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Abstract
In the analysis of survival data, there are often competing events that preclude an event of interest
from occurring. Regression analysis with competing risks is typically undertaken using a cause-
specific proportional hazards model. However, modern alternative methods exist for the analysis
of the subdistribution hazard with a corresponding subdistribution proportional hazards model. In
this paper, we introduce a flexible parametric mixture model as a unifying method to obtain
estimates of the cause-specific and subdistribution hazards and hazard ratio functions. We describe
how these estimates can be summarized over time to give a single number that is comparable to
the hazard ratio that is obtained from a corresponding cause-specific or subdistribution
proportional hazards model. An application to the Women’s Interagency HIV Study is provided to
investigate injection drug use and the time to either the initiation of effective antiretroviral
therapy, or clinical disease progression as a competing event.
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1. Introduction
With survival data, a competing risk situation occurs when there exists an event which
precludes the event of interest from occurring. The canonical example is in the analysis of
specific causes of death. Death due to cancer removes the possibility of the individual
experiencing death due to cardiovascular disease, for example (for reviews of competing
risks, see [1]). The components of survival analysis (e.g. risk sets, hazard functions, and
hazard ratios) and modeling strategies are similar but altered in construction when
competing risks exist [2]. Two semi-parametric methods have become prominent
approaches for competing risk analyses, a cause-specific hazard [3,4] and a subdistribution
hazard approach [6]. The cause-specific hazard approach and accompanying cause-specific
hazards ratio (csHR) was introduced in 1978 [3,4] and only more recently in pioneering
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work by Fine and Gray [6], has the subdistribution approach for estimating the
subdistribution HR (sdHR) been introduced. The sdHR was motivated by the fact that the
cause-specific HR (csHR) may not reflect an association on the cumulative incidence
function (CIF) [6]. Recently Beyersmann, et al. [7] illustrated a case in which the csHR
suggested a significant association, but the sdHR had a non-significant association in the
opposite direction suggesting that the covariate does not affect the CIF. Beyersmann and
Schumacher [8] suggested that it is for this reason that Fine and Gray’s method [6] has been
gaining attention in the medical literature.

An alternative to the semi-parametric methods for modeling data with competing risks is to
use a parametric mixture model. Initially suggested by Cox [11], Larson and Dinse [12]
expanded on the idea by decomposing the CIF into a distribution conditioned on the
outcome and the probability of that outcome. Further extensions were made by Maller and
Zhou [13]. Previous applications of the mixture model have focused almost exclusively on
obtaining an estimate of the CIF. In previous work, the mixture model was suggested as a
unifying approach between the cause-specific and subdistribution proportional hazards
models, but details were not given [2]. The purpose of this paper is to give details on
obtaining the csHR(t) and sdHR(t) functions over follow-up time from a parametric mixture
model that may be summarized into estimates corresponding to their proportional hazards
model counterparts. While we provide an approach to summarize the csHR(t) and sdHR(t)
functions over follow-up from a parametric mixture model, it is recognized that a summary
measure of the hazard ratio may have two shortcomings whether it comes from a parametric
or semi-parametric model [14]. First, if the hazard ratio changes over time, then the
summary association (i.e. average HR(t)) that an observational study will find may be
dependent on the length of follow-up. The second issue is that the HR(t) has a built in
selection bias in that individuals at time t are those remaining at risk for the outcome which
may consist of those who are at less prone to develop the event [14]. Therefore, an
advantage of the proposed parametric mixture model is that either the HR(t) or the summary
HR for either the cause-specific or subdistribution hazards may be presented, whereas the
semi-parametric proportional hazards models must either present the summary HR or be
complicated by time-exposure interactions. In Section 2, we review the semi-parametric
approaches and detail how the parametric mixture model can be used for hazards-ratio
estimation under competing risks. In Section 3, we apply our approach to data from the
Women’s Interagency HIV Study consisting of a subsample of 1,164 women followed over
10 years. Finally in Section 4, we discuss the strengths and limitations of estimating either
the csHR or sdHR from a parametric mixture model.

