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Abstract

The analysis of data subject to detection limits is becoming increasingly necessary in many 

environmental and laboratory studies. Covariates subject to detection limits are often left censored 

because of a measurement device having a minimal lower limit of detection. In this paper, we 

propose a Monte Carlo version of the expectation–maximization algorithm to handle large number 

of covariates subject to detection limits in generalized linear models. We model the covariate 

distribution via a sequence of one-dimensional conditional distributions, and sample the covariate 

values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by 

maximization via the Monte Carlo M-step. This procedure is applied to a real dataset from the 

National Health and Nutrition Examination Survey, in which values of urinary heavy metals are 

subject to a limit of detection. Through simulation studies, we show that the proposed approach 

can lead to a significant reduction in variance for parameter estimates in these models, improving 

the power of such studies.
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1. Introduction

Data subject to detection limits are common occurrences in many environmental and 

laboratory studies. In such studies, outcome or covariate measures are often right or left 

censored because of the measuring device having a maximal upper limit of detection or 

minimal lower limit of detection. Although the proposed methodology in this paper can be 

applied to both right-censored and left-censored covariate data, the real and simulated 

examples presented here consider only left-censored data, as is most common in real-life 

studies with detection limits. To motivate these methods, we consider a study in cancer 

incidence conducted within the National Health and Nutrition Examination Survey 

(NHANES)[1]. As part of this study, levels of urinary heavy metals were recorded, along 
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with the presence of any form of cancer. Recorded urinary heavy metals included cadmium, 

uranium, tungsten, and dimethylarsonic acid. The measurement device used to examine 

levels of each urinary heavy metal can only be calibrated down to a specific limit of 

detection (i.e., only above 1.7 ug/L for dimethylarsonic acid). As a result, 24.1% of the 1350 

patients had at least one covariate value that fell below the limit of detection for the 

measurement device. Study subjects were also surveyed as to past cancer status, the 

response variable for this study.

Past research on data subject to detection limits has considered models where either the 

response or covariates alone are subject to detection limits. The simplest and most 

straightforward method for dealing with such data is to remove or delete all observations 

falling below the limit of detection. This is known as complete-case analysis. Complete-case 

analysis is generally discouraged because of the loss of useful information in the data. 

Though complete-case analysis can give unbiased parameter estimates in regression models 

[2–4], the standard errors of those estimates will be inflated because of the decreased sample 

size. This deficiency is particularly significant for studies where a large proportion of data 

falls below the limit of detection. Additionally, background parameter estimates for the 

covariate distribution of interest will be biased [5]. Another very common approach is to use 

ad hoc substitution methods. These often include substituting some fraction of the limit of 

detection for all observations falling below the limit of detection, such as the limit of 

detection itself (LOD), LOD/2, LOD/ , or zero. Such methods are commonly employed 

because they are simple both to understand and implement. However, numerous authors 

have concluded that such methods are statistically inappropriate for data with censored 

covariates [6] or censored responses [7, 8]. Helsel [5] provided a review of several of these 

substitution procedures, concluding that the substitution method leads to highly biased 

estimates and has no theoretical basis. Singh and Nocerino [9] analyzed the substitution 

method on censored response values in environmental studies, concluding that highly biased 

estimates result even in cases with a small percent of censored values and only a single 

detection limit. The bias increases as more detection limits are introduced. For regression 

with a censored outcome, Thompson and Nelson [10] found that substitution of half the 

detection limit led to biased parameter estimates and artificially small standard error 

estimates. These results have provided strong evidence against using ad hoc substitution 

techniques.

In a linear regression setting, further substitution methods have been proposed for cases 

when a single covariate is subject to a limit of detection. Richardson and Ciampi [11] 

proposed substituting the conditional expected value of each censored covariate, given all 

observed covariates. This method relies on a specification of the underlying covariate 

distribution, which often is not known with certainty. When the covariate distribution is 

unknown, Schisterman [12] proposed substituting the average of all observed covariates in 

the model, which was shown to achieve unbiased results. Another common method is 

maximum likelihood (ML) estimation, which also requires knowledge of the underlying 

covariate distribution. These methods were compared with the previously discussed ad hoc 

substitution methods in Nie et al. [4] when only one covariate is subject to a limit of 

detection. It concluded that maximum likelihood performed best when the covariate 
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distribution is known, as ML estimation is unbiased and results in small standard errors. 

