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Abstract

In this paper, we propose a class of Box-Cox transformation regression models with 

multidimensional random effects for analyzing multivariate responses for individual patient data 

(IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-

analysis model with multivariate random effects, in which each response is allowed to have its 

own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation 

parameters as well as the regression coefficients in this complex model, and the Deviance 

Information Criterion (DIC) is used to select the best transformation model. Since the model is 

quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to 

sample from the joint posterior of the parameters. This model is motivated by a very rich dataset 

comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly 

model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-

C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, 

TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact 

quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, 

these three variables are usually analyzed univariately: however, a multivariate approach would be 

more appropriate since these variables are correlated with each other. A detailed analysis of these 

data is carried out using the proposed methodology.
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1. Introduction

Millions of Americans are struggling with high cholesterol which is well known to 

contribute to heart disease and other cardiovascular disease. A great deal of effort has been 

put forth in clinical trials studying cholesterol lowering drugs. Endpoints in such trials 

typically focus on one or more of three primary endpoints, these being Low Density 

Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and 

Triglycerides (TG) (LDL-C, HDL-C, TG). In the clinical literature, these endpoints have 

been primarily studied and reported individually, without consideration of their joint effects 

and their associations within an aggregate meta-analysis framework. If one wishes to jointly 

model these outcomes within a meta-analysis framework and capture their joint associations, 

an aggregate meta-analysis framework will not suffice. In this case, an individual patient 

data (IPD) meta-analysis is required. Meta-analysis of IPD data is common in settings where 

the data analyst has access to the raw data from all the studies, as is often the case when all 

of the data come from the same institution or pharmaceutical company, for example. 

However, access to study-level data is a more common scenario than an IPD analysis since 

the data analyst usually has access to statistical summaries from several studies as reported 

in the literature. Among meta-analyses reported in the literature, univariate meta-analyses 

are most common primarily due to the relative simplicity and availability of software to 

conduct such analyses. Multivariate IPD meta-analyses are less common due to 

methodological challenges, complexity and lack of appropriate software. In this paper, we 

propose a unified framework for carrying out IPD meta-analysis for multivariate response 

data, which is primarily motivated by 26 clinical trials for cholesterol lowering drugs 

measuring (LDL-C, HDL-C, TG) as the primary outcomes of interest along with several 

covariates. The challenges posed here are that these response variables have very different 

distributions, which are not symmetric or normally distributed, and therefore one has to 

consider transformations on each of the 3 response variables to achieve normality.

Meta analysis of individual patient data (IPD) is a useful and effective statistical tool for 

synthesizing evidence across studies. It offers greater flexibility for meta-analysis and 

improves investigation and explanation of heterogeneity. Availability of IPD allows 

regression modeling for examining relationships between treatment effects and covariates 

that can explain the variability in terms of clinical and other factors. Whitehead et al. [1] 

considered IPD meta-analysis of ordinal outcomes. Their approach is based on the 

proportional odds model where the treatment effect is represented by the log-odds ratio. 

Khana et al. [2] demonstrated and highlighted the benefits of IPD meta-analysis in 

evaluation of diagnostic tests. Edwards et al. [3] carried out a meta-analysis using IPD to 

determine the analgesic efficacy and adverse effects of single-dose rofecoxib in primary 

dysmenorrhoea. Gorman et al. [4] conducted meta-analysis on the data from 3272 Caucasian 

patients with rheumatoid arthritis to examine the role of specific shared epitope genotypes in 

the development of rheumatoid nodules and to investigate the influence of covariates, such 

as disease duration and gender. Smith et al. [5] investigated heterogeneity in an IPD meta-

analysis of time to event outcomes. Simmonds and Higgins [6] investigated the power of 

meta-regression and IPD methods to detect treatment-covariate interactions. Ziegler and 
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Grossarth-Maticek [7] conducted IPD meta-analysis of survival and psychosomatic self-

regulation for long-term therapy of breast cancer patients with mistletoe preparation.

