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SUMMARY

We propose a Bayesian adaptive two-stage design for the efficient estimation of the maximum
dose or the minimum effective dose in a dose-finding trial. The new design allocates subjects in
stage two according to the posterior distribution of the target dose location. Simulations show that
the proposed two-stage design is superior to equal allocation and to a two-stage strategy where
only one dose is left in the second stage.
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1. INTRODUCTION

The objective of a non-oncology Phase 2 trial is to select a dose or a small subset of
promising doses that are further investigated in a Phase 3 trial. Several Phase 2 trials are
usually conducted, including Phase 2A and Phase 2B trials. The primary endpoint of a Phase
2A trial is an efficacy endpoint often measured by a continuous biomarker. A typical Phase
2B trial is larger than a Phase 2A trial. It enrolls a few hundred patients, investigates several
doses, and the treatment time is commonly longer than in a Phase 2A trial. Adverse events
monitored in a Phase 2 trial comprise a secondary endpoint. Phase 2A and Phase 2B trials
can have various objectives such as finding the minimum effective dose or finding a dose
with the best adverse event — efficacy trade off. The minimum effective dose (MED) is the
smallest dose with a discernible useful effect (ICH E4 Guideline, 1994) [1]. The MED can
be defined as the dose where the mean efficacy outcome is equal to a certain target, with the
placebo used as a reference. Mean efficacy is usually assumed to be non-decreasing with
dose. Both efficacy and safety endpoints are often taken into consideration when selecting a
Phase 3 dose, as increasing the dose can result in both higher efficacy and increased adverse
event rates. A common approach is to quantify efficacy and adverse event rate trade-off
through a utility function. Such a function incorporates both efficacy and safety into a
measure of overall clinical “utility” [2-4]. Utility is often defined as a linear combination of
the efficacy measure and adverse event rates, with no or little negative weight given to
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moderate adverse events, and very heavy negative weight given to severe adverse events.
Utility function typically has an “umbrella” or “inverse U” shape, and the objective of a trial
is to maximize overall clinical “utility” of the drug. We will refer to the dose that maximizes
the utility function as the optimal dose. When unrelated treatments are studied, no order is
assumed among mean responses and the goal is simply to find the treatment with the
maximum mean response. An additional objective in Phase 2 can be to test efficacy and
adverse event rates at the estimated MED or the optimal dose against placebo and/or an
active control. Therefore a recommended assignment strategy for a Phase 2 study will
provide good quality of estimation of the target dose and increased sample size at the
estimated target dose to yield better power of treatment comparisons.

A number of fully sequential adaptive designs have been proposed for dose-finding Phase 2
trials in non-oncology setting (Berry et al. [3]; Smith et al. [5]; Ivanova et al. [6]; Ivanova et
al. [4]). The logistics of implementing a fully sequential dose finding study can be daunting.
On the other hand, a parallel group design with equal allocation to all doses is the most
common design in Phase 2 non-oncology trials. A two-stage design is a reasonable
compromise between multistage and single-stage approaches. Miller et al. [7] investigated a
two-stage strategy for a dose-ranging study that is optimal across several parametric models.
They concluded that the proposed two-stage strategy offers minor benefit compared to a
single-stage design in terms of the efficiency of estimation of the target dose. Dragalin et al.
[8] investigated optimal two-stage designs for two correlated binary endpoints that follow a
bivariate probit model and concluded that two-stage strategy is superior to equal allocation.

In this paper, we propose a Bayesian two-stage design for dose-finding Phase 2 non-
oncology trials under the following common set-ups: 1) estimating the MED under the
assumption of non-decreasing dose-response curve, 2) estimating the MED under isotonic
matrix order, a set-up arising when several different administration schedules are
investigated, 3) estimating the dose with the highest response, 4) estimating the dose with
the highest response under the umbrella order assumption.