These results were echoed by Lynn [6], who compared substitution methods with multiple 

imputation and maximum likelihood estimation. Both papers noted that maximum likelihood 

estimation should not be attempted when the underlying covariate distribution is not known. 

In this case, Nie et al. [4] suggested using complete-case analysis.

The preference for maximum likelihood approaches has also been seen in studies using 

logistic regression with a single covariate subject to a limit of detection. Cole et al. [13] 

compared ad hoc substitution methods with complete-case analysis and maximum likelihood 

estimation, concluding that maximum likelihood resulted in relatively unbiased estimates 

with smaller standard errors than either complete case or substitution methods, especially 

when the proportion of censored values was large (50% or more).

Methods have also been proposed for Cox regression models with up to two covariates 

subject to a lower limit of detection. D'Angelo and Weissfeld [3] presented an index-based 

expectation–maximization (EM) algorithm-type method for this problem. The E-step for this 

method involves substituting the conditional expectation of each censored covariate, 

whereas the M-step uses standard Cox regression. It found that the index-based approach 

provided improvements over complete-case analysis in terms of variance estimates, but a 

small bias existed in the index approach compared with the unbiased complete-case analysis. 

The approach was not shown to provide much improvement over the biased LOD/2 and 

LOD/  substitution approaches, however.

When the response variable is subject to a limit of detection, two common methods of 

estimation include Tobit regression [14] and multiple imputation. Generally, Tobit 

regression is used when interest resides primarily on the regression parameters. When 

interest is on estimating a `complete' dataset, however, multiple imputation is often used to 

impute the missing values. Lubin et al. [8] developed a multiple imputation approach based 

on bootstrapping and compared the results with substitution methods and Tobit regression. It 

found that both the proposed multiple imputation approach and Tobit regression have 

reduced biases with respect to other ad hoc substitution methods.

All the methods previously mentioned here concern models with either a censored response 

and fully-observed covariates, or a fully-observed response and at most, two censored 

covariates. To the authors' knowledge, no general likelihood-based approach has been 

developed to account for a large number of left-censored covariates in a generalized linear 

model (GLM). In this paper, we investigate maximum likelihood methods for fitting models 

with covariates subject to a limit of detection. We show that this maximum likelihood 

estimation can be carried out directly via an EM algorithm called the EM by the method of 
weights [15]. For covariates subject to a limit of detection, we specify the covariate 

distribution via a sequence of one-dimensional conditional distributions. We discuss the 

missing data mechanism for censored data and explain how the notion of missingness differs 

from that of regular missing data problems.

In this article, we propose a method for estimating parameters in GLMs with censored 

covariates and an effectively ignorable missing data mechanism. We consider the case of 
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continuous covariates only in this paper because censored categorical covariates are unlikely 

to occur in real-world applications. Following Lipsitz and Ibrahim [16], the joint covariate 

distribution is modeled via a sequence of one-dimensional conditional distributions. 

Modeling the joint covariate distribution in this fashion facilitates a more straightforward 

specification of the distribution. The response variable is assumed to be completely 

observed, though our method can be easily extended to the case where the response is 

subject to a limit of detection. We derive the E and M steps of the EM algorithm with 

effectively ignorable missing covariate data. For continuous covariates, we use a Monte 

Carlo version of the EM algorithm to obtain the maximum likelihood estimates via the 

Gibbs sampler. We derive the E-step for the Monte Carlo version of EM. In addition, we 

show that the relevant conditional distributions needed for the E-step are log-concave, so 

that the Gibbs sampler is straightforward to implement when the covariates are continuous. 

This paper is an extension of the methods proposed for missing data in Ibrahim, Lipsitz, and 

Chen [17]. The proposed methods are computationally feasible and can be implemented in a 

straightforward fashion.