2. REGRESSION MODELS
Let the observed survival data be represented by (Ti, Ji) for individual i = 1, … , N with p ≥
2 types of failures, where Ti is a non-negative random variable representing time to first
event and Ji takes a value j from the set 1, … , p to indicate the type of failure. For
simplicity, we limit p to the two event situation. As with most survival data, this bivariate
random variable will be incomplete should the observation time end prior to any of the
failure types being observed. Thus let Ji = 0 when no failure of any type is observed over the
period of study and Ti is the individual’s contributed time at risk. This parameterization is
consistent with the two primary representations of competing risk data (e.g. as either the
minimum of latent failure times [15] or as transitions to one of several absorbing states
[17,18]). We assume that the censoring mechanism is non informative. Let the CIF be
defined as  for the jth type of failure and the corresponding
subdensity be defined as . Note that these are improper
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cumulative density function and density function, respectively, and therefore indicated by an
“*”.

2.1. Competing Risk Proportional Hazards Models
Proportional hazards models using either the cause-specific hazard or the subdistribution
hazard have been proposed [3,6]. The cause-specific hazard is defined as [3]:

(1)

where X is a vector of covariates and S(t) is the net survival function such that

 in which h(t) is the net
hazard function for having any of the competing events. This can be used to construct a
cause-specific proportional hazards model [3]:

(2)

where h0j(t) is an arbitrary baseline cause-specific hazard function and βj is the vector of
unknown coe cents for covariates X. As previously stated, a difficulty of the cause-specific
proportional hazards model is that the interpretation of exp(βj) as the hazards ratio does not
necessarily translate into an effect on the cumulative event probabilities since the CIF is a

function of the hazards from all events that is  is dependent on all
events due to the net survival function S(t) [6,2,7]. However, it is important to note that the
hazard ratio is still interpretable as a measure of association in terms of the cause-specific
hazards.

Alternatively, the subdistribution hazard may be used directly to construct a different
proportional hazards model. The subdistribution hazard is defined as [5,6]:

(3)

where  is the subsurvivorship function. The corresponding
proportional hazards model is:

(4)

where λ0j(t) is an arbitrary baseline subdistribution hazard function and φj is the vector of
unknown coefficients for covariates X. The subdistribution hazard ratio, exp(φj), from a
subdistribution proportional hazards model may be directly interpreted as an effect upon the
CIF. It should be noted for the Fine and Gray subdistribution proportional hazards model
that if the subdistribution proportional hazards model is assumed to be proportional for event
1 then assuming a subdistribution proportional hazards model for event 2 is misspecified
[9,10]. Furthermore, the relationship between cause-specific hazards and subdsitribution
hazards implies that if proportionality assumption of one type of hazard is met then the other
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will not be proportional [8]. Therefore as explored elsewhere [7,8,19], βj does not generally
equal φj.

2.2. Parametric Mixture Model
Larson and Dinse [12] describe an alternative competing risks model represented by a
parametric mixture model rather than the semi-parametric proportional hazards model. The
CIF corresponding to the jth type of failure is decomposed as:

with the corresponding subdensity function defined as:

where Xj ⊆ X and Xω ⊆ X. The distribution functions Fj(t) and fj(t) are modeled by an
appropriate distribution of choice. For the situation of two competing events, the mixture
parameter Pr(J = j|Xω) is modeled using a binary data model (e.g. logistic) for the failure
types. These building blocks can be used to construct a likelihood for the ith individual’s
contribution when there are two competing outcomes measured from a common origin such
that:

(5)

where Xi1 and Xi2 are the ith individual’s corresponding set of covariates being modeled for
the events J = 1 and J = 2 respectively; ti is the ith individual’s observed time until the first
of the two outcomes as reflected by the indicator functions:

such that individuals are right censored if δi = θi = 0; πi = Pr(Ji = 1|Xω) are the mixture
probabilities; f1(ti|Xi1) and f2(ti|Xi2) are the probability density functions for the parametric
distribution being used for two competing events and similarly S1(ti|Xi1) and S2(ti|Xi2) are
the corresponding survivor functions. Extensions of (5) to p > 2 is straightforward.