2. THE MODEL

Let {d4,...,dk} be the set of ordered dose levels selected for a trial with d; denoting placebo.
The methodology we propose can be used with continuous or binary outcomes. If treatment
response is normally distributed, ignoring the monotonicity, a conjugate prior density
(Gelman et al. [9], p. 78) can be specified as

/,L<7‘|O'2NN(,LL()]', 0'2/160]-),3':1, 2,..., K, anda2~IG(v0, 08),
where 1G denotes inverse gamma distribution. Let n; be the number of subjects assigned to

dj, N=ng +...+ ng. Subjects’ response at d;, yj, j = 1, 2,..., K'is a vector of nj i.i.d. N(y;, 02
random variables. The posterior of p = (1, ... , i)’ conditional on o2 and y is

Hj|0'27 yNN(AI/J//)a]:lv 23 cee ’Ka and02|yNIG(‘/ns Urz)’ 1)

where M; = (KojHoj + N7/ (Koj + 1), Vj = 0?2 I(Koj + 1), Va = Vo + N/2, and
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with (j71,..., k)’ denoting the unrestricted maximum likelihood estimates, and s? denoting
the empirical variance of y;.

If treatment response is binary (yes/no) with mean response vector g = (U, ... , Uk)’,
subjects’ response at d;, yj, j = 1, 2,..., Kis a vector of nj i.i.d. Bernoulli(y) random
variables. Responses at d; can be summarized as my =yj; + ... + Yinj- Assuming Beta(a,p)
prioron lj, j =1, 2,..., K, the posterior distribution of ; conditional on yj is

pjlyj~Beta(a+my, f+n; —m;), j=1,2, K.

We follow the isotonic transformation approach of Dunson and Neelon [10] and Gunn and
Dunson [11] and map unconstrained mean vector p from R — € to obtain the posterior
distribution for the restricted means. Here 2 C RK is defined by a set of inequalities on the
elements of Y. Since the posterior distribution (1) of unconstrained parameter vector p
follows a simple conjugate form, we can easily obtain the draws via Gibbs sampling
algorithm, and transform draws to the constrained draws from the posterior density for the
constrained parameter vector, u*, using the isotonic transformation approach. In the
following sections, we consider three types of constraints that define Q2: non-decreasing,
umbrella and matrix order.

3. TWO-STAGE DESIGN TO FIND THE MINUMUM EFFECTIVE DOSE
3.1 Estimating the MED

In this section dose-response is assumed to be non-decreasing with dose, p; < ... < pk, and
the goal is to find the minimum effective dose, MED, defined as the dose with the mean
response of iy +m, where n > 0 is the minimum clinically important difference specified
before the trial. Under the assumption of non-decreasing dose-response | < ... < [k, in non-
Bayesian set-up, the restricted maximum likelihood estimates for components of y,

pr=(ai, ..., %), can be obtained from the unrestricted maximum likelihood estimates,
1, - W' [12] as:

t
Z npYp
A% . h=s
;=minmax | ———— 2
lu'] tEUj SEL7' t ’ ( )
' >N
h=s

forj=1,2,..., K. HereL; = {1,...,j} and U; = {j,...,K}. Transformation (2) is a least-squares
projection form RK to the restricted space €. In the Bayesian setting, following [10] we
project draws from the unconstrained posterior density (1) onto © using a minimal distance
mapping. We then work with transformed draws.
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3.2 Two stage design

The two-stage strategy we propose is described below. Let N; and N, be the total sample
sizes in two stages respectively. The issue of the optimal split of the total sample size, N; +
N, between the two stages is considered in Section 6.

Step 1. In stage 1, assign N;/K subjects to each dose.

Step 2. Update the prior using stage 1 data to obtain unconstrained posterior density of L.
Transform each of D draws from the unconstrained posterior density of p to follow non-
decreasing order as described in Section 3.1. For each draw, the location of the MED is
determined as the dose with the value closest to i3 + n. These locations are summarized as
the posterior distribution for the location of the MED T = (my,...,7k).