The rest of this article is organized as follows. In Section 2, we have given some general 

notation for GLMs. In Section 3, we discuss the proposed methods of estimation and give a 

detailed discussion of the various models used. In Section 4, we demonstrate the 

methodology with a simulation study involving a linear regression model. We also 

demonstrate the methodology with an example involving real data in Section 5. We 

conclude the article with a discussion section.

2. Notation for generalized linear models

In this paper, we will take (x1, y1), …, (xn, yn) as a set of n independent observations, with 

yi representing the response variable and xi representing a p × 1 vector of covariates. The 

joint distribution of (yi, xi) is written as a sequence of one-dimensional conditional 

distributions [yi|xi] and [xi], representing the conditional distribution of yi given xi and the 

marginal distribution of xi. The notation p(yi|xi) is used throughout the paper to denote the 

conditional density of yi given xi.

The conditional distribution [yi|xi is specified by a k × 1 parameter vector θ, with the 

conditional density being represented as p(yi|xi, θ). For the class of GLMs, the parameter 

vector θ is usually specified as θ = (β, τ), with β representing the regression model 

coefficients and τ representing the dispersion parameter. The logistic, Poisson, and 

exponential models have a τ value exactly equal to one; in these cases, β and θ are equal. For 

nonlinear models with a normal errors, we write the parameter vector as θ = (θ*, σ2), with 

θ* representing the expectation parameters and σ2 representing the variance of the errors.

The marginal density for xi is taken as p(xi|α), with α representing the parameters for the 

marginal distribution of xi. The joint density for (yi, xi) can then be represented by the 

following sequence of conditional densities for subject i:

(1)
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Combining this formula for all subjects leads to the complete-data log-likelihood:

(2)

Here, l(xi, yi|γ) represents the log-likelihood contribution for subject i, and γ = (θ, α). In this 

paper, our primary interest is in estimating θ; here, α is considered a nuisance parameter.

Extending this notation to censored covariate data, we write xi = (xcens,i, xobs,i), where xobs,i 

are the fully observed covariates, and xcens,i is a qi × 1 vector of censored covariates. For 

individual censored covariate values, we use the notation . We allow 

a different censoring interval for each covariate and subject, taking (clij, cuij) as the 

censoring interval for subject i and covariate j. We note here that the censoring intervals are 

considered to be fully known here. In some applications, limits of detection are not known 

explicitly and must be estimated. We also note that in most cases, the censoring intervals 

will not vary across subjects; this is included for generality. This notation is easily 

generalized to right or left censoring. For left-censored covariates, take clij = 0 (or clij = −∞ 

if negative values are possible, i.e., when a log transformation is utilized). For right-

censored covariates, take cuij = ∞. We use the shorthand notation (cl < xcens,i < cu) to denote 

that each element of xcens,i takes a value within its respective censoring interval. That is,

3. Covariate data subject to a limit of detection

We now propose maximum likelihood methods for covariate data subject to a limit of 

detection. We will allow left, right, or interval censoring on each covariate, and for ease of 

exposition, will assume that τ = 1. For clarity, we develop the methodology here for the 

class of GLMs.

Suppose y1, …, yn are independent and

for i = 1, …, n. In general, the EM algorithm maximizes the expected value of the complete 

data log-likelihood of (yi, xi), given the observed data, that is,
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(3)

Unlike the usual missing covariate problem in which the `observed data' for subject i is (yi, 

xobs,i), in the censored covariate problem, the `observed data' are (yi, xcens,i) and (cl < xcens,i 

< cu). In the usual missing covariate problem with xmis,i completely missing, the `weights' in 

the EM by the method of weights are the conditional probabilities p(xmis,i|xobs,i, yi, γ). Now, 

with the additional information that (cl < xcens,i < cu) in the censored covariate problem, the 

weights are the conditional probabilities p[xcens,i|xobs,i, (cl < xcens,i < cu), yi, γ].

