.256, 807.082)
1o 13299 1268  (10.875,15.851)
i3 72670 3114  (66.372, 78.542)
s -73.190 2302 (~77.642, -68.650)
P12 0.072 0.007 (0.059, 0.086)
P13 0.163  0.007 (0.150, 0.176)
23 -0.224  0.007 (-0.237,-0.211)
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