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Summary

Marginal structural models were developed as a semiparametric alternative to the G-computation

formula to estimate causal effects of exposures. In practice, these models are often specified using

parametric regression models. As such, the usual conventions regarding regression model

specification apply. This paper outlines strategies for marginal structural model specification, and

considerations for the functional form of the exposure metric in the final structural model. We

propose a quasi-likelihood information criterion adapted from use in generalized estimating

equations. We evaluate the properties of our proposed information criterion using a limited

simulation study. We illustrate our approach using two empirical examples. In the first example,

we use data from a randomized breastfeeding promotion trial to estimate the effect of

breastfeeding duration on infant weight at one year. In the second example, we use data from two

prospective cohorts studies to estimate the effect of highly active antiretroviral therapy on CD4

count in an observational cohort of HIV-infected men and women. The marginal structural model

specified should reflect the scientific question being addressed, but can also assist in exploration

of other plausible and closely related questions. In marginal structural models, as in any regression

setting, correct inference depends on correct model specification. Our proposed information

criterion provides a formal method for comparing model fit for different specifications.
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After introduction around the turn of the century [1-4] marginal structural models have

diffused rapidly into the biomedical literature with numerous important applications in a

range of substantive fields [5-9]. Much has been written about the identifiability

assumptions (consistency, positivity, and exchangeability), which are necessary to yield

consistent estimates of exposure (or treatment) effects on outcomes of interest. For marginal

structural models, there are published discussions about the consistency [10-12], positivity

[13-16], and exchangeability (with respect to confounding and selection bias) [14, 15]
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assumptions, as well as discussions about the specification of models used to construct

inverse probability weights [15, 17, 18]. However, while others have considered the

specification of regression models in general (e.g. Harrell [19]) little has been written about

the choice of the functional (regression) form for the exposure of interest in the final

structural model [20, 21]. Here, we discuss specification of the final functional form of the

marginal structural model, extend the use of a weighted information criterion originally

proposed for sampling-weighted data[22] to the generalized linear marginal structural

model, and illustrate some of the challenges and implications of model fitting for marginal

structural models using two examples [23, 24].

Marginal Structural Models

Marginal structural models [4] are models for the marginal expectation of a potential

outcome as a function of a specified exposure plan. We refer readers to previous literature

for a formal definition of potential outcomes [25, 26]. Let Y denote an outcome, X(t) a time

varying exposure (for simplicity, assumed binary with X(t) = 1 denoting exposure at time t,

X(t) = 0 denoting lack of exposure), and let x̅ refer to history of time varying exposure X(t)

under a specific exposure plan to the end of follow up. A marginal structural model may be

stated as g−1(E[Yx̅]) = f(x̅) where Yx̅ is the potential outcome under exposure plan x̅, g is a

link function, and f(.) is a defined function we call the exposure metric, which is typically a

linear combination of components of x̅ (e.g., cumulative exposure). Exposure plans may be

fixed or dynamic. Fixed (or static) exposure plans are knowable at study entry, and therefore

do not depend on the evolution of participant characteristics. Examples of fixed exposure

plans include: always treat (i.e., x̅ = {1,…,1}), never treat (i.e., x ̅ = {0,…,0}), treat every

other visit (i.e., x̅ = {0,1,0,1,…,0}), or initiate treatment after four visits (i.e., x ̅ = {0,0,0,0,1,

…,1}). Dynamic exposure plans are those in which the designed exposure plan depends on

time varying covariates measured after baseline [27], and are not considered further here;

see Hernán [28] or Cain [29] for examples of dynamic regimes and methods for estimating

parameters for models for dynamic exposure plans using inverse probability weighting.

The parameters of a marginal structural model are typically estimated using inverse

probability weights. One first fits a model for the probability of exposure X(t) conditional on

exposure and confounder histories. This model for the probability of exposure is then used

to compute weights equal to the inverse probability of observed exposure given exposure

and confounder histories [4, 15]. These weights deal with confounding, and can be easily

extended to handle censoring due to drop-out [30, 31]; in short, we typically view such

censoring as another exposure and only want to make inference under the plan “never drop

out”. Methods for constructing the weights have been considered elsewhere [15, 17, 32].

The weights are then applied to the observed data, and an unadjusted model for the outcome

as a function of exposure is then fit to the weighted sample. If the functional forms of the

exposure model and final structural model (i.e., the exposure metric) are correctly specified

and the identifiability assumptions of the marginal structural model (mentioned above) are

met, then the resulting estimate has a causal interpretation as the effect of exposure on the

outcome of interest. Specifically, under assumptions the weighted model for an exposure-

specific contrast in the observed outcomes corresponds to a model for an exposure-specific

contrast in the potential outcomes.
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Exposure Metrics

A well-specified scientific question should imply a specific form for the exposure metric

f(.). For example, in the presence of an induction period one may wish to ignore recent

treatment when constructing the exposure metric. Alternatively, when the exposure acts

rapidly without sustained effects one may wish to ignore historic exposure when

constructing the exposure metric. Different choices of the exposure metric f(.) therefore

imply refinements in the scientific question and interpretation of the relationship between

the exposure and outcome. We are concerned here with the selection of f(.) in a marginal

structural model.

In practice, the exposure metric f(.) is often a simple function such as cumulative exposure

to visit j: that is, . However, much more general exposure metrics are possible.

For example, one might weight the cumulative exposure as , where mk are

time-specific weights; when mk = 1 for all k, f(.) simplifies to the cumulative exposure. An

example of a non-trivial mk might define the weights as a function of k, for example, mk =

1/(j − k + 1), so that the most recent exposure k = j gets weight of unity and exposure

measurements get monotonically decreasing weights as they move back in time from visit j.