The Box-Cox transformation with parameter λ on a response variable y is defined as

The literature on Box-Cox transformations for multivariate meta-analysis is essentially non-

existent. There have been a few papers that address Box-Cox transformations within a 

univariate meta-analysis framework, however. Lipsitz et al. [8] examined Box-Cox 

transformations in longitudinal data settings with missing data. Hoffmann et al. [9] used the 

Box-Cox transformation in analyzing dietary intake data in epidemiological studies. There 

have been several statistical papers addressing various issues in Box-Cox transformations, 

but none of these papers address Box-Cox transformations in meta-analysis settings. In 

addition to the classic paper by Box and Cox[10], Gurka et al. [11] examined Box-Cox 

transformations in linear mixed models, and Terasaka and Hosoya [12] extended the Box-

Cox transformation to the multivariate time series model. Bayesian papers include [13] and 

[14] who examined the choice of prior distribution for the Box-Cox transformed linear 

model. Lee et al. [15] carried out Bayesian analysis of Box-Cox transformed linear mixed 

models and Gottado and Raftery [16] developed a Bayesian approach for simultaneous 

variable and transformation selection. Due to the complexity of Box-Cox transformation 

models, Bayesian methods may be preferred over the classical methods due to the recent 

advance in Bayesian computation and the recent development of Bayesian model 

comparison criteria.

In this paper, we develop a new methodology for analyzing IPD multivariate responses. 

Similar to trial level aggregate responses, trial random effects and trial-by-treatment random 

effects are incorporated into the models. Assuming the distributions of some or all of the 

response variables to be highly skewed, we propose a class of Box-Cox transformations for 

multivariate responses data within a meta-analysis framework involving IPD. Our Bayesian 

approach is quite innovative in the sense that we allow a different Box-Cox transformation 

on each response, different Box-Cox transformation parameters on each trial, coupled with a 

multivariate meta-regression model. The multivariate meta-regression model along with two 

sets of the multivariate random effects for regression coefficients and transformation 

parameters poses a great computational challenge. To this end, we develop novel Bayesian 

computational methods for fitting this model via several modified collapsed Gibbs samplers 

([17],[18]). In addition, we derive the deviance information criterion for comparing several 

variations of the proposed multivariate meta-regression model and the Bayesian residuals for 

examining the goodness-of-fit of these models and demonstrate the novelty of the proposed 

methodology with a series of 26 clinical trials for cholesterol lowering drugs.

The rest of the paper is organized as follows. A summary and an exploratory analysis of the 

meta-individual patient data are presented in Section 2. The methodological development of 

the meta-analysis for multiple responses with Box-Cox transformations is given in Section 
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3. The computation algorithm to carry out Bayesian inference is developed in Section 4. The 

meta-data discussed in Section 2 is analyzed in detail in Section 5. We conclude the paper 

with brief discussion and some extensions of the proposed methodology in Section 6.

2. The Data

2.1. Description of the Data

The individual patient data used here to demonstrate the applications of our proposed 

models come from 26 Merck sponsored double-blind, randomized, active or placebo-

controlled clinical trials on adult patients with primary hypercholesterolemia. The primary 

goal of these clinical trials was to evaluate the LDL-C lowering effects of Ezetimibe (which 

works in the digestive tract) in combination with statin (which works in the liver) in 

comparison to statin alone on treatment-naïve patients at baseline (on a first line therapy) 

and those continuing on statins at baseline (on a second line therapy). In our analyses, 

different statins and their doses are combined to form the “statin” and “statin+Ezetimibe” 

treatment groups. Ezetimibe (EZE) is available at only one dose of 10mg and the statins 

used in these trials included simvastatin, atorvastatin, lovastatin, rosuvastatin, pravastatin, 

and fluvastatin. The covariates include treatment (trt) (0 = “statin” and 1 = “statin

+Ezetimibe”), baseline LDL-C (bl_ldlc), baseline HDL-C (bl_hdlc), baseline TG (bl_trig), 

age, race (white (reference), black, hispanic, and other), gender (Male (reference), Female), 

diabetes (DM, 0 = No, 1 = Yes), CHD (0 = No, 1 = Yes), body mass index (BMI), statin 

potency (low (reference), med (potency2), high (potency3)), and trial duration. In this 

analysis, we include only the patients whose covariates were available.

