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Abstract
This paper focuses on statistical analyses in scenarios where some samples from the matched pairs
design are missing, resulting in partially matched samples. Motivated by the idea of meta-analysis,
we recast the partially matched samples as coming from two experimental designs, and propose a
simple yet robust approach based on the weighted Z-test to integrate the p-values computed from
these two designs. We show that the proposed approach achieves better operating characteristics
in simulations and a case study, compared to existing methods for partially matched samples.
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1. Introduction
The last few decades have seen a revolution of high-throughout technologies including
microarrays and next generation sequencing instruments in genomics. These advancements
have spurred rapid biomarker discovery and personalized medicine approach in multiple
diseases, in particular cancer research. A common experimental design in profiling genetic
and epigenetic markers includes collecting n tumor and matched normal tissues. Such tumor/
matched normal sample is an example of matched pairs design and allows for the control of
patient variability and unmeasured confounders. The matched normal samples can be
adjacent normal tissues from the same patient, or tissues from normal patients matched by
demographic attributes. Alternatively, matched pair designs can arise from comparison of
two different treatments (or pre/post treatment) within the same subjects, e.g., profiling gene
expression of cancer cell lines before and after drug treatment or in response to stimuli. In
both cases, the inherent matching structure results in correlation between the matched pairs.
For ease of exposition, we will use the tumor/matched normal example hereafter.

In an ideal case, one would expect a total of 2n samples. However in practice, circumstances
such as RNA sample degradation, failed samples or insufficient resources could result in a
subset of patients missing in either the tumor or matched normal biomarker profiles. In other
words, n1(< n) patients have both the tumor and matched normal profiles, whereas n2 and n3
patients have only tumor or normal samples, respectively. We call this partially matched
samples.
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A wide variety of softwares and bioinformatics tools are available for analyzing these high-
throughput microarray or sequencing data. However, to our knowledge, commonly used
softwares such as SAM (Tusher et al. [1]) do not deal with partially matched samples. The
users are often left with the choice of either only analyzing the n1 samples using paired-
sample methods, or by treating n1 + n2 tumor and n1 + n3 normal as two independent
samples. Both approaches are sub-optimal; in the paired-sample analysis, only a subset of
data is utilized, whereas in the two-sample approach, the inherent patient matched pair
correlation structure is ignored. Partially matched samples in microarray studies were
considered in Kim et al. [2] where they proposed a modified t-statistic in microarray studies.
Closely related approaches are the corrected Z-test by Looney and Jones [3] and maximum
likelihood based tests by Lin and Stivers [4], Ekbohm [5] for comparing two normal means.

This paper focuses on statistical analysis strategies for partially matched samples. Our
approach is motivated by high-throughput experiments such as microarrays and next
generation sequencing which profile thousands of genomic biomarkers. Unlike Lin and
Stivers [4], Ekbohm [5], Kim et al. [2], Looney and Jones [3] which were developed by
assuming that the data can be approximated with a Gaussian distribution, we borrow the idea
from meta-analysis framework and consider an alternative approach for analyzing partially
matched sample based on p-values pooling (Hedges and Olkin [6]). In many circumstances,
such an approach is more appealing and robust, which can be applied to both continuous and
discrete data, as well as parametric and non-parametric statistical tests. In contrast, modified
test statistics of Lin and Stivers [4], Ekbohm [5], Kim et al. [2], Looney and Jones [3] may
not be valid for non-gaussian genomic data of small or moderate sizes where t- or Z-tests are
not appropriate. In such cases, robust non-parametric approaches such as the Wilcoxon
signed-rank or the Mann-Whitney may be more appropriate.

This paper is organized as follows. In Section 2, we briefly describe the different types of p-
values pooling strategies. In Section 3, we design simulation studies to compare the different
strategies for handling partially matched samples, followed by a case study of a publicly
available microRNA expression data in colon adenocarcinoma (Schetter et al. [7]) in Section
4. We conclude with a discussion in Section 5.