More generally, an exposure metric that allows for a defined exposure window, as well as

within-window weighting, could be defined as follows:

where b≥0 is the end of the exposure window (i.e., lag), a≤b is the start of the exposure

window, and a-b+1 is the length of the exposure window. When b=j (i.e., no lag) and a=0

this within-window weighted cumulative exposure reduces to the simple weighted

cumulative exposure above. The choice of the weight function for a particular application

should be guided by expert knowledge of the substantive matter and the scientific question

under study.

When f(.) is not pre-determined by the scientific question at hand, or when the substantive

issues at hand imply several possible functions for the exposure metric, it may be desirable

to allow the observed data to influence the choice of f(.) (although such post hoc modeling

necessarily compromises interpretations of formal statistical hypothesis tests). Comparisons

of relative goodness of model fit often rely on graphical depictions of the data and

information criteria such as Akaike's (AIC) [33], defined as −2logL + 2p, where L is the

likelihood for a model and p is the number of parameters in the model (note that AIC and

other criteria do not require nested models).

Such an approach can be extended naturally to the marginal structural model setting to

compare different forms of the structural model assuming fixed weights. That is, the only
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component that varies between models is the exposure metric in the final structural model.

Then, because marginal structural models are fit using a weighted estimating equation, the

likelihood in the AIC must be replaced with a weighted likelihood [22] or quasi-likelihood

[34], depending on the functional form of the model. For a generalized linear marginal

structural model the weighted information criterion AICw is defined as QICw = −2Q̂
w + 2p,

where p is the number of parameters estimated in the model and Q̂w is the weighted quasi-

likelihood component (the derivative of which with respect to the parameter of interest is the

relevant component of the estimating function). In the linear case, (and therefore in our

examples) Qŵ is the weighted likelihood assuming the normal distribution evaluated at its

maximum, namely . Here, ŵij is the estimated inverse

probability weight, yij is the observed outcome, and μ̂
ij is the estimated linear predictor.

Computation of the QICw is straightforward. In the linear case, QICw can be directly

computed from observed and fitted values; Q̂w is a simple sum of squares. For generalized

linear models, computation using a weighted sum of the components of the log likelihood

requires additional work, but many software packages provide these components directly.

They are also easily computed using, for example, SAS PROC IML (sample code in online

appendix A). Care must be exercised when using computed AIC's from standard modeling

packages, as statistical software packages may report unweighted AIC's, even from weighted

data.

Linking QICw and QIC in the counterfactual data

Under certain assumptions, inverse-probability methods provide an approach for mapping

functions of observed data into functions of counterfactual data that are equal in

expectation. Here we give a heuristic proof that in the linear marginal structural model, the

expectation of the inverse-probability weighted quasi-likelihood information criterion QICw

for the observed data equals the expectation of a quasi-likelihood information criterion

applied to the counterfactual data, provided the usual assumptions hold. For simplicity of

exposition, we consider the case where each subject has two regularly spaced visits during

which time treatment changes are made and measurements are recorded followed by the

assessment of the outcome.

Let X be a treatment that can be applied at any point in time, x1,x2 be a sequence of

treatments, Yx1,x2 be a counterfactual outcome corresponding to a sequence of treatments,

and S = Yx1,x2,(x1,x2) ∊ X2 be the set of counterfactual outcomes corresponding to all

possible treatment sequences. Let X(t) denote the observed treatment at time t, L ̅(t) denote

the history of all covariates up to time t, and let V ⊂ L(1) be some baseline covariates upon

which we wish to condition. We are interested in estimating the conditional expectation of

the counterfactual given V: E[Yx1,x2 | V] If for each subject, we observed all counterfactual

outcomes, then we could fit a model m(x1,x2,V) of E[Yx1,x2 | V] directly using regression

without the need for weighting or other control for confounding. For example, our models

above would be given by m(x1,x2,V) = β0 +β1x1 +β2x2 +V. Given a set of competing models

that have been fit to the data, m̂i, i = 1,…,I, it would be reasonable to select the optimal
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model by choosing the one with the smallest QIC (note that in the linear case the estimating

function reduces to the normal distribution log-likelihood):

where p, as before, is the number of free parameters in the model.

With only the observed data, we instead chose the model that maximizes the inverse

probability weighted quasi-likelihood information criterion:

We would like for the weighted quasi-likelihood criterion to equal our counterfactual

criterion QIC(m̂) in expectation.

To demonstrate this equality, we need to show that:

By the rule of double expectation, we can write

The only random quantity left in the inside expectation is X(2), so we re-write the inner

expectation as a sum over possible values of X(2):

Suppose that the assumption of exchangeability (i.e., no unmeasured confounders) holds

and, for simplicity, that the distribution of X(2) is known. Then given the measured

confounders, the treatment mechanism does not depend on any of the counterfactual

outcomes. Therefore the last term in the product in the denominator cancels with the

probability in the numerator.
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Again, we apply double expectation to the resulting equation:

The only random quantity left in the inside expectation is X(1), so we re-write the inner

expectation as a sum over possible values of X(1) as:

Again, assuming the distribution of X(1) is known and the exchangeability assumption

holds, P(X(1) | L̅(1)) = P(X(1) | S,L̅(1)), then we have the result that E[QICw(m̂)] =

E[QIC(m̂)]. Note that for identifiability, we require that P(X(1) = x(1) | L(1)) ≠ 0,x1 ∊ X and

P(X(2) = x(2) | X(1), L̅ (2)) ≠ 0,x2 ∊ X (i.e., experimental treatment assumption/positivity).

We note that the proof naturally extends to the generalized linear model with replacement of

(Y-m(x,v))ˆ2 by Q(y,x,v).