The meta-individual patient data considered in our analyses is a subset of the meta-data 

published in [19]. The citations of primary published papers in clinical journals for the 26 

trials considered in this paper can be found in [19]. Leiter et al. [19] carried out a meta 

analysis based on the pooled data. Instead of the pooled data, we fit the meta-data via 

multivariate Box-Cox transformation models with multi-dimensional random effects for 

treatments and transformation parameters, which account for heterogeneity among the trials. 

A detailed summary of the covariates for these 26 clinical trials is given in Tables 1 and 2. 

From Tables 1 and 2, we can see a considerable amount of heterogeneity in the covariates 

across the trials. Specifically, the ranges of the within trial means of the continuous 

covariates are (89.2, 186.0), (43.1, 55.3), (127.0, 199.5), (52.3, 71.2), and (27.2, 33.6) for 

baseline LDL-C, baseline HDL-C, baseline TG, age and BMI, respectively. We also see 

drastically different proportions of the categorical covariates across trials. For example, 

trials 15, 17, 20, 22, 23, 24 only included CHD patients while trial 21 had no CHD patients 

at all. Also, there was only medium statin potency in trials 13, 15, 16, 17, 21, 23, 24, and 25 

while there were no low or high statin potencies in some other studies. We further observe 

that the proportions of DM patients and the distributions of race were quite different across 

the 26 trials. This descriptive summary shows that in order to examine the treatment effects, 

there is a need to adjust for these covariates. More importantly, the within-trial adjustment 

of covariate effects may not be feasible due to the fact that the effects for some covariates 

are not estimable. In addition, due to the nature of the randomized trials, the within-trial 

adjustment of covariate effects may not be needed. This observation motivates us to develop 
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meta-analytic regression models with common regression coefficients for the covariates 

across trials to adjust for heterogeneity of the covariate distributions.

2.2. Exploratory Analysis of the Data

We consider three primary outcome variables including percent changes from baseline in 

LDL-C, HDL-C, and TG. For ease of presentation, we simply denote these three outcome 

variables by LDL-C, HDL-C, and TG. For each of LDL-C, HDL-C, and TG, we first added 

100 to the outcome variable to ensure it to be positive and then we fit 26 regression models, 

one for each trial, using all possible covariates listed above as long as they were estimable 

within each trial. Using the SAS procedure TRANSREG, we obtained the maximum 

likelihood estimates of the 26 trial-wise Box-Cox transformation parameters (λ’s) for each 

of LDL-C, HDL-C, and TG. The boxplots of these estimates are shown in Figure 1. From 

this figure, we see that there is a substantial variation among the estimated transformation 

parameters. This variation may be partially explained by the different proportions of certain 

types of patients such as CHD patients across trials. For example, the estimated 

transformation parameters for TG were −0.37 and −0.37 for trials 15 and 20 and 0.22 and 

0.33 for trials 4 and 25. From Tables 1 and 2, we see that trials 15 and 20 included only 

CHD patients while trials 4 and 25 had more balanced proportions of CHD patients and no 

CHD patients. These exploratory analyses suggest that there is a need to transform all three 

outcome variables and the transformation parameters vary from trial to trial.

3. Methods for Meta-analysis with Multivariate Responses and Multi-

Dimensional Random Effects

3.1. The Multivariate Meta-analysis Regression Model

Consider K randomized trials, where each trial has two treatment arms (“Statin” or “Statin + 

EZE”), and patients in each trial were either all on statin or all not on statin prior to the trial. 

The sample size of the individual patient data for the kth trial is nk. Let yik = (yi1k, …, yiJk)′ 

denote a J-dimensional vector of the responses for the ith patient in the kth trial. In our 

application, K = 26 and J = 3. Also let trtik = 1 if the ith patient received “Statin + EZE” and 

0 if “Statin” alone, and onstatink = 1 if patients were on statin and 0 if not on statin prior to 

the trial. Also let xijk denote a pj-dimensional vector of covariates for the jth response 

corresponding to the ith patient.