2. Methods
Partially matched samples can be viewed as data generated from two experimental designs;
(i) n1 matched pairs or repeated measures, and (ii) independent groups with n2 and n3 per
group, where both designs intend to estimate the same parameter. This observation allows us
to recast the problem within a meta-analysis framework, where the goal is to combine the
results across the two experiments. A vast literature in meta-analysis is available, and the
two popular approaches are the p-value and effect size pooling. For our motivating example
based on high-throughput genomic biomarkers profiling, the p-values pooling approach has
several advantages over the effect size pooling. The p-values are more readily available as
most of the popular bioinformatics tools for analyzing such data often report the p-values to
reflect the statistical significance of each biomarker using either the repeated measures or
independent groups analysis. In addition, the effect size combination methods require proper
transformation and standardization into a common metric which is not straightforward for
the two different research designs here (Morris and DeShon [8]) and have been shown to be
more conservative (Marot et al. [9]).

Commonly used methods for p-values pooling in meta-analysis include the inverse normal
and Fisher’s methods. A recent paper by Zaykin [10] provides an excellent overview of the
different p-values pooling strategies in meta-analysis. The main idea of the p-values pooling
approach is to transform each p-value to a random variable which follows a tractable sum
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(or weighted sum) distribution under the assumption that each p-value is uniformly
distributed under the null hypothesis. For instance, Fisher’s method is based on the chi-

squared distribution and uses the property that . In contrast, the
inverse normal approach is based on Φ−1 (1 − p-valuek) ~ N (0, 1), where Φ is the standard
Gaussian cumulative distribution function. Whitlock [11], Zaykin [10] showed that the
weighted Z-test is advantageous over Fisher’s method for combining p-values, including its
flexibility to be easily extended to more complicated scenarios such as correlated studies. In
addition, Fisher’s method treats the large and small p-values asymmetrically which could
potentially introduce bias and may not be desirable as pointed out in Whitlock [11].

Within the context of the partially matched samples problem, the weighted Z-test can be
adapted as follows. Let p1i be the p-value for biomarker i computed from the n1 paired
samples, and p2i be the corresponding p-value computed from the independent groups with
n2 and n3 samples per group. For instance, in microarray gene expression data, p1i and p2i
can be computed from the paired sample and two sample t-tests, respectively or the SAM
analysis with the “Paired” and “Two Class” option, respectively. The combined p-value by
the weighted Z-test introduced by Liptak [12] is

(1)

where Zai = Φ−1 (1 − pai), a = 1, 2 and wa’s are the corresponding weights. Several choices
of weights have been proposed in the literature (Liptak [12], Zaykin [10]). In the absence of
additional information, Liptak [12] suggested setting the weights to be the square root of the
sample sizes. Won et al. [13] extended the weighted Z-test approach for combining p-values
by showing that the optimal weights are given by the expected effect sizes. This method
relies on a strong assumption as the information on the effect sizes is usually unavailable.
Therefore, Zaykin [10] proposed a more feasible weighting by either the inverse of the
estimated standard error or the square root of the sample sizes in practice.

Note that the p-values pooling is only meaningful if p1i and p2i are computed from one-sided
hypothesis tests to avoid directional conflict. Two-sided combined p-values can be obtained
with a slight modification (Zaykin [10]). Let p1i and p2i be the one-sided p-values for the
same alternative (e.g., “greater”) hypothesis and pci be the combined one-sided p-value from
equation (1). For instance, in the context of microarray gene expression, this corresponds to
computing a one-sided p-value for either up-regulation or down-regulation. The two-sided
p-value is then obtained via

(2)

(See Appendix for further justification).

Next, we describe the modified t-statistic of Kim et al. [2] and corrected Z-test of Looney
and Jones [3]. The modified t-statistic t3 of Kim et al. [2] takes the form

(3)
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where D̄ is the mean difference of the n1 paired samples, T̄ and N̄ are the mean tumor and
normal for the n2 and n3 unmatched samples, respectively. SD, ST and SN are the
corresponding sample standard deviations, and nH is the harmonic mean of n2 and n3. The
null distribution of t3 is approximated with a standard Gaussian distribution. On the other
hand, the corrected Z-test Zcorr of Looney and Jones [3] is based on a modified variance
estimation of the standard Z-test by accounting for the correlation among the n1 matched
pairs,

(4)

where T ̄* and N̄* are the mean tumor and normal for the n1 + n2 and n1 + n3 matched and

unmatched samples combined, respectively.  and  are the corresponding sample
standard deviations, and STN1 is the sample covariance of the n1 paired samples. Zcorr
reduces to paired sample or two-sample Z-test when n2 = n3 = 0 or n1 = 0, respectively.