Simulation Study

We undertook a limited simulation study to evaluate some of the properties of our proposed

QICw measure of model fit. We generated data assuming a marginal structural model with a

continuous outcome and a binary time varying treatment with four time intervals. For each

simulation, we generated treatment X and a single covariate L at four time points as follows:

At time 1, we generated L1 from a normal distribution with mean 10 and variance 1 and a

binary treatment X1 with probability of treatment P=expit(-2.7+0.25*L0) (where

expit(x)=exp(x)/(1+exp(x)), the inverse logit. The intercept was chosen to give a baseline

exposure of 6.2%, in line with the proportion breastfed in example 1. At time i=2,3,4, Li was

generated from a normal distribution with mean Li-1+βi*Xi-1 and Xi as binary with

probability of treatment P=expit(-2.6 +0.25*Li+0.1*Xi-1). These give rise to a marginal

structural model with E[Y(x̂)] = β0 + β1X1 + β2X2 + β3X3 + β4X4.

We considered 7 scenarios, described in Table A1 in the online appendix, considering a

range of effect sizes and of model complexity. We then fit three models: the “full” or

“saturated” model fit binary indicators for each treatment-time, the “null” model fit a model

with no parameters, and the “reduced” model fit binary indicators for treatment at times 1

and 2. We considered sample sizes of 100, 1000, 5000, and 10,000, and ran 1000 repetitions

per scenario. In each simulation, we correctly specified the (known) model for the inverse

probability weights. We ran a second set of simulations with the same specification but a log

link function (so that the outcome distribution is lognormal and therefore heteroskedastic).
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Tables B1 and B2 in the online appendix summarize the results of the simulation study. For

each combination, we report the percentage of simulation runs in which the QICw selected

each model, and compare this with the similar results for the adjusted R-square. The QICw

usually (but not uniformly) selected the correct model more often than did the adjusted R-

square. However, QICw tended to select models with more parameters, while the adjusted R-

square tended to select models with fewer parameters. Results for the lognormal model

(Table B2) were similar; however the QIC performed worse with increasing sample size,

likely due to misspecification of the variance.

Example One: Breastfeeding and infant weight gain

The PROBIT study used a cluster randomized breastfeeding promotion intervention, and

followed 17,044 infants for weight gain over the first year of life [35], as well as infection

[36] and long-term outcomes which are not considered here [37-42]. We follow Platt et al.

[43] and consider the effect of breastfeeding during the first year of life on infant weight at

12 months.

We fit marginal structural linear models with four choices for the exposure metric. In all

models we use (the same) minimally stabilized weights (i.e., the numerator for all weights is

the marginal probability of observed exposure at that time) to focus on the marginal

estimates of the effect of the exposure in the population. The first model, following Platt et

al. [43], considered indicator variables for breastfeeding in each of the time intervals

between visits, which occurred at 1, 2, 3, 6, 9, and 12 months to study the effect on weight at

12 months. In this study every mother-child pair initiates breastfeeding, breastfeeding is

assumed not to restart once stopped and data were only collected on these intervals.

Therefore, in this model the exposure specification is “saturated”; that is, each possible

exposure history completely determines the expected value of the potential outcome (infant

weight at 12 months) and the model has the maximum number of free parameters. The

second, third, and fourth exposure metrics were developed to examine simplifications

relative to the exposure-saturated model, and considered cumulative breastfeeding; that is,

weight was modeled as a linear, quadratic, and cubic function of the cumulative number of

prior months breastfed. All four models are plausible given the underlying biology of

breastfeeding and infant weight gain in the first year of life; our goal here is to compare

these four models using the modified QICw described above. A graphical depiction of

results from the saturated marginal structural models is provided in Figure 1. Summary

statistics including QICw for the four models are presented in Table 1.

The exposure-saturated model suggests the effect of breastfeeding cessation on weight at 12

months was strongest for breastfeeding cessation between 6 and 9 months and relatively

small before or thereafter. The simple linear cumulative breastfeeding model suggests that

weight is lower by 25 g per month breastfed at 12 months. The quadratic model provided

similar inferences to the linear model, except for the shortest durations, while the cubic

model fit closely resembled that of the exposure-saturated model. The QICw was lowest for

the cubic model, slightly higher for the exposure-saturated model and highest for the linear

and quadratic models. Standard errors of individual coefficients (not shown) were similar
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across the models explored. Figure B1 (online appendix) shows a plot of residuals from the

four proposed models; no patterns are apparent and all models showed similar results.

Example Two: Effect of Highly Active Antiretroviral Therapy on CD4 cell

count

Cole et al. reported on the effect of highly active antiretroviral therapy on the evolution of

CD4-positive T-lymphocyte (CD4 cell) count among human immunodeficiency virus

(HIV)-positive participants using inverse probability-of-treatment-and-censoring weighted

estimation of a marginal structural repeated measures model [23]. In summary, 60% of

1,763 eligible participants from two US cohort studies followed between 1996 and 2002

initiated highly active antiretroviral therapy. For further details about study design and

analysis please see reference [23]. As reported, the weighted estimate of the difference in

mean CD4 cell count at 1 year among participants continuously treated versus those never

treated was 71 cells/mm3 (95% confidence limits: 48, 95) with an estimated continued

increase of 29 cells/mm3 per year (estimated effect at 6 years: 216 cells/mm3). Here, to

facilitate graphical depiction of the data we again use minimally stabilized weights, which

stabilize only on the history of exposure and time, rather than additionally stabilizing on

select baseline covariates, as was done in the reported analysis. Therefore, the 1 year and per

year greater than 1 year differences in CD4 cell count due to treatment were 80 (95% CL:

45, 115) and 16 cells/mm3 per year, respectively.