Step 3. Let N, be the number of subjects available for stage 2 and Wm:j:%lf?fl((”i). In stage
2, 7 /(1-my + )N, of subjects are assigned to dose dj, j = 2,..., Kand mty /(1-my + 1) N2
subjects are assigned to placebo. That is, subjects are allocated proportionally to the
posterior of the MED location except for placebo, where the number of subjects is set equal
to the number allocated to the most likely target dose.

Step 4. After stage 2, the data from both stages are combined. The estimated MED is the
dose d;, j = 2,...,K, such that the posterior mean of |, — |y is the closest to n.

3.3 Comparing the MED with placebo

It is often of interest to compare the target dose with placebo and/or an active control. This
comparison should account for both the multiplicity of treatments in stage 2 and the
selection processes (i.e. interim analysis). The classical Dunnett’s test adjusts for the original
number of hypotheses but does not take into account selection process. Our simulations
show that when used with our two-stage design, the Dunnett’s test is conservative in terms
of controlling of the family-wise type I error rate for comparing the estimated MED to
placebo. These conclusions are similar to those in Koenig et al. [13]. Another approach is to
use a combination test with the weighted inverse normal combination function applied
together with the closed testing principle [14]. In the combination test, t-test p-values are
calculated for each dose and each stage. The closed testing principle with Simes’ test of
intersection hypotheses is then used within each stage. The overall p-value for each dose is
calculated by applying a weighted inverse normal combination function to the two adjusted
p-values, pand q,

C(p,q)=1— [ Vwd '(1-p)+vVI—wd "(1-q).

. Here w, w =0, is a pre-defined weight, and & is the cumulative distribution function of the
standard normal distribution. The adaptive combination test performs well when one
treatment comparison is made in stage 2. However, due to the closed testing principle, the
adaptive combination test becomes more conservative if more arms are selected after the
first stage. Because our proposed two-stage design can have any number of treatment arms
in stage 2, both testing procedures will be conservative. Instead, we propose to simulate the
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distribution of the Dunnett’s p-values under the null hypothesis following the proposed two-
stage design, then the critical value for, say, a one-sided 0.025 level test can be obtained as
0.025 percentile of the Dunnett’s p-values distribution. The critical value might depend on
the number of doses K, as well as the variance of the outcome. Our simulations show that
the critical value increases as the variance of outcome increases. Therefore, computing
critical value using the variance value that is equal to or lower than the true variance will
yield a conservative choice that preserves type | error rate. Such a strategy will be more
powerful, even for very conservative choices of the guesstimate, compared to the Dunnett’s
test that always preserves the type | error rate.

4. TWO-STAGE DESIGN TO FIND THE MED WHEN TWO ADMINISTRATION
SCHEDULES ARE INVESTIGATED

Several administration schedules can be studied in a phase 2 trial. Often schedules can be
ordered based on intensity, for example, twice-a-day administration is more intense than
once a day, with twice-a-day yielding higher or same mean response compared to once-a-
day. This leads to two-dimensional monotonicity assumption: 1) the mean response is non-
decreasing with dose given the schedule, and 2) the mean response is non-decreasing with
schedule given the dose. Let [q1,..., Hik be the vector of mean responses for once-a-day
schedule and 1, ..., Hok for twice a day. We have [q1 < ... < Hik, M21 < ... < Hok, and g <
Woi forany i = 2,..., K. Since the first dose is placebo, we additionally have p1q = 1. This
order is often referred to as matrix order [15]. The maximum likelihood estimates under
matrix order restriction, ", can be computed using the Dykstra et al. algorithm [15] that can
be found in the Appendix.

The goal of the trial with two administration schedules can be to estimate one MED or to
estimate two MEDs, one for each administration schedule. The two-stage design we propose
will work with either goal. The two-stage design is similar to the one in Section 3. In the
final analysis, depending on the objective, either one MED or two MEDS, one for each
administration schedule are selected. When comparing the estimated MED with placebo as
in Section 3, we generated the critical value from the distribution of Dunnett’s p-values
obtained under the null hypothesis. As in the case of a single administration schedule, the
critical value depends on the number of doses as well as on o2.