We propose the following multivariate random effects transformation regression model for 

the meta-analysis:

(3.1)

where gjk(.) is a function of yijk and βj = (βj1, …, βjpj)′ is the vector of fixed effects regression 

coefficients corresponding to the pj covariates. For j = 1, …, J, we consider the Box-Cox 

transformation for gjk as follows:
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(3.2)

where aj is a pre-specified constant such that yijk − αj > 0. In our application, we take aj = 

−100. Let γjk = (γjk0, γjk1, γjk2, γjk3)′ so that γjk represents the vector of random effects in 

(3.1). Also let εik = (εi1k, …, εiJk)′. We assume εik, γjk, and λjk are independent. We further 

assume

(3.3)

independently, for i = 1, …, nk and k = 1, …, K, where Σ is a J × J unstructured covariance 

matrix, which captures the dependence among the J responses yi1k, yi2k, …, yiJk,

(3.4)

where γj = (γj0, γj1, γj2, γj3)′ denotes the vector of the overall treatment and onstatin effects 

for the jth response, and

(3.5)

where λj denotes the overall parameter in the Box-Cox transformation and  captures the 

between-trial variability of the Box-Cox transformation for the jth response. To ensure 

model identifiability, we assume

(3.6)

In (3.6), Vj00 and Vj11 capture the variabilities of γjk0 and γjk1, and Vj01 captures the 

correlation between γjk0 and γjk1 among the trials in which patients were not on statin; and 

similarly, Vj22 and Vj33 capture the variabilities of γjk2 and γjk3, and Vj23 captures the 

correlation between γjk2 and γjk3 among the trials in which patients were on statin. A flow 

diagram of the proposed model specified by (3.1), (3.2), (3.3), and (3.5) is shown in Figure 

2.

In our application, the yijk’s include the percent changes of LDL-C, HDL-C, and TG. The 

covariates include baseline LDL-C (bl_ldlc), baseline HDL-C (bl_hdlc), baseline TG 

(bl_trig), age, race (white (reference), black, hispanic, other), gender (female versus male), 

diabetes (DM), CHD, BMI, statin potency (potency2, potency3), and trial duration.

The meta-analysis regression model defined in (3.1), (3.3), and (3.4) is a multivariate 

random effects model that captures several sources of between-trial variation involving 
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several treatments, while simultaneously accommodating trial level covariates. First, γjk0 is 

the random intercept for those not on statin, and γjk1 is the random effect for treatment 

across trials for those not on statin. Similarly, γjk2 is the random intercept for those on statin, 

while γjk3 is the random effect of treatment for those on statin. The resulting model will 

require estimation of the covariance matrix of the random effects, denoted by Vj, which is a 

block diagonal matrix. Simultaneous estimation of (β1, …, βJ, Σ, γ1, …, γJ, V1, …, VJ, λ1, …, 

λJ, ) is not trivial and requires a sophisticated and computationally intensive Gibbs 

sampling algorithm.

3.2. The Complete-Data Likelihood Function

Write  and

(3.7)

Let 

, and . Then, from (3.1) and (3.3), we have

Thus, given β, , Σ, and , the joint density of  is of the form

(3.8)

The Jacobian of the transformation (3.7) is given by

(3.9)

where yik = (yi1k, …, yiJk)′. Combining (3.8) and (3.9) gives the density of yik, which takes 

the form:

(3.10)

Further, the complete-data likelihood function is given by
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(3.11)

where  is defined by (3.10), 

, V = diag(V1, …, VJ), , 

λ = (λ1, …, λJ)′, and .

3.3. Prior and Posterior

We assume that β, Σ, γ, V, λ, and τ2 are independent a priori. Thus, the joint prior for (β, Σ, 

γ, V, λ, and τ2) is of the form

(3.12)

We further assume β ~ Np(0, c01Ip), where , γ ~ N4J (0, c02I4J), λ ~ NJ (0, c03IJ), 

Σ−1 ~ Wishart J(d0, S0),  for h = 1, 2 and j = 1, …, J, and 

 for j = 1, …, J, where c01, c02, c03, d0, S0, a0, , b01, and b02 are 

prespecified hyperparameters. Further, we have 

 and 

 for j = 1, …, J. Although independent normal 

priors are specified for β, γ, and λ, multivariate normal priors may also be specified. 