Figure 2 presents the difference in CD4 cell count between exposed and unexposed groups

as well as a point-wise 95 percent point-wise confidence band in grey-shade. Our motivation

for a 2-piece linear spline is apparent in Figure 2, where the slope of the difference is

relatively steep in the first year, and then appears less steep in the second through fifth years,

with some apparent instability in the final year.

A comparison of several candidate exposure specifications is provided in Table 2. We

compared (1) an intercept-only model; (2) a model with no effect for exposure but an

intercept, a spline for follow up time and centered baseline CD4 count; (3) model 2 with a

linear effect for cumulative exposure; (4) model 2 with a curvilinear effect for cumulative

exposure; (5) model 2 with a 2-piece linear spline for cumulative exposure; and (6) an

unsmoothed model, which (akin to the exposure-saturated model in example one) allowed

the difference in CD4 cell count to vary nonparametrically at each semiannual study visit. In

the original report, based on the combination of biological knowledge [23], prior literature

[44], and the apparent inflection at one year in Figure 2, the authors presented Model 5,

including the two-piece linear spline for cumulative exposure. In Table 2, we demonstrate

that this model (5) had the lowest QICw among the models considered. However, the

curvilinear model (4) fit these data nearly as well as the 2-part linear spline model (5). Even

a simpler linear model (3) was not wholly unreasonable; this can be checked visually by

drawing a straight line through the point-wise confidence band in Figure 2. Figure B2

(online appendix) shows a plot of residuals from the six proposed models; all models

showed similar results and no patterns are apparent.
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Discussion

In most regression modeling settings, appropriate specification of the functional form of the

regression model is essential to valid inference [45]. These standard considerations apply to

model selection in marginal structural models. To date, most implementations of marginal

structural models have used simple forms of the exposure (e.g., always vs. never exposed,

cumulative exposure) for the final structural regression model and have not discussed model

selection. Here, we have proposed an information criterion for use in assessing model fit in

marginal structural models. To our knowledge this is the first use of such a criterion in this

context, and these statistics may play an important role in the practical usage of marginal

structural models.

In the limited simulation study, we demonstrated that our QICw performs better than does

the adjusted R-squared. When the model was fully parameterized, the QICw almost always

selected the correct model, while the adjusted R-squared usually selected a reduced model.

When a reduced model was correct, the QICw tended to select either the full or reduced

model, almost never under-specifying the model.

In the breastfeeding example, more detailed inferences were uncovered when the functional

form of exposure was explored; fully-specified models, linear models, and curvilinear

models fit the data relatively similarly but the fully-specified (exposure-saturated) model

showed important patterns that were not evident based on simpler models, providing insight

into the association between breastfeeding and growth. In the CD4 example, alternative and

simpler functional forms fit the data nearly as well as the published two-part linear model.

Altering the functional form of the regression model, including the exposure metric, may

change the scientific question being asked. Substantive expertise should drive selection of

the functional form if possible, as biological plausibility of the functional form can lend

credence to the results. However, knowledge can be gained when differing functional forms

provide different fits to the data. For instance, if models specifying different exposure

windows give substantially different fits this can inform the investigator about the critical

windows of exposure. Exposure-saturated models similar to those fit in example one may

identify thresholds or jumps in the effect. In particular, as in the breastfeeding example, the

saturated model suggests a jump between 6 and 9 months of breastfeeding that was not

evident in the linear or curvilinear models.

Our proposed QICw has important limitations. In particular, the validity of decisions based

on the QICw is dependent on correct specification of the variance and weight models. If

either of these is incorrectly specified, our QICw may not yield valid model comparisons.

Alternative approaches to model selection exist. Here in both examples, we concentrated on

a graphical depiction of a fairly flexible function form and several competing simpler

models. In addition to the graphical depictions we also compared QICw across the specified

models. Brookhart and van der Laan [20] and van der Laan and Dudoit [46] propose

approaches based on cross-validation that can simultaneously select variables for the weight

and structural models. These approaches depend on an initial specification of the weight

model that yields consistent but potentially highly variable estimates of a parameter of
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interest. Cross-validation is then used to optimize model specification. Here we concentrated

on optimizing the structural model with weights held fixed. Neugebauer et al.[21] proposed

comparisons against a highly flexible structural model, but their approach is technically

demanding. Doubly-robust methods [47] are robust to misspecification of the weight model

or the outcome model (though not both), and provide an opportunity for future research.

More work comparing these methods to our proposed QICw is warranted.

Three other points should be noted regarding specification of marginal structural models.

First, the specification of the functional form of the exposure in the final structural model

must be equally coarse as, or coarser than, the exposure specification in the weight model.

This ensures that control of confounding is as complete as possible given the observed

covariates. In both examples, we estimated exposure weights based on the exposure at each

time point; therefore the exposure in each structural model was specified equally as coarse

(in the case of the saturated model) or more coarse (in the case of the linear and curvilinear

models) than how the exposure was specified in the weight model.

Second, many previous applications of marginal structural models have made an (explicit or

implicit) observational intent-to-treat assumption. Namely, it is assumed that once exposed,

participants remain exposed for the remainder of their observed person-time. This

assumption was made in both examples presented here (in the breastfeeding study, a

converse intent-to-treat assumption was made, in which participants were assumed not to

restart once stopped). The assumption almost certainly holds in the breastfeeding study for

biological reasons [36]. In the CD4 example, this assumption holds for 86% of the person-

time [23]. This assumption simplifies the exposure model so that only a single model for

exposure onset is required, rather than separate models for onset, cessation, and resumption;

likewise, it dramatically simplifies potential exposure histories, leading to simpler

specification of this covariate as well. However, in cases where exposure is intermittent, this

assumption may increase rather than reduce net bias. In such settings one must consider the

potential tradeoff between correctly specifying a multiphase exposure process and

increasing the variance of the final estimate of association. If exposure is intermittent, then a

correctly specified exposure process may give estimates with high variance because

relatively few participants will follow each possible exposure plan; on the other hand, an

observational intent-to-treat assumption (or other simplifications that represent a coarsening

of the exposure process) may provide biased estimates of the exposure effect, but have

relatively low variance.