5. TWO-STAGE DESIGN TO FIND THE OPTIMAL DOSE

In this section, we consider a problem of finding the maximum of a utility function. We
assume the umbrella order Py < ... € Pp-1 £ Uh 2 Uh1 = --- Uk, Where the location of the
peak, h, is unknown. First, assuming a known peak location k, the restricted estimates can be
obtained as follows:

¢
hZ npY,
,u;k:minmax fi . @)

k k
teUk sEL]. Z n,
h=s
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forj=1,2,..., K. Here UfandL? denote subsets of {1, ... , K} such that the ordering pj’ < 1

is known for all j' € Lf and the ordering s = y; is known for all j e U]’-“. To allow for a
peak at an unknown location, k, we choose p* by minimizing the distance across different
choices of peak:

*_ *k xk !
wi=, in {(p D) W -w') @

where ¥, = diag(Vy,...,Vk).

As in Gunn and Dunson [11], we transform the unrestricted draws using formulae (3) and
(4) and then consider the draws of p* to be draws from a Bayesian posterior.

The two-stage design for estimating the optimal dose is as follows.
Step 1. In stage 1, assign N1/K subjects to each dose.

Step 2. Update the prior using stage 1 data to obtain unconstrained posterior density of L.
Transform each of D draws from the unconstrained posterior density of u to follow umbrella
order to obtain the posterior distribution for the maximum of the umbrella 7 = (mq,...,mK).

Step 3. Let N, be the number of subjects available for stage 2 an (”J) In stage
2, 7 /(1= my + TN, of subjects are assigned to dose dj, j = 2,..., K and nm /(l 1 + Tm)N>
subjects are assigned to placebo. That is, subjects are allocated proportional to the posterior
of the optimal dose location except for placebo, where the number of subjects is set equal to
the number allocated to the most likely target dose.

d Tm= maX
Jj=

Step 4. The optimal dose is estimated from combined stage 1 and 2 data, as the mode of the
posterior distribution for the optimal dose location.

Methods similar to that in Section 3.3 are used to compare the estimated optimal dose with
placebo. The critical value for the test is obtained as 0.025 percentile of the distribution of
Dunnett’s p-values under the null following a two-stage design to estimate the optimal dose.
Simulations show that the critical value depends on the number of doses K, however, unlike
the MED case, it does not depend on unknown variance o2.

If no order among treatment means is assumed, the two-stage design described above can be
used except the posterior distribution for the maximum mean w = (y,...,7K) is obtained
from untransformed rather than transformed draws. That is, allocation to a dose is
proportional to the posterior probability of the dose having the highest response. A similar
approach was used to randomize patients continuously in a dose-finding trial [16], and stems
from the work of Thompson [17].

6. SIMULATION STUDY

We conducted a simulation study to compare the performance of the proposed two-stage
design with a two-stage design where only one treatment arm is selected for the second
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stage, and with a single stage design with equal allocation. In both of the comparator
designs, we select the mode of the posterior distribution of the target dose location as the
dose investigated in stage 2 and the estimated target dose after the trial. In the select-one-
dose two-stage design where a single arm is carried in stage 2, the estimation is based on
stage 1 data; in a single stage design, the estimations is based on all data. Results are based
on 10000 simulation runs.