If the censored covariates are all continuous (the most common case), then the E-step of the 

EM algorithm consists of an integral, which typically does not have a closed form for 

GLMs. We can write the E-step for the ith observation as

(4)

We note here that in the previous equation, xcens,i is a vector consisting of all covariates in 

observation i that fall within their respective censoring intervals. In cases where xcens,i 

contains more than a single censored covariate, Equation (4) consists of multiple 

integrations, one over each censored covariate, integrating over the range of the censoring 

interval. For example, with three censored covariates , we have the 

following:

and

From this, it should be clear that closed-form solutions to Equation (4), even if available 

(i.e., for a small number of censored covariates), are complicated, and the maximization can 

be very difficult. We now propose a general approach to evaluating Equation (4), regardless 

of the number of censored covariates.
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To evaluate Equation (4) at the (t + 1)st iteration of EM, we use a Monte Carlo version of the 

EM algorithm [18]. To do this, we first need to generate a sample from the truncated 

distribution [xcens,i|xobs,i, yi, γ(t)]I(cl < xcens,i < cu). This truncated distribution is log-concave 

in each component of xcens,i for most link functions. Thus, we can use the Gibbs sampler 

along with the adaptive rejection metropolis algorithm (ARMS) of Gilks, Best, and Tan [19] 

to successively sample from the truncated distribution [xcens,ij|xcens,ik, k ≠ j, xobs,i, yi, γ(t)]I(cl 

< xcens,i < cu), where xcens,ij denotes the jth component of xcens,i.

The ARMS algorithm is an extension of the adaptive rejection sampling algorithm of Gilks 

and Wild [20] and can sample values from complex likelihood functions, which are not 

required to be log-concave. ARMS works by constructing an envelope function around the 

desired log density. It performs rejection sampling on the envelope function, shrinking the 

envelope around the desired log density with each successive sample. For log densities that 

are not concave, the ARMS algorithm performs an additional metropolis step on each 

potential sampled value [21]. The shrinking envelope function provides an efficient means 

of sampling from a complicated log density, without having to evaluate each point of the 

density directly. ARMS also allows for straightforward sampling from truncated 

distributions, as all potential points falling outside the censoring interval are immediately 

rejected.

Use of the EM algorithm requires complete sampled data for each of the n observations in 

the dataset. For observation i, a new sample must be obtained for each of the qi censored 

covariate within xcens,i. This is done by successively sampling from the distribution of 

xcens,ij, j = 1, …, qi until a new sample vector zi is obtained for the censored vector xcens,i. 

The sampled vector zi contains qi sampled values, one for each of censored covariates in 

xcens,i. Now, suppose for the ith observation, we take a sample of size mi, zi1, …, zimi, from 

the truncated distribution [xcens,i|xobs,i, yi, γ(t)]I(cl < xcens,i < cu) via the Gibbs sampler in 

conjunction with the adaptive rejection algorithm. We note here that each zik is a qi × 1 

vector for each k = 1, …, mi, with qi representing the length of xcens,i. The E-step for the ith 

observation at the (t + 1)st iteration for the GLM can be written as

(5)

We notice that this E-step is the EM by the method of weights with each xcens,i being filled 

in by a set of mi values each contributing a weight 1/mi. The M-step then maximizes 

Equation (3), which can be expressed as

The maximization can be performed first by taking
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as the q × 1 gradient vector of Q(γ|γ(t)). This can be calculated by taking

(6)

Using this procedure, the EM algorithm can then be run until convergence. In practical 

application, the maximization of the weighted log-likelihood (with respect to the model 

parameters) can often be performed by standard software.

Also here, we let  denote the q × q matrix of the second derivatives of Q(γ|γ(t)). 

Let  denote the estimate of γ at convergence. The asymptotic covariance matrix can then by 

calculated by the method of Louis [22]. The estimated observed information matrix of γ 

based on the observed data is taken as

where

The estimate of the asymptotic covariance matrix is then calculated as .