However, when c01, c02, and c03 are large, independent normal priors are adequate since we 

essentially specify non-informative priors for β, γ, and λ. Using (3.11) and (3.12), the 

posterior distribution is given by

(3.13)

3.4. Model Comparison via DIC

Let 

, and . Write ψ = (β, γ, Σ, V, λR). We define the deviance function as 

follows
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(3.14)

where  is the marginal distribution of yk, which is given in 

Appendix A. Then, the Deviance Information Criterion (DIC) proposed by Spiegelhalter et 

al. [20] is given by

(3.15)

where ψ̄ = E[ψ|Dobs] and pD = E[D(ψ)|Dobs] − D(ψ̄), which is the effective number of model 

parameters.

We will use DIC to compare the following three models:

λjk = 1 for j = 1, …, J and k = 1, …, K (no transformation model);

λjk = λj for j = 1, …, J and k = 1, …, K (fixed transformation 

parameters model); and

random λjk for j = 1, …, J and k = 1, …, K (random transformation 

parameters model).

4. Computational Development

We consider the following one-to-one transformations: 

 for k = 1, …, K. Thus, γ*
jk = γjk − γj for j = 1, …, J 

and k = 1, …, K. Write . Also, let  for i = 1, …, n 

and k = 1, …, K and θ = (β′, γ′)′. Then, we have

(4.1)

Although an analytical evaluation of the above posterior distribution is not possible, the 

proposed model allows us to develop an efficient Gibbs sampling algorithm in Appendix B 

to sample from the joint posterior distribution in (4.1).
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5. Analysis of the Meta Individual Patient Data

In this section, we present a detailed analysis of the meta individual patient data discussed in 

Section 2. In the following discussion, these meta-data will be referred to as MIPD. In (3.1), 

xijk consists of 14 covariates, including bl_ldlc, bl_hdlc, bl_tg, BMI, age, duration, Female, 

DM, CHD, potency2, potency3, black, hispanic, and other. The outcome variables were 

LDL-C, HDL-C, and TG, which were defined as percent changes from baseline in LDL-C, 

HDL-C, and TG. We model these three outcome variables jointly via (3.1) to (3.6) with J = 

3 and K = 26. The hyperparameters of the prior in (3.12) were specified as c01 = 1000, c02 = 

1000, c03 = 1000, d0 = J + 0.01, S0 = 0.01, a0 = 2.01, , b01 = 0.1, and b02 

= 0.1. In all of the analyses, we standardized all of fourteen covariates, in which each 

covariate was subtracted from its sample mean and divided by its sample standard deviation 

computed using the pooled data, for numerical stability in the posterior computation.

We fit the three models discussed in Section 3.4 to the MIPD. These three models differ 

only in the transformation parameters. For the MIPD, the values of D(ψ̄), pD, and DIC were 

540,908.78, 72.88, and 541,054.53 for model ; 528,295.55, 70.83, and 528,437.22 for 

model ; and 526,891.09, 122.21, and 527,135.51 for model . Although model  has 

the largest pD value, it has the smallest values of D(ψ̄) and DIC. The no transformation 

model, i.e., , has the largest DIC value. These DIC values indicate that (i) the 

transformation model with random λjk did fit the data better than the transformation model 

with fixed λjk, which implies that the transformation parameters vary from trial to trial; and 

(ii) both the transformation models fit the data better than the no transformation model.

To further examine the goodness-of-fit of these three models, we computed Bayesian 

residuals, which were defined as , where 

gijk(yijk) is given in (3.2),  is defined in Section 3.2, and the expectation is taken with 

respect to the posterior distribution in (3.13). The boxplots of these Bayesian residuals for 

each of the three outcome variables under models  to  are shown in Figure 3. From 

Figure 3, we see that the Bayesian residuals under both the models  and  are much 

more symmetric and smaller than those under model . Figure 3 also shows that both 

models  and  had a great improvement in the residuals for the outcome variable TG 

over model . These results were consistent with the ones obtained based on the DIC 

criterion, which further confirms the need of transformations for all three outcome variables.