In simulations with a normally distributed outcome, the total number of subjects in a trial
was 180 to estimate the MED, 252 to estimate the MED with two administration schedules
and 100 to estimate the optimal dose. This sample sizes were selected via simulations to
yield at least 80% power for target dose — placebo comparison for a set of plausible
scenarios. Scenarios 1-5 in Table | were used for the MED simulations and scenarios 6-10
for the optimal dose simulations. All dose-response shapes are from [18]. Table 11 displays
scenarios with two administration schedules. The dose-response curves are from [18] with
doses (0.05, 0.15, 0.30) and (0.40, 0.70, 1.0) for scenario 1, and doses (0.05, 0.45, 0.85) and
(0.30, 0.70, 1.0) for scenario 2. For a scenario with mean vector [ outcomes at d; follow a
normal distribution N(y;, 02) with ¢ = 0.65. The conjugate prior for 1 follows the
conditional distribution ;| 02 = N(ugj, 0%/kgj), j = 1, 2,...,K, and o2 ~ 1G(ag, bg), with g =
0,02=1, koj = 0.001, and ag = by = 0.001/2. We obtain the draws from the posterior density
(1) via Gibbs sampling algorithm, and transform draws to the constrained draws from the
posterior density of the constrained parameter, i, as described in Section 3.1, 4 or 5. The
above process is repeated 1500 times discarding the first 500 iterations as a burn-in. For
testing against placebo, we used the combination test with w = 0.5 with Simes’ method for
the two-stage design with a single arm carried in stage 2. We used Dunnett’s test in a single
stage design.

First, we investigated what is the optimal way to split the total sample size between the two
stages. The best proportion for the optimal dose problem was selected based on average
power for placebo — target dose comparison. Figure 1 presents power averaged over
corresponding scenarios for the three set-ups. The probability of a correct selection follows a
similar pattern and similar results were observed for other values of 2. Allocating 0.58 of
the sample size in stage 1 gives the best average power when the MED is estimated under
non-decreasing or matrix order, while allocating 0.42 of the sample is the best to estimate
the optimal dose. In the simulation study, we used proportion 0.5 in all set-ups allocating
equal number of patients in stage 1 and stage 2.

Table 111 reports simulation results for the MED estimation, including the probability of
selecting each dose as the target dose and the probability of correctly rejecting the null
hypothesis of equality of placebo mean response with the estimated MED. Adaptive design
yields the same probability of correct selection compared to the equal allocation. However,
it assigns more subjects to the target dose on average compared to equal allocation which
leads to much better power. The number of subjects assigned to the estimated MED is equal
to 36 for equal allocation, compared to the median number of 46 for the adaptive two-stage
strategy with 36 and 52 being the 25th and 75th percentiles. The new adaptive strategy
yields much higher probability of correctly selecting the MED and higher power for
comparing with placebo than the two-stage strategy where one dose is left in stage 2. The
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critical value for the adaptive two-stage design was obtained by simulating 40,000 trials
under the null hypothesis using true o2 = 0.65. Though the critical value depends on o2, the
critical values obtained for o2 in interval [0.4, 0.9] were almost the same as for o2 = 0.65.
Since the critical value increases as variance increases, our recommendation is to use a low
bound as an estimate for the variance to obtain the critical value.

We also compared the new two-stage strategy to estimate the MED with the multi-stage t-
statistic design from [6]. A total 180 subjects were assigned in 20 cohorts of size 9. In the
first four cohorts, 5 subjects in each cohort were assigned to placebo to provide a good
estimate of placebo response early in the trial. After that, 3 subjects in each cohort received
placebo. Non-placebo assignments throughout the trial were determined according to design
in [6]. The total number of subjects assigned to placebo was 68 subjects. This multi-stage
strategy yielded slightly better probability of selecting the correct MED 0.71, 0.73, 0.47,
0.78 and 0.81 for scenarios 1-5 correspondingly, compared to 0.67, 0.67, 0.47, 0.79 and
0.76 for the Bayesian two-stage design. The number of subjects assigned to the estimated
MED was significantly higher: median (25th; 75th percentiles) were 72 (52; 88) for the t-
statistic design compared to 46 (36; 52) for the two-stage strategy, yielding much higher
power of the MED - placebo comparison.