We note here that the E-step for censored data is different from the standard missing data 

notation. Specifically, the censored data E-step in Equation (4) omits the ∫ log[p(ri|yi, xi, ϕ)]

…dxcens,i section used in missing data problems, where ri represents an indicator for 

missingness. This is because the notion of ignorability is fundamentally different in 

detection limit problems when compared with missing data problems. In detection limit 

problems, it is generally assumed that the detection limits are known values. With detection 

limits known, the probability of censoring (`missingness' in the missing data case) clearly 

depends on the true value of the covariate (xi), suggesting a non-ignorable mechanism. 

However, in the detection limits case, the true value of xiexplicitly determines whether or 

not the value is censored. The value of p(ri|xi) is either 0 or 1, for all values of xi. It follows 
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that the non-ignorable component of the E-step equation for missing data is omitted in the 

detection limit case.

It should be noted that having a continuous outcome variable also subject to a limit of 

detection only marginally complicates the situation at hand. In this case, the E-step requires 

an additional integration over the possible values of the censored outcome. Equation (4) then 

becomes

This situation is further simplified when sampling from the distribution of an outcome value 

is below the detection limit, however, because we are dealing with the class of GLMs. The 

distribution of the outcome given the covariates and parameters is assumed to come from an 

exponential family. Therefore, the distribution of an outcome value below the limit of 

detection is just a truncated form of a well-known distribution, be it normal, gamma, and 

others. Such sampling is straightforward.

In this proposal, we will investigate maximum likelihood estimation with censored 

covariates as outlined earlier. We will study the EM algorithm for this problem and consider 

GLMs with covariates subject to a detection limit. Examples analyzed include both linear 

and logistic regression.

4. Simulation study

Here, we consider a simple linear model involving six covariates:

where . The response yi is fully observed, as are the first three covariates x1; …, 

x3. The last three covariates x4; …, x6 are subject to a prespecified detection limit. Detection 

limits are specified according to a desired overall censoring percentage. In this case, 

detection limits were chosen such that 30% and 50% of observations had at least one 

covariate that fell below the limit of detection. The covariate distribution was specified as 

multivariate normal, with arbitrary prespecified parameter values and correlated 

observations with 0:3 ≤ |ρ| ≤0:7 for all covariate pairs. Using this specification, datasets of 

size 200 were then generated; covariate values for x4 – x6 falling below the detection limit 

were set as missing.

Each simulation presented in this paper was performed on 1000 datasets created as described 

earlier, each from identical background parameter distributions and detection limits. The EM 

by method of weights was then applied to each dataset. Initial parameter estimates for the 

model and covariate distribution were taken from a complete-case analysis of the data. 

These were passed to the ARMS algorithm as parameters in the initial iteration of the EM 

algorithm. For each observation with at least one covariate falling below the limit of 
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detection, ARMS was used to generate mi = 250 samples of complete covariate data. For 

observations with a single covariate falling below the limit of detection, these samples were 

taken from the distribution of xcens;i ∣xobs,i, yi γ(t) truncated over the censoring interval. For 

each observation with multiple covariates falling below the limit of detection, ARMS was 

used sequentially to sample from the distribution for each censored covariate until a new 

complete sample of covariate values was produced. The mi = 250 samples from each 

censored observation were then combined, creating an augmented dataset of fully observed 

observations along with sampled values. The M-step of the EM algorithm was then 

performed via a weighted maximum likelihood estimation. Weights of one were used for 

each fully observed observation, and 1/250 was used for each sampled observation. This 

weighted maximum likelihood procedure produced new estimates for β in the model, along 

with updated parameter estimates for the covariate distribution. The updated covariate 

parameter estimates were then passed back to ARMS as the estimates for the following E-

step, and the procedure was run iteratively until convergence.

Convergence of this algorithm was checked by calculating the average β estimate for the 

previous 10 iterations. This average was compared with the β average for the 10 iterations 

prior. In other words, at iteration t the mean beta values from t:(t−9) are compared with 

values from (t−10):(t−19). A difference of ≤ 10−3 was used for convergence. After 

convergence was reached for all parameters, final β estimates were taken as the average of 

the previous 10 estimates of β in the chain.