Since , , and the net survivorship function (S(t) = π(S1(t)) + (1 − π)S2(t)) are
determined by the parameter estimates, it is easy to see that the cause-specific hazard

functions  and the subdistribution hazard functions  can also
be determined. These building blocks allow for the estimation of the ratio of cause-specific
hazards, as a function of time t:
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where  is the corresponding subdensity function for the arbitrary baseline hazard
function and S0j(t) is the net survival function for individuals with the covariate values that
correspond to the reference population that defines the baseline arbitrary hazard function.
Similarly the subdistribution hazard ratio curves can be estimated as:

where  and  are the corresponding subdensity function and CIF for the arbitrary
baseline hazard function, respectively.

The likelihood function in (5) can be modified to allow for left truncation (Appendix). This
would allow estimation of the HR(t) while avoiding bias due to late entry into the study or
for incorporating time-varying covarites into the survival models [15]. While it is straight
forward to incorporate left truncation into the cause-specific proportional hazards model, it
is not easily done for the subdistribution proportional hazards model [16]. Additionally
uncertainty in exact timing of the event could be incorporated through interval censoring
(Appendix), which is not easily accounted for in the semi-parametric proportional hazards
models.

To facilitate appropriate inferences, the parametric distributions to be included in the
mixture model need to accurately reflect the data. To estimate f1(ti) and f2(ti) and their
respective survivor functions, we propose using a flexible parametric distribution. The three
parameter generalized gamma distribution GG(β, σ, λ) is one option in which the hazard can
take various shapes including declining, increasing, bathtub shape (decreasing then
increasing), or arc shaped (increasing then decreasing) hazards [20]. In fact, the generalized
gamma distribution can accommodate a whole range of forms including many of the most
commonly used distributions, such as exponential, gamma, log-normal, and Weibull
distributions as special cases [20]. Another broad class of models that could be utilized is the
generalized F family [21]. Maximum likelihood estimation of the parameters for the mixture
model can be performed in SAS using the NLMIXED procedure. This procedure allows for
the computation of general functions of the parameter estimates using the estimate statement
including estimates of the hazard and hazard-ratio functions. Standard errors for these
functions can be determined using standard likelihood inferrence techniques (e.g. Wald-
based standard errors calculated using the delta method). However for some non-linear
models these standard errors may not adequately reflect the true variance and we would
recommend using either the profile likelihood [22] or bootstrap methods [23,24].

2.2.1. Summarizing the HR(t) Curve—The above approach provides an evaluation of
how exposures impact the hazard rates of different competing events over time. In many
settings, it may be desirable to summarize these hazards over follow-up and provide a single
summary estimate comparable to the HR typically obtained from a proportional hazards
model. This is often the case in the medical setting in which clinicians want to quickly
disseminate information regarding the relationship between an exposure and outcome. A
single number is much easier to convey compared to either two hazard functions or a HR
curve in which each is a function of time. The summary HR from a proportional hazards
model where the proportionality assumption is unmet essentially weights the ratio of the
time-dependent hazards at each failure time-point equivalently assuming few or no tied
events [25,26]. Such weighting may not be the most appropriate in summarizing the time-
dependent hazard ratios [26,27,28,29]. Briefly, Kalbfleisch and Prentice [27] introduced a
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summary measure of the hazard ratio when proportionality was not met by allowing the
hazards to be weighted by some survivor function,  for (t > 0) in which
S0(t) and S1(t) are the survivor functions for the two sample problem and α > 0 such that α =
0.5 would be the geometric average of the two survivor functions and α < .5 or α > .5 would
emphasize earlier or later periods, respectively [27]. Additional work in this area has been
done providing potentially other metrics, e.g. weighted by number at risk providing a
Wilcoxon-type estimator [26,28,29]. However, Grambauer et al. have shown that the
subdistribution hazard ratio when mis-specified is still useful as it is the least false parameter
which may be interpreted as the time-averaged effect on the cumulative event probabilities
[10]. Nevertheless, we present here a simple outline in which all points are equivalently
weighted. However, our methods may be appropriately adapted to include such alternative
weights. We outline two methods. The first estimates the hazard curves for an “average”
individual with and without exposure. The ratio of these cuves are then determined at each
of the w unique failure time points.

• “Average” individual approach (Method 1)

1. Create a record with the mean covariate level for each covariate such that the

record has a covariate vector of means .

2. Let w = w1, … , wK correspond to the ordered unique failure times, T such that w1 =
min(T1, … , TN) and wK = max(T1, … , TN).