The posterior estimates, including the posterior means, posterior standard deviations (SDs), 

and 95% highest posterior density (HPD) intervals of the parameters under model  are 

reported in Table 3. From this table, we see that baseline LDL-C and baseline TG were 

significant for the percent change from baseline in LDL-C with 95% HPD intervals (−0.092, 

−0.067) and (0.006, 0.019), which do not include 0; baseline HDL-C and baseline TG were 

significant for the percent change from baseline in HDL-C with 95% HPD intervals (−0.090, 

−0.052) and (0.022, 0.041); and only baseline TG was significant for the percent change 

from baseline in TG with 95% HPD interval (−0.131, −0.107). In addition, BMI was 

significant only for the percent changes from baseline in HDL-C and TG with 95% HPD 

intervals (−0.028, −0.014) and (0.013, 0.023), and age was significant for all three outcome 
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variables. The other significant covariates were gender, statin potency, and race for the 

percent change from baseline in LDL-C; gender, DM, CHD, and race for the percent change 

from baseline in HDL-C; and gender, statin potency, and race for the percent change from 

baseline in TG. The trial duration was not significant for all three outcome variables.

Based on the signs of the coefficients of significant terms in the fitted model, we can 

conclude the following concerning the directions of percent changes in LDL-C, HDL-C, and 

TG. First, increase in bl_ldlc, age, and potency results into higher percent reduction in LDL-

C from baseline. Also, there is a higher percent reduction in LDL-C from baseline for DM 

(vs. non-DM), white (vs. black and vs. hispanic) while an increase in bl_trig results into a 

lower percent reduction in LDL-C from baseline. Second, increase in bl_hdlc and BMI 

results into lower percent increase in HDL-C from baseline. There is a lower percent 

increase in HDL-C from baseline for DM (vs. non-DM), CHD (vs. non-CHD), black (vs. 

white) and hispanic (vs. white) while an increase in bl_trig and age results into a higher 

percent increase in HDL-C from baseline. Third, increase in bl_trig, age, and potency results 

into higher percent reduction in TG from baseline. Also, there is a higher percent reduction 

in TG from baseline for black (vs. white), white (vs. hispanic) and male (vs. female) while 

an increase in BMI results into a lower percent reduction in TG from baseline. The above 

mentioned directions in percent changes in LDL-C, HDL-C and TG corresponding to 

changes in covariates are consistent with what we observed in our previous univariate 

pooled modeling without any transformation.

The results shown in Table 3 under model  further indicate that patients on “statin + 

EZE” had significantly more percent changes from baseline in both LDL-C and TG than 

those on statin alone in both first and second line therapy studies. We note here that a 

posterior estimate is considered to be statistically significant at a significance level of 0.05 if 

the corresponding 95% HPD interval does not contain 0. the significance of the regression 

coefficients, that is, whether the 95% HPD interval contains 0 or not. The corresponding 

95% HPD intervals were (−0.476, −0.335) in the first line therapy and (−0.583, −0.358) in 

the second line therapy for the percent change from baseline in LDL-C; and (−0.125, 

−0.059) in the first line therapy and (−0.130, −0.059) in the second line therapy for the 

percent change from baseline in TG. However, the significant improvement with a 95% 

HPD interval (0.018, 0.084) in HDL-C from baseline for patients on “statin + EZE” over 

those on statin alone only was observed only in the first line therapy studies. From Table 3, 

we also see that the 95% HPD intervals for λ1, λ2, and λ3 were (0.078, 0.178), (0.132, 

0.267), and (−0.032, 0.054), respectively, which implies that all three outcome variables 

require transformations in order to achieve normality. Figure 4 shows the marginal posterior 

densities for these three transformation parameters. These marginal posterior densities 

appear to be unimodal and symmetric. Furthermore, the 95% HPD intervals of the standard 

deviations of the λjk’s were (0.074, 0.131) for τ1, (0.069, 0.122) for τ2, and (0.070, 0.122) 

for τ3. The posterior estimates of the τj ’s indicate that there was substantial heterogeneity in 

the transformation parameters across the trials, which further explains why model  fit the 

MIPD better than model . In addition, the posterior estimates of Σ under model  are 

given in Table 4. From this table, we see that there were moderate correlations among these 

three outcome variables. In particular, the percent change from baseline in LDL-C was 
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positively correlated with both the percent changes from baseline in HDL-C and TG while 

the percent change from baseline in HDL-C was negatively correlated with the percent 

change from baseline in TG.