Finally, we restricted attention here to minimally stabilized models, so as to focus attention

on exposure specification alone, to facilitate graphical depictions of the data, and to allow

for marginal interpretations of effect estimates. In other applications of marginal structural

models, however, stabilization by baseline covariates may improve the properties of the

weights at a cost of complicating the final structural model [48, 49].

This paper presents a relatively simple approach to specification of exposure metrics in

marginal structural models; other, more complex model fitting approaches could be

considered. For instance, in both examples the outcome was a continuous measure. In such

cases, one might want to explore transformations of the outcome variable [50], though this
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may raise the issue of the re-transformation problem [51]. In cases where the outcome is a

time-to-event variable, analogously, one could consider a broad family of parametric

survival models [52] or a semiparametric accelerated failure time model [53, 54] as

alternatives to Cox proportional hazards model [55]. In cases where the outcome is a

dichotomous variable, the choice of link function (e.g., logit, log-linear, probit, identity) may

provide different inferences; in part because different contrasts are made (e.g., ratio versus

difference).

We illustrate the importance of correct specification of the structural form when fitting

marginal structural models, and a candidate approach to this process. Additional work on

structural model specification is needed, particularly with respect to simultaneous estimation

of the inverse probability weights and the final structural model. In marginal structural

models, as in any regression setting, correct inference often depends on correct model

specification.
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Online Appendix A

Here we provide a brief SAS program to estimate the QIC for the saturated linear model for

example 1.

**Assume data as follows;

**y outcome;

**x1--x12 dummy variables for exposure to months 1, 2, 3, 6, 9, 12 (i.e., 

saturated model);

*Saturated model;

proc genmod data=a;

class i;

model y=x1 x2 x3 x6 x9 x12/d=n;

weight w;

repeated subject=i/type=ind;

title “Saturated”;
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proc nlmixed data=a hess;

xb=b0+b1*x1+b2*x2+b3*x3+b4*x6+b5*x9+b6*x12;

logL=-.5*w*(y-xb)**2;

model y∼general(logL);

predict logL out=score der;

ods output parameterestimates=parms hessian=hess;

ods select specifications fitstatistics parameterestimates;

*logL is the QIC;

*Below is code to estimate the robust variance matrix from PROC NLMIXED

* (provided automatically by PROC GENMOD with REPEATED option);

proc sort data=score; by i;

proc means data=score noprint; by i;

var der_b0 der_b1-der_b6;

output out=_out1_(keep=der_b0 der_b1-der_b6) sum=der_b0 der_b1-der_b6;

data _out1_; set; array d (*) der_b0 der_b1-der_b6; if d(1)=.then delete;

data _parms_(keep=estimate); set parms; if parameter^=“sigma”;

data _hess_(keep=b0 b1-b6); set hess; if parameter^=“sigma”;

proc iml;

use _parms_; read all into b;

use _hess_; read all into hess;

cov=inv(hess);

nse=sqrt(vecdiag(cov));

use _out1_; read all into x;

v=cov*(x`*x)*cov;
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rse=sqrt(vecdiag(v));

wald=(b/rse)##2;

p=1-probchi(wald,1);

chi=wald||p;

c={“Chi Square” “p-value”};

reset noname fuzz=.000001;

print, “Standard Variance Matrix”,, cov;

print, “Robust Variance Matrix”,, v;

print, “Robust Standard Errors”,, rse;

print, “Wald Statistics”,, chi;

run;

quit;

run;

Online Appendix B

Table B1 shows the results of the simulation study for the runs in which the linear marginal

structural model was correctly specified with the parameters listed.

Table B2 shows the results of the simulation study for the runs in which the linear marginal

structural model was incorrectly specified (with a lognormal model) and the parameters

listed.

Figure B1 shows the standardized Pearson residuals for the best fitting model for example 1,

with saturated model. The mean residual was -0.001, with a standard deviation of 0.989; 95

of 17,044 observations had residuals greater than |3|, while we would expect 44.9 such

outlying observations based on the standard normal distribution. No systematic patterns

were apparent.

Figure B2 shows the standardized Pearson residuals for the best fitting model, with a

piecewise linear spline. The mean residual was 0.007, with a standard deviation of 1.0013;

161 of 12,035 observations had residuals greater than |3|, while we would expect 31.3 such

outlying observations based on the standard normal distribution. No systematic patterns

were apparent.
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Table B1

Results of simulation study, correctly specified model. For each combination, values

represent the percentage of runs in which each model-selection approach selected each

model.