In addition to the two approaches above, closely related approaches for dealing with
partially matched samples include the work of Lin and Stivers [4] and Ekbohm [5]. The
authors proposed several procedures based on a modified maximum likelihood estimator
(MLE) and simple mean difference for testing the equality of two correlated means with
incomplete data under the bivariate Gaussian assumption. The authors compared the
performance of the procedures under both homo- and heteroscedasticity, and varying
degrees of correlation between the responses. Here, we describe the maximum likelihood
based tests as recommended by Ekbohm [5] which were shown to perform well when the
correlation is medium or large, or unknown. The MLE based test statistic under
heteroscedasticity was proposed by Lin and Stivers [4] and takes the form

(5)

where

T̄1 and N̄1 are the mean tumor and normal for the n1 paired samples. ST1 and SN1 are the
corresponding sample standard deviations, respectively. Under the null hypothesis, ZLS is
approximately distributed as t with n1 degrees of freedom.

On the other hand, when the variances of tumor and normal are equal, Ekbohm [5]
suggested the following MLE based test statistic

(6)

where
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Ekbohm [5] further showed that ZE can be approximated by t distribution with n1 degrees of
freedom.

Nevertheless, as mentioned in Section 1, modified test statistics are usually not
straightforward in cases where the Gaussian or t-distribution are not suitable. For instance,
combining the non-parametric Wilcoxon signed-rank and the Mann-Whitney statistics for
discrete or ranked data. In contrast, p-values pooling is easy to implement and can be
applied regardless of the types of statistical tests chosen for the paired and independent
samples. This enables users to select their preferred choice of analysis from the vast
bionformatics tools developed for the matched and unmatched samples separately, followed
by pooling the p-values of the two subsets of samples.

In the next section, we carry out some simulations to evaluate the performance of the
different approaches. As our motivating example is based on high-throughput microarray
data profiling multiple genes, our simulation setup evaluates the performance of the different
strategies in terms of false discovery rate (FDR) control to account for multiple testings,
instead of single test type I error rate and power approach of Lin and Stivers [4], Ekbohm
[5], Looney and Jones [3].

3. Simulation
We generate n paired sample measurements (Tij, Nij) of a biomarker i for the tumor and
matched normal groups from bivariate Gaussian, respectively, where,

We consider n = 20, 50 and set μT = μN = 0, ρ = 0.2, 0.5, 0.7 to capture the different degrees
of correlation between the paired samples. When ρ = 0, the tumor and normal group are

independent. We also consider both the homo- and heteroscedastic cases, where 

under homoscedasticity and  under heteroscedasticity. In addition, we vary n1, n2
and n3 to represent the different combinations of missing matched samples. In an ideal case
where all the data is observed, i.e., n pairs of tumor and matched normal observations, the
proper statistical test is the paired sample t-test on all the 2n observations. We call this the
oracle test. We compare the performance of the different methods for the partially matched
samples, namely (i) modified t-statistic of Kim et al. [2], (ii) corrected Z-test of Looney and
Jones [3], (iii) MLE based test of Ekbohm [5] under homoscedasticity, (iv) MLE based test
of Lin and Stivers [4] under heteroscedasticity (v) paired t-test on the n1 matched samples
only, (vi) independent two-sample t-test on n1 + n2 and n1 + n3 observations in tumor and
normal group, respectively by ignoring the inherent pairing structure, and (vii) the proposed
weighted Z-test combination. We refer to methods (i)-(iv) collectively as the modified test
statistics approaches. For the proposed weighted Z-test combination, we consider weighting
by the (1) square root of samples sizes and (2) inverse of the estimated standard error under
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both the homo- (pooled estimate) and heteroscedasticity assumptions. We generate data for
1000 biomarkers and compare Lin’s concordance correlation coefficient, rc (Lin [14]) of the
estimated p-values of each method to the p-values from the oracle test. The aim is to assess
the reliability and robustness of each method in dealing with incomplete data against the test
performed on complete data. The whole setup is replicated by 1000 times. Figures 1 and 2
plot the average rc of each method across different (n1, n2, n3) and correlation ρ between the
tumor and normal group under homoscedasticity and heteroscedasticity bivariate Gaussian
simulation setup, respectively. A superior method will exhibit higher concordance with the
oracle test. At low correlation, all the methods have comparable performance except for the
paired t-test on the n1 matched samples only. The MLE based tests have the best
performance at high correlation structure under the heteroscedasticity simulation setup
(Figure 2), and the proposed weighted Z-tests follow closely.