Bootstrap standard errors were calculated for each parameter in the dataset for comparison 

with the standard error of the estimates obtained. For each of the 1000 datasets in a 

simulation, 25 bootstrapped datasets of size n = 200 were generated. The proposed EM 

algorithm was then run on each bootstrapped dataset, and final β estimates were obtained. 

The standard error for each population of 25 β estimates was then calculated for each 

parameter in the model. The mean of these standard errors were then taken as the final 

bootstrap standard error estimate for the model and are used for comparison with the normal 

β standard error from the proposed maximum likelihood approach.

Table I displays results from analysis on all 1000 datasets. Final estimates and variances for 

each parameter are calculated as the mean and variance of final beta estimates for all 1000 

datasets. The true prespecified parameter values are given, along with variance estimates 

calculated using the bootstrap procedure described earlier. Results are also presented for an 

ad hoc substitution of  for each covariate falling below the limit of detection, 

along with a complete-case analysis. As expected, both the maximum likelihood approach 

and complete-case analysis appear to be largely unbiased, whereas the substitution approach 

produced very biased estimates. Maximum likelihood resulted in standard errors for the 

parameter estimates that were lower than those obtained with complete case analysis and 

similar standard errors to the substitution approach. In addition, all calculated standard error 

estimates for maximum likelihood are close to the asymptotic bootstrapped estimates. The 

reduction in standard error seen with the maximum likelihood approach was large enough to 

result in a change in statistical significance (here, taken at the α = 0.05 level) for several 

parameters in the model when compared with the complete-case analysis. These conclusions 
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hold for both 30% and 50% censored observations, suggesting that the benefit seen is similar 

up to at least 50% censoring. The EM algorithm was also observed to converge rather 

quickly using the described criterion. Only 28 EM iterations were needed on average for all 

model parameters to converge.

5. National Health and Nutrition Examination Survey data

Here, we consider data from the National Health and Nutrition Examination Survey 

(NHANES)[1] concerning the effect of urinary heavy metal levels on cancer status. The 

survey years considered here are 2005–2006. The outcome variable in this study is cancer 

status, a binary variable recorded via questionnaire to the question `Have you ever been told 

by a doctor or other health professional that you had cancer or malignancy of any kind?'. 

Urinary heavy metals were recorded via physical examination. The measurement device for 

each urinary heavy metal in the study can only be calibrated down to a specific limit of 

detection (LOD), leading to many left-censored observations. The degree of censoring 

varied by each covariate. The urinary heavy metals analyzed in this study include 

dimethylarsonic acid (13.7% below LOD), cadmium (5.3% below LOD), tungsten (10.7% 

below LOD), and uranium (9.6% below LOD). In total, 24.1% of the 1350 patients in the 

study had at least one urinary heavy metal value that fell below a limit of detection. A 

logistic regression model was chosen for analysis to predict the binary outcome measure of 

cancer status. Other covariates included in the model are gender, race (dichotomized to 

White/non-White), physical activity (dichotomized survey response for any physical activity 

during an average day), and current nicotine use (yes/no). A log transformation was 

performed on each of the uri-nary heavy metals variables prior to modeling, and a 

multivariate normal prior distribution was assumed for these continuous covariates. An 

independent Bernoulli prior was assumed for the binary covariates gender, race, and 

smoking status.

Initial parameter estimates for the model were taken from a complete-case analysis. Every 

observation with a urinary heavy metal covariate value falling below the LOD was then 

sampled mi = 250 times using the ARMS algorithm. For observations with multiple 

covariate values below the LOD, each missing covariate value was consecutively sampled 

until a complete sampled observation was obtained. In such cases, 250 complete sampled 

observations were recorded. A weighted logistic regression model was then fit to the data, 

and ML estimates and standard errors were obtained. Parameter estimates for the prior 

distributions were updated, and the procedure was run iteratively until convergence of the 

logistic model parameter estimates. The convergence criterion used here was identical to the 

procedure detailed in Section 4. Upon convergence, final β estimates and standard errors 

were taken as the average estimates of the previous 10 iterations.