Table IV shows simulation results for selecting the MED in case of two administration
schedules. We simulated trials where the goal was to identify one MED. The adaptive
strategy yields better estimation and significantly larger power compared to the other two
designs. The number of subjects assigned to the estimated target dose is 36 for equal
allocation, compared to the median number of 47 for the adaptive two-stage strategy with 37
and 56 being the 25the and 75th percentiles. Comparing Tables 11 and 1V we conclude that
the more assumptions are utilized, the more benefit the adaptive two-stage strategy offers
compared to a single-stage design.

Table V displays results for the optimal dose estimation when assuming an umbrella order.
Our conclusions are very similar to the ones for the MED, except this time both two-stage
strategies yield much higher power than equal allocation. The number of subjects assigned
to the estimated optimal dose is 20 for equal allocation, compared to the median number of
29 for the adaptive two-stage strategy with 23 and 32 being the 25th and 75th percentiles.
We repeated simulations in case no order is assumed among the mean responses. The results
for the scenarios and sample size used in the simulation study are very similar, with
umbrella estimation yielding slightly higher power for some scenarios. Our other
simulations show that utilizing the umbrella assumption is more beneficial when the
standard error of the estimates is large or sample size is small.

We compared the two-stage strategy to estimate the optimal dose with the multistage design
from [4]. As recommended in [4], we assigned 40% of the total sample size of 100 in stage 1
allocating 40 subjects equally among doses. Subsequently, subjects were assigned in cohorts
of 6. One or two subjects in each cohort received placebo, and the rest received the active
treatment. The number of placebo assignments in each cohort was varied in order to keep
the total number of placebo assignments approximately equal to the number of assignments
at the best dose. This was done to ensure good power of optimal dose — placebo comparison

Sat Med. Author manuscript; available in PMC 2014 July 10.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

lvanova et al.

Page 9

at the end of the trial. Mean responses were estimated after each step assuming umbrella
order. The multi-stage strategy did not improve the likelihood of selecting the optimal dose:
the probabilities of correctly selecting the optimal dose were 0.53, 0.82, 0.96, 0.86 and 0.84
for scenarios 6-10 compared to 0.51, 0.80, 0.95, 0.85 and 0.83 in Bayesian two-stage
design. The number of subjects assigned to the estimated optimal dose was also similar:
median (25th; 75th percentiles) were 29 (28; 30) for the multi-stage design compared to 29
(23; 32) for the two-stage strategy. Multi-stage design is more efficient compared to the two-
stage design when more doses are studied, larger sample size is used or the variability of the
outcome, o2, is smaller.

For binary outcomes, we present simulation results for MED estimation (Table VI). The
total sample size was 90 subjects per trial. Beta prior with parameters a = = 0.01 was used.
We used Fisher’s exact test to test the MED against placebo at the end of the trial.
Simulations show that the type | error rate was preserved for all the designs with the
empirical type | error rate being the highest for equal allocation and the smallest for the
select-one-dose two-stage design. Therefore we did not use any adjustments for multiple
comparisons. The conclusions are very similar to the ones for trials with continuous
outcome: the new adaptive design has significantly better power than equal allocation and
allows for better estimation of the target dose compared to the select one dose two-stage
design. The select-one-dose two-stage design often has similar or even better power than the
two-stage adaptive design for MED estimation. This is in part due to the fact that a dose
higher than the MED is selected after stage 1. Comparing power values for the MED is only
meaningful when designs yield comparable percentages of selecting each dose as the MED.
Conclusions regarding the optimal dose estimation are very similar to those for continuous
outcome (simulation results are available from the authors). As in the case of continuous
outcome, methods that utilize umbrella assumption performed similar with minor
improvement in quality of estimation of the optimal dose. Advantage of using umbrella
assumption is more pronounced when the optimal dose is estimated based on less data as in
the select-one-dose two-stage design where the dose is estimated based on stage 1 data only.

We investigated three-stage strategies similar to the proposed Bayesian two-stage design.
Our conclusion was that adding a stage to a two-stage design does not improve power and
selection probability, for the scenarios and sample sizes considered, enough to justify
additional complexity.