Percentage of simulation runs each model selected

Saturated Reduced Simple

True model (β1,β2,β3,β4) Sample size QICw Adj R2 QICw Adj R2 QICw Adj R2

(0,0,0,0) 200 70.9 29.4 11.4 56.9 17.7 13.7

1,000 52.6 20.3 11.1 69.2 36.3 10.5

5,000 49.4 19.8 13.3 70.6 37.3 9.6

10,000 46.5 19.8 11.1 70.5 42.4 9.7

(1,1,1,1) 200 58.5 20.4 15.4 63.7 26.1 15.9

1,000 12.9 0 12.3 100 74.8 0

5,000 0.4 0 0.9 100 98.7 0

10,000 0 0 0 100 100 0

(2,2,2,2) 200 79.5 4.3 10 93.7 10.5 2

1,000 79.7 0 12.8 100 7.5 0

5,000 87.6 0 10.6 100 1.8 0

10,000 93.5 0 5.8 100 0.7 0

(3,3,3,3) 200 97.8 0 1.4 100 0.8 0

1,000 99.5 0 0.3 100 0.2 0

5,000 100 0 0 100 0 0

10,000 69.5 8 11.7 43.3 18.8 48.7

(1,1,0,0) 200 53.7 0 13.1 44.1 33.2 55.9

1,000 47.5 0 14.3 45.2 38.2 54.8

5,000 50.2 0 16 50.6 33.8 49.4

10,000 71.4 0.5 14.7 43.4 13.9 56.1

(2,2,0,0) 200 61.2 0 30.8 41.5 8 58.5

1,000 56.2 0 42.1 46.3 1.7 53.7

5,000 55.8 0 44 46.7 0.2 53.3

10,000 77.7 0 17.2 42.5 5.1 57.5

(3,3,0,0) 200 60.7 0 38.3 46.2 1 53.8

1,000 58.7 0 41.3 44.8 0 55.2

5,000 55.9 0 44.1 47.9 0 52.1

10,000 70.9 29.4 11.4 56.9 17.7 13.7
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Table B2

Results of simulation study, mis-specified model. For each combination, values represent

the percentage of runs in which each model-selection approach selected each model.

Percentage of simulation runs each model selected

Saturated Reduced Simple

True model (β1,β2,β3,β4) Sample size QICw Adj R2 QICw Adj R2 QICw Adj R2

(0,0,0,0) 200 68.3 25.2 12.1 51.2 19.6 23.6

1,000 57.1 29.2 12.6 49.4 30.3 21.4

5,000 60.6 32.3 10.2 47.9 29.2 19.8

10,000 56.8 40.5 15 43.7 28.2 15.8

(1,1,1,1) 200 51.5 28.4 14.8 49.8 33.7 21.8

1,000 24.5 25.9 11.8 60 63.7 14.1

5,000 16 15 10 78.4 74 6.6

10,000 12.2 8.8 9.1 88.8 78.7 2.4

(2,2,2,2) 200 39.7 24.5 17.7 59.1 42.6 16.4

1,000 8.2 13.1 8 83.7 83.8 3.2

5,000 2.1 4.6 4.2 95.1 93.7 0.3

10,000 1.2 1.7 3.1 97.9 95.7 0.4

(3,3,3,3) 200 33.9 26.5 16.9 62.7 49.2 10.8

1,000 2.4 7.8 5.9 90.7 91.7 1.5

5,000 0.4 2.8 2.1 97.1 97.5 0.1

10,000 0 0.7 1.8 99.1 98.2 0.2

(1,1,0,0) 200 67.5 18.4 12.3 54.6 20.2 27

1,000 56.3 12.8 11.7 53.5 32 33.7

5,000 55.3 7.6 12.8 60.8 31.9 31.6

10,000 53.8 3.6 13.8 60.6 32.4 35.8

(2,2,0,0) 200 63.8 10.9 13.8 45.9 22.4 43.2

1,000 56.9 3.9 13.2 49.6 29.9 46.5

5,000 49.3 0.6 18.8 61.6 31.9 37.8

10,000 46.7 0.1 18.9 65.1 34.4 34.8

(3,3,0,0) 200 63.3 4.7 18.2 36.1 18.5 59.2

1,000 48 1 24.4 46 27.6 53

5,000 37.4 0 31.9 60.4 30.7 39.6

10,000 36.6 0 38 65.9 25.4 34.1
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Figure B1.
Residuals for the four candidate models for Example 1, plotted against observation number.
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Figure B2.
Residuals for the six candidate models for Example 2, plotted against years on study.

References

1. Robins JM. Marginal structural models. 1997 Proceedings of the American Statistical Association.
1998:1–10. Section on Bayesian Statistical Science.

2. Robins, JM. Marginal structural models versus structural nested models as tools for causal
inference. In: Halloran, ME.; Berry, D., editors. Marginal Structural Models Versus Structural
Nested Models as Tools for Causal Inference. Springer; New York: 1999. p. 95-134.

3. Robins JM. Association, causation and marginal structural models. Synthese. 1999; 121:151–179.

4. Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in
epidemiology. Epidemiology. 2000; 11:550–560. [PubMed: 10955408]

5. Choi HK, Hernán MA, Seeger JD, Robins JM, Wolfe F. Methotrexate and mortality in patients with
rheumatoid arthritis: a prospective study. Lancet. 2002; 359:1173–1177. [PubMed: 11955534]

6. Sterne JA, Hernán MA, Ledergerber B, Tilling K, Weber R, Sendi P, Rickenbach M, Robins JM,
Egger M. Long-term effectiveness of potent antiretroviral therapy in preventing AIDS and death: a
prospective cohort study. Lancet. 2005; 366:378–384. [PubMed: 16054937]

7. MacKenzie EJ, Rivara FP, Jurkovich GJ, Nathens AB, Frey KP, Egleston BL, Salkever DS,
Scharfstein DO. A national evaluation of the effect of trauma-center care on mortality. N Engl J
Med. 2006; 354:366–378. [PubMed: 16436768]

Platt et al. Page 17

Stat Med. Author manuscript; available in PMC 2014 September 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



8. Cotter D, Zhang Y, Thamer M, Kaufman J, Hernan MA. The effect of epoetin dose on hematocrit.
Kidney Int. 2008; 73:347–353. [PubMed: 18004296]

9. Palella FJ Jr, Armon C, Buchacz K, Cole SR, Chmiel JS, Novak RM, Wood K, Moorman AC,
Brooks JT. The association of HIV susceptibility testing with survival among HIV-infected patients
receiving antiretroviral therapy: a cohort study. Ann Intern Med. 2009; 151:73–84. [PubMed:
19620160]