Finally, we compare the posterior estimates of the model parameters under model  to 

those under model  shown in Tables 5 and 6. The noticeable differences of the posterior 

estimates between models  and  are the 95% HPD intervals of β12, β17, and β39, 

corresponding to covariates bl_hdlc, Female, and CHD. The 95% HPD intervals of β12, β17, 

and β39 were (−0.531, −0.021), (0.134, 0.604), and (0.040, 1.022) under model  and 

(−0.012, 0.001), (−0.001, 0.011), and (−0.002, 0.009) under model . Thus, bl_hdlc and 

Female were two significant predictors for LDL-C and CHD was a significant predictor for 

TG under model  while these covariates were not significant under the best model . 

Although the results under  are not reported here, the posterior estimates of the 

parameters under model  were similar to those under model  and these two models 

consistently yield the same set of significant covariates. We also note that the absolute 

values of the posterior estimates of the correlations, ρjj′’s, between the three outcome 

variables LDL-C, HDL-C, and TG under model  were consistently smaller than those 

under model . We further considered the univariate fixed transformation parameters 

model, namely, : λjk = λj for j = 1, …, J and k = 1, …, K and Σ is a diagonal matrix. The 

values of D(ψ̄), pD, and DIC under this model were 530,675.97, 68.62, and 530,813.20. 

Thus, model  did fit the data better than , indicating that the correlations among three 

outcome variables cannot be ignored. Comparing the posterior estimates of the model 

parameters under model  shown in Table A.1 to those under model  shown in Table 3, 

we see some noticeable differences. Specifically, the 95% HPD intervals of β39, 

corresponding to covariate CHD for TG, and V201, corresponding to the covariance between 

γ2k0 and γ2k1 for HDL-C, were (0.0006, 0.0101) and (−0.0032, −0.0003) under model 

and (−0.002, 0.009) and (−0.022, 0.013) under model . Thus, CHD was a significant 

predictor for TG and there was a significant correlation between γ2k0 and γ2k1 for HDL-C 

under model  while CHD and V201 were not significant under the best model . These 

results indicate that the model without transformation or the univariate fixed transformation 

parameters model may understate the size of dependence among the outcome variables as 

well as potentially incorrectly identify the association between the outcome variables and 

covariates, yielding a misleading conclusion in terms of the clinical importance of 

covariates.

In all the Bayesian computations, we used 20,000 Gibbs samples, which were taken from 

every fifth iteration, after a burn-in of 4,000 iterations for each model, to compute all the 

posterior estimates, including posterior means, posterior SDs, 95% HPD intervals, and 

DICs. The convergence of the Gibbs sampling algorithm was checked using several 

diagnostic procedures discussed in [18]. The Gibbs sampling algorithm converged much 

earlier than 4,000 iterations for all the parameters under the three models considered in this 

section. The HPD intervals were computed via the Monte Carlo method developed by Chen 

and Shao [21]. Computer code was written for the FORTRAN 95 compiler, and we used 

IMSL subroutines with double precision accuracy. The FORTRAN code is available from 

the authors upon request.
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6. Discussion

In this paper, we have proposed a multivariate response Box-Cox regression model for 

modeling individual level patient data in meta-analysis and developed an efficient Gibbs 

sampling algorithm via the collapsed Gibbs technique of Liu (1994) to carry out the 

challenging posterior computation due to the large size of the meta-data and high-

dimensions of the random effects. As was seen from the analysis of the (LDL-C, HDL-C, 

TG) data, the proposed model is quite useful and highly needed since the outcome measures 

have skewed distributions and appropriate transformations are needed for modeling. In all of 

our analyses, we demonstrated that the best fitting model is the model for which random 

transformations are needed. Our proposed model provides a first attempt at modeling 

multivariate IPD data within a Box-Cox framework.

As discussed in Section 5, the directions of the regression coefficients as well as the 

treatment effects under the transformation model are consistent with those in our previous 

univariate pooled modeling without any transformation. However, the point estimates after 

transformation are difficult to interpret. This is perhaps one of the major challenges with the 

transformation model. One possible solution to this challenge is to transform the point 

estimates under the transformed outcome variable to the ones under the original scale of the 

outcome variable. To this end, we consider the transformation . 