In the next scenario, we repeat the simulations by generating n paired measurements for
1000 biomarkers from bivariate Gaussian. We set a randomly selected 1% of the biomarkers
to have true mean difference between the tumor and normal group, where μT ~ N (0, 1) and
μN = 0. In addition, we randomly sample ρ ~ U (0, 1) and vary n1, n2, and n3. For each
method, the p-values are computed and further adjusted using the Benjamini and Hochberg
[15] False Discovery Rate (FDR) control to account for multiple comparisons. Statistically
significant differentially expressed biomarkers are declared at nominal FDR of 0.1. We
evaluate the performance of the competing methods by the empirical FDR and False Non-
discovery Rate (FNR). FNR is an analog of Type II error rate, and is loosely the proportion
of true positive among the tests which are not declared to be statistically significant. In
addition, we also compare the sensitivity and specificity of the lists of 1000 biomarkers
ranked ordered by each method via the area under receiver operating characteristics curve
(ROC). We expect the superior method to exhibit smaller FNR and larger ROC, in addition
to controlling the FDR at 0.1. From Figure 3 (homoscedastic bivariate Gaussian) and Figure
4 (heteroscedastic bivariate Gaussian), the four methods based on modified test-statistics
have inflated empirical FDR. The proposed weighted Z-tests using square root of sample
size weighting show valid FDR control, i.e., their empirical FDR is bounded above by the
nominal FDR. A slight inflation of FDR is observed in a few cases for weighting based on
the inverse of the estimated standard errors. The two-sample approach by ignoring the
inherent correlation between the two groups has larger FNR, and therefore is less powerful
in general. Among the other methods which provide valid FDR control (excluding the oracle
test), the weighted Z-test approach achieves the lowest FNR and highest ROC throughout.

In the next scenario, we generate n paired sample measurements (Tij, Nij) for a biomarker i, i
= 1,…, 1000 for the tumor and matched normal groups from bivariate Gamma as follows.
Let Xij, Yij, Zij be independent Gamma with shape parameters aX, aY, aZ and common scale
parameter b. We set Tij = Xij + Zij and Nij = Yij + Zij, where E(Tij) = b(aX + aZ), E(Nij) =
b(aY + aZ) and Cov(Tij, Nij) = b2 aZ. We set aX = aY = 0.3, b = 2 and vary aZ so that the
correlation ρ(Tij, Nij) = 0.2, 0.5, 0.7, respectively, similar to the bivariate Gaussian setup
above. We define the oracle test as the Wilcoxon signed-rank test on the difference Tij − Nij,
and choose the Mann-Whitney test as the two-sample test by treating n1 + n2 tumor and n1 +
n3 normal as independent groups. For the proposed weighted Z-test combination, we replace
p1i and p2i with the p-values computed from the Wilcoxon signed-rank test on the difference
Tij − Nij among the n1 paired samples and the Mann-Whitney test on the independent groups
with n2 and n3 samples per group, respectively. Similar to the bivariate Gaussian case above,
we compare rc of the computed p-values of the different methods to the p-values of the
oracle test. Figure 5 shows that the weighted Z-test p-value pooling approach attains the
largest rc, compared to other methods. Given the skewed nature of the simulated data, the
modified test statistics approaches (Lin and Stivers [4],Ekbohm [5],Kim et al. [2],Looney
and Jones [3]) deviate from the oracle test to a larger extent.
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Similar to the bivariate Gaussian simulation setup, we also spike in 1% of biomarkers with
true mean difference in the bivariate Gamma simulation, and compare the FDR, FNR and
ROC of the different methods in Figure 6. Compared to the bivariate Gaussian case, the non-
parametric Wilcoxon signed-rank test and Mann-Whitney tests yield larger FNR and smaller
ROC overall. All the methods except for the modified t-statistic and MLE based test of Lin
and Stivers [4] control the nominal FDR of 0.1 for n = 50. For n = 20, the modified test
statistics approaches exhibit large degree of FDR inflation. In addition, our proposed
weighted Z-test achieves the best performance overall (excluding the oracle test) with the
smallest FNR (i.e., most powerful), as well as the largest ROC among the methods which
control the FDR. These simulation results also suggest that weighting by the square root of
sample size under the heteroscedascticity assumption is robust and performs well in various
scenarios.