10. Hernán MA, Taubman SL. Does obesity shorten life? The importance of well-defined interventions
to answer causal questions. International Journal of Obesity. 2008; 32:S8–14. [PubMed:
18695657]

11. Cole SR, Frangakis CE. The consistency statement in causal inference: a definition or an
assumption? Epidemiology. 2009; 20:3–5. [PubMed: 19234395]

12. VanderWeele TJ. Concerning the consistency assumption in causal inference. Epidemiology. 2009;
20:880–883. [PubMed: 19829187]

13. Mortimer KM, Neugebauer R, van der Laan M, Tager IB. An application of model-fitting
procedures for marginal structural models. Am J Epidemiol. 2005; 162:382–388. [PubMed:
16014771]

14. Hernan MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol
Community Health. 2006; 60:578–586. [PubMed: 16790829]

15. Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models.
Am J Epidemiol. 2008; 168:656–664. [PubMed: 18682488]

16. Westreich D, Cole SR. Invited Commentary: Positivity in Practice. American Journal of
Epidemiology. 2010; 171:674–677. [PubMed: 20139125]

17. Lefebvre G, Delaney JAC, Platt RW. Impact of mis-specification of the treatment model on
estimates from a Marginal Structural Model. Statistics in Medicine. 2008; 27:3629–3642.
[PubMed: 18254127]

18. Moodie EE. Risk factor adjustment in marginal structural model estimation of optimal treatment
regimes. Biom J. 2009; 51:774–788. [PubMed: 19816876]

19. Harrell, FE. Regression Modelling Strategies. Springer-Verlag; New York, NY: 2001.

20. Brookhart MA, van der Laan MJ. A semiparametric model selection criterion with applications to
the marginal structural model. Computational Statistics & Data Analysis. 2006; 50:475–498.

21. Neugebauer R, Van der Laan M. Nonparametric causal effects based on marginal structural
models. Journal of Statistical Planning and Inference. 2007; 137:419–434.

22. Hens N, Aerts M, Molenberghs G. Model selection for incomplete and design-based samples. Stat
Med. 2006; 25:2502–2520. [PubMed: 16596577]

23. Cole SR, Hernán MA, Margolick JB, Cohen MH, Robins JM. Marginal structural models for
estimating the effect of highly active antiretroviral therapy initiation on CD4 cell count. Am J
Epidemiol. 2005; 162:471–478. [PubMed: 16076835]

24. Moodie EEM, Platt RW, Kramer MS. Estimating response-maximized decision rules with
applications to breastfeeding. Journal of the American Statistical Association. 2009; 104:155–165.

25. Hernan MA. A definition of causal effect for epidemiological research. J Epidemiol Community
Health. 2004; 58:265–271. [PubMed: 15026432]

26. Holland PW. Statistics and Causal Inference. Journal of the American Statistical Association.
1986; 81:945–960.

27. Robins J, Orellana L, Rotnitzky A. Estimation and extrapolation of optimal treatment and testing
strategies. Stat Med. 2008; 27:4678–4721. [PubMed: 18646286]

28. Hernan MA, Lanoy E, Costagliola D, Robins JM. Comparison of dynamic treatment regimes via
inverse probability weighting. Basic Clin Pharmacol Toxicol. 2006; 98:237–242. [PubMed:
16611197]

29. Cain LE, Robins JM, Lanoy E, Logan R, Costagliola D, Hernán MA. When to Start Treatment? A
Systematic Approach to the Comparison of Dynamic Regimes Using Observational Data.
International Journal of Biostatistics. 2010; 6

Platt et al. Page 18

Stat Med. Author manuscript; available in PMC 2014 September 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



30. Robins JM, Finkelstein DM. Correcting for noncompliance and dependent censoring in an AIDS
Clinical Trial with inverse probability of censoring weighted (IPCW) log-rank tests. Biometrics.
2000; 56:779–788. [PubMed: 10985216]

31. Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of
zidovudine on the survival of HIV-positive men. Epidemiology. 2000; 11:561–570. [PubMed:
10955409]

32. Moodie EE, Delaney JA, Lefebvre G, Platt RW. Missing Confounding Data in Marginal Structural
Models: A Comparison of Inverse Probability Weighting and Multiple Imputation. International
Journal of Biostatistics. 2008; 4

33. Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principal. Akademia
Kiado; City: 1973. Information theory and an extension of the maximum likelihood principal.
Editor (eds)

34. Pan W. Akaike's information criterion in generalized estimating equations. Biometrics. 2001;
57:120–125. [PubMed: 11252586]

35. Kramer MS, Guo T, Platt RW, Shapiro S, Collet JP, Chalmers B, Hodnett E, Sevkovskaya Z,
Dzikovich I, Vanilovich I. Breastfeeding and infant growth: biology or bias? Pediatrics. 2002;
110:343–347. [PubMed: 12165588]

36. Kramer MS, Chalmers B, Hodnett ED, Sevkovskaya Z, Dzikovich I, Shapiro S, Collet JP,
Vanilovich I, Mezen I, Ducruet T, Shishko G, Zubovich V, Mknuik D, Gluchanina E,
Dombrovskiy V, Ustinovitch A, Kot T, Bogdanovich N, Ovchinikova L, Helsing E. Promotion of
Breastfeeding Intervention Trial (PROBIT): a randomized trial in the Republic of Belarus. JAMA.
2001; 285:413–420. [PubMed: 11242425]

37. Kramer MS, Aboud F, Mironova E, Vanilovich I, Platt RW, Matush L, Igumnov S, Fombonne E,
Bogdanovich N, Ducruet T, Collet JP, Chalmers B, Hodnett E, Davidovsky S, Skugarevsky O,
Trofimovich O, Kozlova L, Shapiro S. Breastfeeding and child cognitive development: new
evidence from a large randomized trial. Arch Gen Psychiatry. 2008; 65:578–584. [PubMed:
18458209]