Using the first-order Taylor expansion, we obtain , where 

 and b0j is a fixed value. Let bj = x′βj + [γj0 + γj1trt](1 − 

onstatin) + [γj2 + γj3trt]onstatin for j = 1, 2, 3. Based on the above approximation, the 

regression coefficients and treatment effects except for intercepts in the original scale are 

approximately the point estimates under the transformation model multiplied by . We 

took b0j to be the average of x′βj + [γj0 + γj1trt](1 − onstatin) + [γj2 + γj3trt]onstatin over all 

observed data points evaluated at the posterior means of (βj, γj) and used the posterior 

estimate of λj for computing . Then, the approximate values of γ̂
j1 and γ̂

j3 in the 

original scale were −15.20 and −17.61 for LDL-C, 2.08 and 0.96 for HDL-C, and −7.11 and 

−7.50 for TG and these values were in a similar scale as those given in Table 5. Also, using 

the same approach, for HDL-C, the approximate values of (β2̂2, β̂
23, β̂

24, β̂
25, β̂

27, β̂
28, β̂

29, 

β2̂,12, β̂
2,13) in the original scale, which were significant based on their 95% HPD intervals, 

were (−2.87, 1.29, −0.83, 0.67, 0.54, −0.62, −0.33, −0.37, −0.29). These values were very 

close to (−2.86, 1.31, −0.88, 0.61, 0.57, −0.65, −0.33, −0.42, −0.28) given in Table 5.

A caution applicable to meta-analysis is worth noting here. There are always vagaries of the 

individual trials that lead to particularities in the analysis, and there are variations in 

reporting (e.g., of non-significant associations or covariates) that make external analysis 

conducted by third parties difficult and perhaps misleading. This is an important issue in 

IPD meta-analysis and must be treated with care; indeed, it may be exacerbated in 

multivariate analysis. In addition, there should be a sufficiently large sample size within 

each trial and a sufficiently large number of trials in order to estimate various random effects 

in the proposed model.
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One of the future research work is to develop a more refined computational algorithm to 

transform the point estimates under the transformation model to the ones in the original 

scale of the outcome variable. Other future work in this area includes analyzing multivariate 

aggregate meta-data. In this case, several additional challenges arise in modeling and 

estimating the correlations between the multivariate outcome measure, as well as 

appropriately defining the aggregate regression model and Box-Cox transformation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Boxplots of the maximum likelihood estimates of Box-Cox transformation parameters (λ’s) 

for LDL-C, HDL-C, and TG.
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Figure 2. 
A flow diagram of the proposed model.
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Figure 3. 
Boxplots of Bayesian residuals for LDL-C, HDL-C, and TG.
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Figure 4. 
Plots of the marginal posterior densities of the λj’s under model .
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Table 4

Posterior estimates of Σ (Covariance Matrix and Correlations) under 

Parameter Mean SD 95% HPD interval

Σ11 0.152 0.020 (0.115, 0.191)

Σ22 0.079 0.023 (0.043, 0.126)

Σ33 0.092 0.009 (0.075, 0.110)

Σ12 0.008 0.002 (0.006, 0.011)

Σ13 0.021 0.002 (0.017, 0.025)

Σ23 −0.021 0.003 (−0.028, −0.016)

ρ12 0.077 0.007 (0.064, 0.091)

ρ13 0.177 0.007 (0.164, 0.190)

ρ23 −0.253 0.006 (−0.265, −0.240)
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Table 6

Posterior estimates of Σ (Covariance Matrix and Correlations) under 

Parameter Mean SD 95% HPD interval

Σ11 251.085 2.444 (246.164, 255.747)

Σ22 134.641 1.310 (132.017, 137.155)

Σ33 792.167 7.621 (777.256, 807.082)

Σ12 13.299 1.268 (10.875, 15.851)

Σ13 72.670 3.114 (66.372, 78.542)

Σ23 −73.190 2.302 (−77.642, −68.650)

ρ12 0.072 0.007 (0.059, 0.086)

ρ13 0.163 0.007 (0.150, 0.176)

ρ23 −0.224 0.007 (−0.237, −0.211)
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