4. Case Study
In this section, we compare the different methods using a publicly available microRNA
expression data of Schetter et al. [7] which aimed to identify differentially expressed
microRNAs in colon adenocarcinoma. The loess normalized dataset is downloaded from the
Gene Expresion Omnibus (accession number GSE7828). After further preprocessing to
remove probes with more than 20% missing values as outlined in Schetter et al. [7], as well
as control probes, we have a total of 229 microRNAs in 84 colon adenocarcinomas and 84
matching non-tumorous tissue. n1 out of 84 matched pairs are randomly selected to be the
observed complete matched samples. For the remaining 84 − n1 pairs, half are set to be
missing in the colon adenocarcinomas (n2), and the other half to be missing in non-tumorous
tissue samples (n3). We vary n1 between 5 to 70 to capture the high to low degree of
missingness in matching samples. The random subsampling is repeated 1000 times for each
n1.

In an ideal case where all the 84 matched pairs are observed, we apply the paired sample t-
test similar to Schetter et al. [7] and refer to this as the oracle test. Similar to the simulation
studies in Section 3, we compute the average Lin’s concordance correlation coefficient rc for
the seven competing methods, namely (i) modified t-statistic of Kim et al. [2], (ii) corrected
Z-test of Looney and Jones [3], (iii) MLE based test of Ekbohm [5] under homoscedasticity,
(iv) MLE based test of Lin and Stivers [4] under heteroscedasticity (v) paired t-test on the n1
matched samples only, (vi) independent two-sample t-test on n1 + n2 and n1 + n3
observations in colon adenocarcinomas and non-tumorous tissue group, respectively by
ignoring the inherent pairing structure, and (vii) the proposed weighted Z-test using square
root of sample sizes weighting under heteroscedasticity. The results are summarized in
Table 1(A). Since the ground truth of differentially expressed microRNAs is unknown in the
real data, we create a gold standard set by selecting the microRNAs identified by the oracle
test at FDR of 0.1 to be the true positive set. We compare the empirical FDR and FNR of the
different methods in Table 1(B) and 1(C), respectively. The modified test statistics
approaches and the weighted Z-test achieve comparable performance under the Gaussian
assumption, and exhibit inflated FDR (MLE based tests) for the extreme case where n1 = 5.

We repeat the analysis by treating the non-parametric Wilcoxon signed-rank test on all the
84 matched pairs as the oracle test, and replace (i) the paired t-test on the n1 matched
samples only with the Wilcoxon signed-rank test, (ii) independent two-sample t-test on n1 +
n2 and n1 + n3 observations in colon adenocarcinomas and non-tumorous tissue group with
the Mann-Whitney test, and similarly for the proposed weighted Z-test combination as in the
simulation. The average Lin’s concordance correlation coefficient, empirical FDR and FNR
are given in Table 2(A), 2(B) and 2(C), respectively. The modified test statistics approaches
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exhibit inflated FDR, whereas the proposed weighted Z-test achieves the minimum FNR
among the other methods which have valid FDR control.