3. Duplicate the mean covariate record and assign the exposure variable to be
“unexposed” to the original record and the exposure variable as “exposed” for the
duplicate record. Should the exposure of interest be continuous then the difference
between exposed and unexposed values should be 1 unit of scientific interest
centered around the study population mean.

4. Duplicate the pair of records K times giving the kth replicate the wk failure time.

5. Estimate either the cause-specific or subdistribution hazard for each of the 2W
records and obtain HR(t = wk) = g1(t)/g0(t) where g1(t) and g0(t) correspond to the
exposed and unexposed hazard functions, respectively.

6. The mean of these time-specific HRs (e.g. ) corresponds to
the csHR or sdHR obtained from the proportional hazards models depending on
whether g(t) is the cause-specific or subdistribution hazard function, respectively.

7. Bootstrap methods [23,24] may be applied to estimate the uncertainty in this
summary HR.

This approach is easily accomplished in SAS by creating the average unexposed and
exposed records and appending this to the original data file. These additional records can be
excluded from the fitting process by utilizing the replicate statement with a weight variable
to identify the original records from the created records. Additional programming statements
to the NLMIXED procedure are then added to estimate the both the cause-specific and
subdistribution hazards and the predict statement is used to output each of the hazards.

The second method entails generating two hazard curves for each individual (one for the
observed exposure status, and one for the unobserved exposure status).

• Empirically weighted approach (Method 2)

1. Let w = w1, … , wK correspond to the ordered unique failure times, T such that w1 =
min(T1, … , TN) and wK = max(T1, … , TN).
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2. For each of the N individuals, create a duplicate record that matches the original on
all covariates with the exception of the variable of interest. Instead, the duplicate
record is given the unobserved (i.e., opposite) exposure value.

3. For each N pairs of records, replicate the pair K times giving the kth pair of records
the wk failure time. Therefore the final database will have 2 * N * K records.

4. Estimate either the cause-specific or subdistribution hazards at the corresponding
failure time for each of the records by using the estimated model parameters and

the cause-specific hazard function  and subdistribution hazard function

. Thus the HRi(t = w) = g1i(t)/g0i(t) where g1i(t) and g0i(t)
correspond to the exposed and unexposed hazard functions, respectively, for the ith
individual at the w failure time.

5. Then the  corresponds to either the csHR
and sdHR depending on whether g(t) is the cause-specific or subdistribution hazard
function, respectively.

6. Bootstrap methods [23,24] may be applied to estimate the uncertainty in this
summary HR.

3. APPLICATION TO DATA FROM THE WOMEN’S INTERAGENCY HIV
STUDY

We applied these methods to data from the Women’s Interagency HIV Study (henceforth,
the Study) to examine whether women with a history of injection drug use were more or less
likely to have one of two competing events: either initiating highly active antiretroviral
therapy (henceforth, therapy) or the onset of clinical disease progression as defined by the
occurrence of either an AIDS defining illness or death [2]. Briefly, the Study was
established in August of 1993 to comprehensively examine the impact of HIV on women at
six US sites [30]. For this application, we are interested in whether individuals with a history
of injection drug use were less likely to initiate therapy prior to AIDS or death as compared
to those without a history of injection drug use. Prior studies have shown that HIV-infected
individuals with past injection drug use are less likely to initiate therapy [31,32,33,34] and
are more likely to die in the era of effective treatment for HIV [34,35,36]. Yet the
comparison of treatment initiation prior to disease progression (defined by AIDS or death)
has not been well explored in a competing risk framework.

The study sample consisted of 1,164 women that were alive and free of clinical AIDS as of
December 6, 1995, when the first protease inhibitor (Saquinavir mesylate) was approved by
the US Federal Drug Administration. This date marks the first time-point in which
individuals could be placed on a highly active antiretoviral drug regimen. Women were
followed until the first of: initiation of therapy, an AIDS diagnosis, death, or administrative
censoring defined as September 28, 2006. Covariates included history of injection drug use
upon study enrollment, whether an individual was African-American, age on December 6
1995, and CD4 nadir prior to December 6 1995.