7. DISCUSSION

An adaptive two-stage design is a reasonable alternative to equal allocation or multistage
strategies. Compared to a single stage design with equal allocation, it yields larger sample
size at the estimated target dose and hence provides better power for treatment comparison.
The logistics of a two-stage trial are more complex compared to a single stage design but
easier than a multi-stage approach. The two-stage approach allows for an interim analysis
after stage 1 to stop the trial for futility or efficacy.

Often, there is a set of covariates believed to be associated with response. When the MED is
defined using placebo as reference and the mean response is modeled with identity link
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function using a linear model with covariates, the target doses for different levels of
covariate coincide. Therefore the proposed two-stage adaptive strategy can be easily
extended to the case when adjustment with respect to covariate is needed. Another possible
extension is finding the optimal dose when several administration schedules are considered.
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The algorithm for computing maximum likelihood estimates under matrix order [15]

Step 1. Let ﬂ(l)z(ﬂg)) denote the isotonic regression of p over rows, i.e. p(l) minimizes
Zizlzjzl(l%j = fij)"nij+(p1o = f10) 710 subject to ;g < flj<fyforj=1,.., K Let

R(l)z(rg;))z(ﬂg) — pij) be the first set of ‘row increments’.

Step 2. Let ﬂ(l):(ﬁ%)) denote the isotonic regression over columns of of p + R, i.e. p(l)

2 K 1 2 1 2
minimizes Zizlzj:l(#iﬁj‘gj) ~ fij) mig+(po+riy) — fio) mao subject to fig < fiy < ...
<fix fori=1,2. Call C) = u@) - (u + RD) the first set of ‘column increments’. Note that
p@® = p+ RO + c@

Step 3. At the beginning of the mth cycle, u™ is obtained by isotonizing + p + C(™1) over
rows. The mth set of row increments is defined by R™ = p(m — (u + C(™ 1), so that u™ =
+ C(m1) + R(M, Next obtain p(M by isotonizing p + RM™ over columns. The mth set of
column increments is given by C(M = M — (1 + RMM) or, equivalently, p(™ =y + RM +
cm.

Sat Med. Author manuscript; available in PMC 2014 July 10.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

lvanova et al.

Power

0.90

0.85

0.80

0.75

Page 12

...........

0.2 04 0.6 0.8 1.0

Proportion Allocated in Stage 1

Figure 1.
Power averaged over all scenarios plotted against the proportion allocated in stage 1 with

proportion of 1.0 corresponding to a single stage design. Solid line corresponds to the
optimal dose estimation, dashed line to the MED estimation and dotted line to the MED
estimation with two administration schedules.
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Dose-response scenarios. Scenarios 1-5 are to illustrate the MED estimation, scenarios 6—10 the optimal dose

estimation. The MED and the optimal dose are shown in bold. Placebo is dose one.

Scenario  Model Mean Response
1 Emax (0.20,0.34,0.68,0.76,0.78)
2 linear in log-dose  (0.20,0.27,0.59,0.74,0.80)
3 Linear (0.20,0.23,0.47,0.68,0.80)
4 Truncated-logistic ~ (0.20,0.20,0.22,0.54,0.80)
5 Logistic (0.20,0.21,0.58,0.79,0.80)
6 Quadratic (0.20,0.60,0.79,0.75,0.50)
7 Double-logistic (0.20,0.37,0.79,0.59,0.50)
8 Exponential (0.20,0.22,0.29,0.43,0.80)
9 Step 1 (0.20,0.50,0.50,0.80,0.50)
10 Step 2 (0.20,0.40,0.80,0.60,0.40)
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Scenarios for the two administration schedules. The MEDs are in bold. Placebo is dose

Table |l

Scenario  Model Group Mean Response
1 Linear A (0.2,0.23,0.29,0.38)
B (0.2,0.44,0.62,0.80)
2 Logistic A (0.2,0.21,0.58,0.80)
B (0.2,0.34,0.78,0.80)
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