5. Discussion
This paper presents a simple yet robust method for partially matched samples based on p-
values pooling, a popular approach in meta-analysis for combining results from multiple
studies. Both the simulation results and the case study show that the p-values pooling based
on the weighted Z-test achieves better operating characteristics including higher
concordance relative to the oracle test, valid FDR control, smaller FNR (i.e., higher power)
and higher area under ROC than existing methods across various distributions (Gaussian and
non-Gaussian), correlations and degrees of missing matched samples. In addition, simulation
results suggest that weighting by the square root of sample size under the heteroscedascticity
assumption is robust and performs well in various scenarios.

One motivation of the proposed weighted Z-test for p-values pooling in partially matched
samples is the flexibility of allowing users to choose their preferred statistical tests for
analyzing the n1 paired samples, and (n2, n3) unpaired samples. This enables users to utilize
the vast statistical and computational tools that have been developed for analyzing the paired
or independent two-sample data generated from the microarray or high throughput
sequencing platforms separately. An alternative approach is to modify the existing
algorithms to handle partially matched samples directly, however this is usually non-trivial
and requires considerable effort.

The weighted Z transformation for p-values pooling assumes that the p-values are uniformly
distributed. However, the p-values obtained from the non-parametric tests (Wilcoxon
signed-rank or Mann-Whitney tests) or discrete distribution do not follow the uniform
distribution. In such cases, this may reduce the power of the weighted Z-test (Lancaster [16],
Trehub and Heilizer [17], Edgington and Haller [18]). Several extensions have been
proposed to deal with discrete p-values (Lancaster [16], Kincaid [19], Mielke and Berry
[20]). These methods can be adapted for partially matched samples scenarios for discrete p-
values computed from count data such as RNA-Seq from the next generation sequencing
instruments.

One limitation of the p-values pooling approach is in confidence interval estimation. Unlike
the modified test statistics approaches which can be readily extended to obtain confidence
intervals, such analog is not available for the p-values pooling approach. However, in large
scale genomics study where hundreds or thousands of genes/biomarkers are being profiled,
in many cases, the main interest is in estimating the p-values and FDRs of each gene/
biomarker, followed by thresholding at a nominal FDR level and declaring a list of
significant genes/biomarkers. In scenarios where the estimation of univariate mean
difference and its corresponding confidence interval is the primary objective, we
recommend the use of modified test statistics approaches reviewed in this paper.

Our motivating example comes from one of the many facets of cancer research in
identifying biomarkers which are differentially expressed between tumor and matching
normals. Another area of research which is closely related to the notion of partially matched
samples is in the case-control genome-wide association studies (GWAS) that includes
multiple control groups (Cessie et al. [21]), including (i) matching controls such as the
family control to adjust for confounding genetic factors and (ii) unmatched population based
controls. However, unlike the setup of this paper, where the unmatched samples constitute
an independent dataset, in GWAS with multiple control groups, the same cases are used in
comparison with the different control groups. In such cases, the p-values pooling approach
needs to be adjusted to account for the correlation between the two individual p-values. We
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refer the readers to the work of Zaykin and Kozbur [22] which addresses the pooling of
correlated p-values in GWAS, as well as a recent publication by Samawi and Vogel [23] for
partially correlated samples in categorical data represented by contingency tables.
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Appendix A
The two-sided p-values pooling using a weighted Z-test is based on the observation that the
Z-test is symmetric. Here, we provide a justification on this with an example under the
Normal distribution:

Let x1, …, xn ~ N(μ, σ2) and y1, …, yn ~ N(μ, σ2) be the independent and identically
distributed observations from Study 1 and Study 2, respectively. For simplicity, we assume
equal weighting and σ2 = 1 is known.

To test H0 : μ = 0 vs H1 : μ ≠ 0, under the scenario of complete data, i.e., by combining

Study 1 and Study 2, the two-sided p-value is  from the
Z-test. Now, we will show how pooling individual one-sided p-values from Study 1 and
Study 2 will yield the two-sided p-value.