The study sample consisted of 439 women with and 725 without a history of injection drug
use. Overall, 679 (58%) women initiated therapy prior to either AIDS or death; 359 (31%)
had the competing event and either died or had an AIDS diagnosis before initiation of
effective therapy. The remaining 11% were censored (5% loss to follow-up, 5%
administratively censored). Reflecting the demographics of HIV in women and in the
cohort, the majority of the study population was African-American (58%) and had a median
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age of 36 (interquartile range 31-41) as of December 6, 1995. A greater proportion of
injection drug users tended to be African-American and of older age (p= 0.017 and p<
0.001, respectively).

The maximum likelihood estimates for the mixture model are shown in Table 1. A
lognormal distribution was used to model initiation of therapy (f1) as a sufficiently small
enough gradient could not be achieved for the shape parameter when modeling a generalized
gamma distribution. However, the shape parameter indicated that the distribution was
tending towards a lognormal distribution which is a limiting case for the generalized gamma
distribution [20,37]. A generalized gamma distribution was used to model the incidence of
AIDS/Death prior to therapy (f2). Under this model, an African-American woman with a
history of injection drug use that is 36 years of age with a CD4 nadir of 349 cells/mm3 has a
probability of 0.46 for ever initiating therapy (πi = e1.0754−0.3222−.8976/(1 +
e1.0754−0.3222−.8976) = 0.46). The CIF estimated from the mixture model as compared to a
non-parametric cumulative incidence function estimator [4] is shown in Figure 1. The non-
parametric cumulative incidence function estimator was weighted with inverse probability
weights for history of injection drug use in order to provide curves adjusted for race, age,
and CD4 nadir on December 6 1995 [38,39] that would be comparable to the adjusted
parametric curves by injection drug use status. Additionally both the cause-specific hazard
and subdistribution hazard curves are shown along with the corresponding hazard ratios.
Given that the generalized gamma distribution for the initiation of therapy tended towards a
lognormal distribution, which was used in the final model, this suggests that a proportional
hazards model might not be appropriate. This is apparent in Figure 1 as the hazard curves
are not uniformly equidistant for both the initiation of therapy and for the subdistribution
hazards estimates for AIDS/Death prior to therapy. For example the sdHR for initiation of
therapy is generally increasing up to 1 year and then subsequently decreasing. However
while the number of events are increasing prior to 1 year as shown by the histogram in
Figure 1e, there are not many events perhaps suggesting that one could discount the initial
increase in sdHR. Neverthless, the subsequent decrease between 1 and 5 years is within the
bulk of when the majority of events are occuring. This suggests that with increased amount
of time from 6 December 1995 when effective therapy first became available, individuals
with a history of injection drug use were even less likely to initiate prior to disease
progression to AIDS or death than those without a history of drug use. Conversely the sdHR
for disease progression (Figure 1f) before therapy initiation shows an increasing sdHR
between 1 and 5 years for those with a history of injection drug use as compared to those
without.

The Cox proportional hazards model (and similarly the subdistribution proportional hazards
model) is often used in research despite potential violation of the proportional hazards
assumption. While the subdistribution proportional hazards model still provides the least
false parameter when mis-specified [19,10], the summary hazard ratios from any
proportional hazards model still has shortcomings such as the dependency on total length of
follow-up and the potential for selection bias [14]. Despite concerns about the
appropriateness of the proportional hazards assumption (global test for cause-specific
proportional hazards assumption, therapy initiation: p< 0.001; AIDS/Death: p=0.29,
subdistribution proportional hazards assumption, therapy initiation: p< 0.001; AIDS/Death:
p< 0.001), we constructed both cause-specific and subdistribution hazard ratios (Table 2).
Both the csHR and sd HR their 95% confidence intervals (obtained from bootstrap methods
with 1000 replicates) were similar between the summarized mixture estimates and
proportional hazards models. To obtain the bootstrap confidence intervals individuals were
resampled all 1164 women with replacement and the model was re-estimated based upon
each sample. The 0.025 and 0.975 quantiles of the HR estimates were then obtained to
provide the confidence intervals. These results show that the parametric mixture model
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allows for the estimation of both the summarized cause-specific and subdistribution HR that
is equivalent to the semi-parametric proportional hazards models. However, an advantage of
the parametric mixture model over the semi-parametric approaches is the ablity to handle
left truncation (subdistribution proportional hazards model [16]) and interval censoring
(both proportional hazards models) easily. Furthermore, both semi-parametric models may
fail to meet the proportional hazards assumption and the assumption cannot hold
simultaneously for both types of proportional hazards models [19,8]. Figure 2 shows the
results in which age is made the time scale for the analysis and therefore requires left
truncation. The model is adjusted for CD4 nadir, race, and time on study. The csHR(t)
and sdHR(t) are not proportional as evident by the non-constant HR over the entire range of
ages. While a standard cause-specific proportional hazards could still be used, the
interpretation would be complicated by the inclusion of time-interactions. Alternatively the
average csHR could be calculated using an appropriate weighting scheme [26,27,28].
However, note that while this may be appropriate for initiation of therapy it appears less
appropriate for progression to AIDS or death as the HR(t) is qualitatively different before
(HR> 1) and after (HR< 1) age 47. This qualitative change in csHR for AIDS/Death such
that history of injection drug use is protective at older ages unlikely to reflect a true
protective effect (figure 2b), but is more likely to be a reduction in the number of susceptible
individuals among those with history of injection drug use at least relative to those without a
history of injection drug use. This illustrates the potential for selection bias in the HR [14].
Indeed the sdHR remains elevated and increasing, indicating that the cumulative probability
for disease progression to AIDS/death prior to therapy initiation remains higher among those
with a history of injection drug use (Figure 2d).