Table II summarizes the results of this study again comparing the maximum likelihood 

approach with both a complete-case analysis and ad hoc substitution of . The 

substitution of  is particularly relevant in this case, as urinary heavy metals falling 

below the limit of detection are actually reported by the NHANES researchers as 

in the available public data releases. As can be seen, the maximum likelihood approach 
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results in significantly smaller standard errors for the parameter estimates when compared 

with complete-case analysis and very similar to those obtained via substitution with 

. In this simulation, 20 EM iterations were needed for convergence of all model 

parameters. It should be noted here that the maximum likelihood standard errors reported in 

Table II are based on only one simulation and are calculated via a straightforward fitting of 

the weighted logistic regression model at convergence. Standard errors for the simulation 

study reported in Table I were calculated as the standard error of the population of 1000 

final β estimates, one for each simulated dataset. These estimation procedures are not 

equivalent, and it is important to note this difference.

It should also be noted that the fitted model used here does not include age as a covariate in 

the prediction of cancer status. A logistic model including the age covariate was also fit to 

this data, and age was found to be highly significant. The current model (without an age 

covariate) has been included here to more clearly display the potential benefits of the 

proposed methodology.

6. Discussion

In this paper, we have proposed a method of maximum likelihood estimation in GLMs with 

an unlimited number of covariates subject to a limit of detection. We have proposed models 

for the joint covariate distribution, which is based on a sequence of one-dimensional 

conditional distributions. The methodology presented here can be easily extended to cases 

where both the response and the covariates are subject to a limit of detection. The maximum 

likelihood approach presented here is much simpler computationally than a direct 

computation by way of the observed data likelihood, especially for cases with multiple 

covariates subject to an LOD. When only a single covariate (or just the response) is subject 

to an LOD, closed-form solutions can often be used.

For the simulation considered in Section 4, the parameter estimates for β using the 

maximum likelihood approach and complete-case appear similar and largely unbiased. This 

similarity was also seen in the real-life NHANES example, though with a slightly larger 

degree of variability. This variability can be attributed to the NHANES analysis only begin 

performed on a single dataset, whereas the simulation results are averaged over 1000 

datasets. The substitution estimates appeared quite similar to the maximum likelihood 

estimates in the NHANES study, but differed somewhat in the simulation study, where the 

substitution estimates appeared biased. This is likely due to the possibility that the chosen 

substitution values in the NHANES study were very close to the expected covariate means 

below the limit of detection. A different choice of substitution points (such as LOD or zero) 

would likely result in estimates that were not as close to maximum likelihood.

Both the simulation study and the NHANES example gave variance estimates for β that 

were significantly improved over the complete-case analysis. This improvement can clearly 

lead to higher statistical power in studies that include data subject to detection limits.

A consistent drawback to maximum likelihood estimation in GLMs with data subject to 

detection limits is that a new algorithm needs to be created for each individual analysis that 
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is performed. For sampling within ARMS, the log-likelihood function for the model of 

interest needs to be explicitly specified. In cases where the covariates are considered to 

follow a multivariate normal distribution, for example, the log-likelihood function is 

consistent and straightforward. However, more complicated covariate distributions will 

require a less standard computation of the log-likelihood, which can take significant 

additional time and can lead to error.

For both the simulation study and real-data analysis presented here, mi = 250 samples were 

taken for each observation with covariates below a limit of detection. Based on the authors 

experience and other extensive simulations performed with this type of data, we feel that a 

sample size of at least mi = 100 is necessary for accurate inference.

The computing time required to achieve EM convergence here clearly depends on the 

number of covariates in a model, the degree of censoring that is observed, and the number of 

samples that are taken for each censored observation. The simulation presented in Section 4 

tended to converge quickly, with only an average of 28 iterations performed per dataset. 

This simulation of 1000 datasets took about 16 h to complete on a Lenovo laptop (Lenovo 

Group Ltd, Morrisville, NC, USA) with a dual-core pentium processor, making this 

approach very computationally feasible.

Although the analyses presented here discuss applications to GLMs, much interest exists in 

studies of longitudinal and survival data, where covariates are subject to a limit of detection. 

Further research will look at applying the methods presented here to such data.
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