Let  and  be the one-sided p-values for testing H0 : μ = 0 vs H1 : μ > 0. Then

 and . By the proposed weighted p-value

pooling approach, and . Thus

the one-sided pooled p-value is .
Similarly, for testing H0 : μ = 0 vs H1 : μ < 0, the one-sided pooled p-value is

. Thus, the two-tailed pooled p-value  is given by

, which is equal to p
above. Equivalently,
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Figure 1.
Average rc of the different methods under the homoscedastic bivariate Gaussian simulation
setup. Each panel corresponds to a different (n1, n2, n3, ρ) combination. The plotting
symbols (from left to right) correspond to ○:modified t-statistic, Δ:corrected Z-test, +:MLE
based test of Ekbohm [5], ×:MLE based test of Lin and Stivers [4], ◇:paired t-test on the n1
matched samples only, ▽:two-sample t-test on n1 + n2 and n1 + n3 observations under the
homoscedasticity assumption, ⊠:two-sample t-test on n1 + n2 and n1 + n3 observations
under the heteroscedasticity assumption, ✳:weighted Z-test using square root of sample
sizes weighting under the homoscedasticity assumption, :weighted Z-test using inverse of
estimated standard error weighting under the homoscedasticity assumption, ⊕:weighted Z-
test using square root of sample sizes weighting under the heteroscedasticity assumption,
✡:weighted Z-test using inverse of estimated standard error weighting under the
heteroscedasticity assumption. The estimated standard errors of average rc are in the order of
< 10−3.
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Figure 2.
Average rc of the different methods under the heteroscedastic bivariate Gaussian simulation
setup. Each panel corresponds to a different (n1, n2, n3, ρ) combination. The plotting
symbols (from left to right) correspond to ○:modified t-statistic, Δ:corrected Z-test, +:MLE
based test of Ekbohm [5], ×:MLE based test of Lin and Stivers [4], ◇:paired t-test on the n1
matched samples only, ▽:two-sample t-test on n1 + n2 and n1 + n3 observations under the
homoscedasticity assumption, ⊠:two-sample t-test on n1 + n2 and n1 + n3 observations
under the heteroscedasticity assumption, ✳:weighted Z-test using square root of sample
sizes weighting under the homoscedasticity assumption, :weighted Z-test using inverse of
estimated standard error weighting under the homoscedasticity assumption, ⊕:weighted Z-
test using square root of sample sizes weighting under the heteroscedasticity assumption,
✡:weighted Z-test using inverse of estimated standard error weighting under the
heteroscedasticity assumption. The estimated standard errors of average rc are in the order of
< 10−3.
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Figure 3.
Average FDR (top row), FNR (middle row) and ROC (bottom row) of the different methods
under the homoscedastic bivariate Gaussian simulation setup. Dotted horizontal lines in the
top row correspond to the nominal FDR level of 0.1. Each panel corresponds to a different
(n1, n2, n3) combination. The plotting symbols (from left to right) correspond to ●:oracle
test, ○:modified t-statistic, Δ:corrected Z-test, +:MLE based test of Ekbohm [5], ×:MLE
based test of Lin and Stivers [4], ◇:paired t-test on the n1 matched samples only, ▽:two-
sample t-test on n1 + n2 and n1 + n3 observations under the homoscedasticity assumption,
⊠:two-sample t-test on n1 + n2 and n1 + n3 observations under the heteroscedasticity
assumption, ✳:weighted Z-test using square root of sample sizes weighting under the
homoscedasticity assumption, :weighted Z-test using inverse of estimated standard error
weighting under the homoscedasticity assumption, ⊕:weighted Z-test using square root of
sample sizes weighting under the heteroscedasticity assumption, ✡:weighted Z-test using
inverse of estimated standard error weighting under the heteroscedasticity assumption. The
estimated standard errors of all the statistical measurements (FDR, FNR, ROC) are in the
order of < 10−3.
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Figure 4.
Average FDR (top row), FNR (middle row) and ROC (bottom row) of the different methods
under the heteroscedastic bivariate Gaussian simulation setup. Dotted horizontal lines in the
top row correspond to the nominal FDR level of 0.1. Each panel corresponds to a different