4. DISCUSSION
The cause-specific proportional hazards model for competing risk analysis has been used
since the 1980s [3,4]. Only with the relatively recent introduction of the subdistribution
proportional hazards model by Fine and Gray [6] have regression methods evolved to
estimate a hazard ratio that is directly interpretable with the cumulative incidence function
(which may be estimable with left truncated data in the R package etm [41]). Several recent
papers have discussed the effect of a covariate on either type of hazard may be quite
different [7,8,19]. Our work demonstrates how a unifying parametric mixture model can be
used to estimate both the cause-specific or subdistribution hazard functions and the
corresponding csHR and sdHR. Our example illustrates that the proposed parametric method
may result in similar inferences and 95% confidence intervals. There are several advantages
of the parametric mixture model over the semi-parametric approaches. First the parametric
approach is not limited by the strong proportional hazards assumption. While this can be
overcome by inclusion of time-covariate interactions this can complicate the interpretation.
While incorporation of appropriate weights at each failure time may alleviate some of the
interpretation difficulties in obtaining an average HR [26,27,28,29], this approach may
obscure qualitative differences in the HR(t). Second, the parametric mixture model allows
for left truncation for estimating the sdHR(t), while current semi-parametric methods for
estimating the sdHR(t) cannot handle left truncation. Finally, an advantage of all parametric
methods over semi- and non-parametric approaches is that if an appropriate distribution has
been chosen then parametric methods will be statistically more efficient.

Two methods for summarizing the hazard curves were presented. The “average” individual
approach is convenient in that it is less computationally intensive. However, it can be
counterintuitive to estimate the hazard function the “average covariate values” when
covariates are binary (e.g. sex), substituting the mean value may not be consistent with the
meaning of the data. Therefore, while the averages for each covariate are used, there is no
guarantee that these are attained by any individual. The second empirically weighted
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approach uses the original data as it occurred with the alternative level of exposure. It
overcomes the disadvantages of the average approach but requires more time in the
construction of the estimate, with the replication of each individual to have a set of failure
time points with and without exposure. However should the proportional hazard assumption
be violated, it is preferable to present the hazard functions and HR curves as funtions of time
rather than the summarized estimate. This will then convey information about how the
association between exposure and outcome changes over time similar to methods we have
previously proposed comparing two competing events [40]. The results from the semi-
parametric and mixture model approaches applied to the data from the Women’s
Interagency HIV Study yielded similar results. This is as one would expect given that a
proportional hazards model essentially weights the ratio of the time-dependent hazards at
each failure time-point equivalently and the mixture model was also similarly weighted.
However, besides the advantage of providing the HR(t), the mixture model approach can
easily be adapted to include a more appropriate weighting scheme that would provide a
different summary result than the standard proportional hazards model [26,27,28,29].