38. Kramer MS, Fombonne E, Igumnov S, Vanilovich I, Matush L, Mironova E, Bogdanovich N,
Tremblay RE, Chalmers B, Zhang X, Platt RW. Effects of prolonged and exclusive breastfeeding
on child behavior and maternal adjustment: evidence from a large, randomized trial. Pediatrics.
2008; 121:e435–440. [PubMed: 18310164]

39. Kramer MS, Matush L, Vanilovich I, Platt R, Bogdanovich N, Sevkovskaya Z, Dzikovich I,
Shishko G, Mazer B. Effect of prolonged and exclusive breast feeding on risk of allergy and
asthma: cluster randomised trial. BMJ. 2007; 335:815. [PubMed: 17855282]

40. Kramer MS, Matush L, Vanilovich I, Platt RW, Bogdanovich N, Sevkovskaya Z, Dzikovich I,
Shishko G, Collet JP, Martin RM, Davey Smith G, Gillman MW, Chalmers B, Hodnett E, Shapiro
S. Effects of prolonged and exclusive breastfeeding on child height, weight, adiposity, and blood
pressure at age 6.5 y: evidence from a large randomized trial. Am J Clin Nutr. 2007; 86:1717–
1721. [PubMed: 18065591]

41. Kramer MS, Matush L, Vanilovich I, Platt RW, Bogdanovich N, Sevkovskaya Z, Dzikovich I,
Shishko G, Collet JP, Martin RM, Smith GD, Gillman MW, Chalmers B, Hodnett E, Shapiro S. A
randomized breast-feeding promotion intervention did not reduce child obesity in Belarus. J Nutr.
2009; 139:417S–421S. [PubMed: 19106322]

42. Kramer MS, Vanilovich I, Matush L, Bogdanovich N, Zhang X, Shishko G, Muller-Bolla M, Platt
RW. The effect of prolonged and exclusive breast-feeding on dental caries in early school-age
children. New evidence from a large randomized trial. Caries Res. 2007; 41:484–488. [PubMed:
17878730]

43. Platt RW, Schisterman EF, Cole SR. Time-modified confounding. Am J Epidemiol. 2009;
170:687–694. [PubMed: 19675141]

44. Tarwater PM, Margolick JB, Jin J, Phair JP, Detels R, Rinaldo C, Giorgi J, Munoz A. Increase and
plateau of CD4 T-cell counts in the 3(1/2) years after initiation of potent antiretroviral therapy. J
Acquir Immune Defic Syndr. 2001; 27:168–175. [PubMed: 11404539]

45. Maldonado G, Greenland S. Interpreting model coefficients when the true model form is unknown.
Epidemiology. 1993; 4:310–318. [PubMed: 8347741]

Platt et al. Page 19

Stat Med. Author manuscript; available in PMC 2014 September 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



46. Van der Laan, M.; Dudoit, S. Unified cross-validation methodology for selection among
estimators: Finite sample results, asymptotic optimality, and applications. UC Berkeley; City:
2003. Unified cross-validation methodology for selection among estimators: Finite sample results,
asymptotic optimality, and applications., Editor (ed)ˆ(eds)

47. Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models.
Biometrics. 2005; 61:962–973. [PubMed: 16401269]

48. Hernan MA, Alonso A, Logan R, Grodstein F, Michels KB, Willett WC, Manson JE, Robins JM.
Observational studies analyzed like randomized experiments: an application to postmenopausal
hormone therapy and coronary heart disease. Epidemiology. 2008; 19:766–779. [PubMed:
18854702]

49. Westreich D, Cole SR, Tien PC, Chmiel JS, Kingsley L, Funk MJ, Anastos K, Jacobson LP. Time
scale and adjusted survival curves for marginal structural cox models. American Journal of
Epidemiology. 2010; 171:691–700. [PubMed: 20139124]

50. Box GEP, Cox DR. An analysis of transformations. Journal of the Royal Statistical Society, Series
B. 1964; 26:211–252.

51. Taylor JMG. The retransformATION mean after a power transformation. Journal of the American
Statistical Association. 1986; 81:114–118.

52. Cox C. The generalized F distribution: an umbrella for parametric survival analysis. Stat Med.
2008; 27:4301–4312. [PubMed: 18407568]

53. Wei LJ. The Accelerated Failure Time Model: A Useful Alternative to the Cox Regression Model
in Survival Analysis. Statistics in Medicine. 1992; 11:1871–1879. [PubMed: 1480879]

54. Cole SR, Chu H, Lei N. Nonparametric estimator of relative time with application to the Acyclovir
Prevention Trial. Clinical Trials. 2009; 6:320–328. [PubMed: 19667028]

55. Cox DR. Regression Models and Life-Tables. Journal of the Royal Statistical Society Series B-
Statistical Methodology. 1972; 34:187–&.

Platt et al. Page 20

Stat Med. Author manuscript; available in PMC 2014 September 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Fitted mean weight at 12 months (kg) as a function of months breastfed, for exposure

saturated model with 95 percent point-wise confidence bands in grey-shade for 17,044

infants in a randomized breastfeeding promotion trial conducted in Belarus.

Platt et al. Page 21

Stat Med. Author manuscript; available in PMC 2014 September 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Difference in CD4 count (cells/mm3) for 5519 antiretroviral therapy exposed and 6516

unexposed visits between April 1996 and April 2002 for 1,763 HIV-positive participants

from two US cohort studies, by years of follow up using under-stabilized inverse

probability-of-treatment-and-censoring weights as described in text and point-wise 95

percent confidence band in grey-shade.
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