(n1, n2, n3) combination. The plotting symbols (from left to right) correspond to ●:oracle
test, ○ :modified t-statistic, Δ:corrected Z-test, +:MLE based test of Ekbohm [5], ×:MLE
based test of Lin and Stivers [4], ◇:paired t-test on the n1 matched samples only, ▽:two-
sample t-test on n1 + n2 and n1 + n3 observations under the homoscedasticity assumption,
⊠:two-sample t-test on n1 + n2 and n1 + n3 observations under the heteroscedasticity
assumption, ✳:weighted Z-test using square root of sample sizes weighting under the
homoscedasticity assumption, :weighted Z-test using inverse of estimated standard error
weighting under the homoscedasticity assumption, ⊕:weighted Z-test using square root of
sample sizes weighting under the heteroscedasticity assumption, ✡:weighted Z-test using
inverse of estimated standard error weighting under the heteroscedasticity assumption. The
estimated standard errors of all the statistical measurements (FDR, FNR, ROC) are in the
order of < 10−3.
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Figure 5.
Average rc of the different methods under the bivariate Gamma simulation setup. Each panel
corresponds to a different (n1, n2, n3, ρ) combination. The plotting symbols (from left to
right) correspond to ○:modified t-statistic, Δ:corrected Z-test, +:MLE based test of Ekbohm
[5], ×:MLE based test of Lin and Stivers [4], ◇:Wilcoxon signed-rank test on the n1
matched samples only, ▽:Mann-Whitney test on n1 + n2 and n1 + n3 observations under the
homoscedasticity assumption, ⊠:Mann-Whitney test on n1 + n2 and n1 + n3 observations
under the heteroscedasticity assumption, ✳:weighted Z-test using square root of sample
sizes weighting under the homoscedasticity assumption, :weighted Z-test using inverse of
estimated standard error weighting under the homoscedasticity assumption, ⊕:weighted Z-
test using square root of sample sizes weighting under the heteroscedasticity assumption,
✡:weighted Z-test using inverse of estimated standard error weighting under the
heteroscedasticity assumption. Note that the results of the Mann-Whitney test and the
weighted Z-test using square root of sample sizes weighting under heteroscedasticity are
identical to their respective results under homoscedasticity (since the underlying assumption
of the Mann-Whitney test is homoscedasticity). We keep these results in the plot for
consistency and ease of comparison with earlier figures. The estimated standard errors of
average rc are in the order of < 10−3.
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Figure 6.
Average FDR (top row), FNR (middle row) and ROC (bottom row) of the different methods
under the bivariate Gamma simulation setup. Dotted horizontal lines in the top row
correspond to the nominal FDR level of 0.1. Each panel corresponds to a different (n1, n2,
n3) combination. The plotting symbols (from left to right) correspond to ●:oracle test,
○:modified t-statistic, Δ:corrected Z-test, +:MLE based test of Ekbohm [5], ×:MLE based
test of Lin and Stivers [4], ◇:Wilcoxon signed-rank test on the n1 matched samples only,
▽:Mann-Whitney test on n1 + n2 and n1 + n3 observations under the homoscedasticity
assumption, ⊠:Mann-Whitney test on n1 + n2 and n1 + n3 observations under the
heteroscedasticity assumption, ✳:weighted Z-test using square root of sample sizes
weighting under the homoscedasticity assumption, :weighted Z-test using inverse of
estimated standard error weighting under the homoscedasticity assumption, ⊕:weighted Z-
test using square root of sample sizes weighting under the heteroscedasticity assumption,
✡:weighted Z-test using inverse of estimated standard error weighting under the
heteroscedasticity assumption. Note that the results of the Mann-Whitney test and the
weighted Z-test using square root of sample sizes weighting under heteroscedasticity are
identical to their respective results under homoscedasticity (since the underlying assumption
of the Mann-Whitney test is homoscedasticity). We keep these results in the plot for
consistency and ease of comparison with earlier figures. The estimated standard errors of all
the statistical measurements (FDR, FNR, ROC) are in the order of < 10−3.
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