The mixture model approach is not the only parametric method for competing risks in the
literature. Jeong and Fine [42,43] provided a method that relies on the Gompertz distribution
to directly parametrize the cumulative incidence function. The Gompertz distribution was
chosen as it is an improper distribution and therefore a natural distribution for modeling the
cumulative incidence function and may or may not provide a better fit than the mixture
model [42]. However, as the authors state, the two-parameter Gompertz distribution only
allows monotone hazard shapes. In addition, the cause-specific hazards are not estimable.

Furthermore, like many survival analysis methods, the mixture model presented assumes

that eventually one of the competing events will occur (i.e. ). This may be a
reasonable assumption for some situations (e.g. where all cause mortality is a competing

event), but this assumption may be inappropriate in other cases in which 
indicating that some individuals are immune to the risks under investigation. In this
situation, Maller and Zhou [13] have extended the mixture model to situations in which
there may be individuals “immune” to the outcomes and may be of interest. Furthermore, a
concern with all parametric methods is whether the chosen distribution is appropriate to
describe the data. The use of a mixture of generalized gamma distributions allows the model
to be flexible and includes some common distributions (such as exponential, log-normal,
and Weibull distributions) as special cases of the generalized gamma family [20].
Additionally, because of the parametric nature of the model one can extrapolate beyond the
point in which there is no additional data. However, one must be cautious in doing so to
avoid over interpreting or over extending the inferences. Neverthless, semi-parametric and
non-parametric methods are not able to do this. Moreover, the mixture model may be less
robust than the semi-parametric proportional hazards model counterparts. This may be the
case in which there are only a small number of the two competing events in which the
addition of a few more of either of the events may change the inferences from the model. Of
course this should not be a problem if there are a substantial number of events.

In conclusion, we have extended the use of a mixture model for competing risks. The
mixture model provides a unifying approach to estimate both the cause-specific and
subdistribution hazard functions as well as a summary estimate of the csHR and sdHR.
Estimates of the latter two are comparable to those obtained from proportional hazards
models based upon either the cause-specific or subdistribution hazards. However, the
mixture model has the advantage of being able to be flexible and provide an estimate the
hazard ratios as a function of time or as a summary measure regardless of whether or not left
truncation or interval censoring is present in the data.
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APPENDIX
As previously stated, the likelihood function in equation (5) can be modified to allow for left
truncation in order to allow estimation of the HR(t) while avoiding bias due to late entry into
the study or for incorporating time-varying covariates into the survival models. We have
discarded the covariate vector, Xi1 and Xi2, from the equations to simplify the notation.

where vi > 0 and vi = 0 for the ith individuals with and without truncated times, respectively.
Therefore such individuals are observed from vi to ti. Additionally the likelihood function
could be further modified to allow for interval censoring which would be difficult to
incorporate in either the cause-specific or subdistribution proportional hazards models.

where t1i < t2i and t1i and t2i indicate the two boundary times of the interval in which the
event Ji = 1 or Ji = 2 occurs, ζi is an indicator function for interval censoring for the Ji = 1
event, and ηi = 1 is an indicator function for identifying individuals who are interval
censored for the J = 2 event within the t1i to t2i interval.
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Figure 1.
The cumulative incidence function (panels a and b), cause-specific hazards (panels c and d,
dotted and dash-dot-dash curves), and subdistribution hazards (panels e and f, dotted and
dash–dot–dash curves) from the multivariate mixture model applied to the HIV data in Table
1 by injection drug use (IDU) status and according to therapy initiation (left column) or
AIDS/death (right column). The CIF for the multivariate mixture model from Table 1 (solid
line) is shown in contrast to the non-parametric inverse probability weighted estimator
(dashed line). In panels c, d, e, and f, the dotted (IDU) and dash–dot–dash (no IDU) curves
correspond to the hazard (right axis), the solid line corresponds to the hazard ratio, HR(t)
(left axis), and the histogram shows the distribution of corresponding column events.
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Figure 2.
The csHR(t) (panels a and b, left axis) and the sdHR(t) (panels c and d, left axis) in which the
time scale was age requiring left truncation in the analysis. The HRs compare those with a
history of injection drug use for the initiation of therapy (left panels) prior to AIDS or death
and for disease progression (right panels) prior to therapy relative to those without history of
injection drug use. Curves are adjusted for nadir CD4, race, and time on study. Histogram
(right axis) corresponds to the distribution of corresponding column events.
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