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Abstract
Multi-state modeling is often employed to describe the progression of a disease process. In
epidemiological studies of certain diseases, the disease state is typically only observed at periodic
clinical visits, producing incomplete longitudinal data. In this paper we consider fitting semi-
Markov models to estimate the persistence of human papillomavirus (HPV) type-specific infection
in studies where the status of HPV type(s) is assessed periodically. Simulation study results are
presented indicating the semi-Markov estimator is more accurate than an estimator currently used
in the HPV literature. The methods are illustrated using data from the HIV Epidemiology
Research Study (HERS).
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1. Introduction
1.1. Defining and estimating HPV persistence

Persistent HPV infection is considered to drive the progression of cervical neoplasia to
cervical cancer [1, 2], the second most frequently occurring cancer in women worldwide.
HPV persistence is associated with high-grade cervical intraepithelial neoplasia (CIN 2/3),
or pre-cancerous lesions of grades 2 or 3, which may develop into invasive cervical cancer
(ICC) [1]. Thus, HPV persistence is important as a clinical marker and endpoint in clinical
trials [1] and in screening to identify women who are at highest risk of high grade pre-
cancerous lesions and cervical cancer [1, 3]. Characterizing the persistence of HPV
infections is also important in studying the natural disease history of cervical cancer.
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Despite its importance, there is no consensus regarding what exactly constitutes a
“persistent” infection [1, 4]. Conceptually HPV persistence is defined as the length of time
during which an individual is infected with an HPV infection, i.e., the duration the infection
persists. Because a woman can become infected with one or more types of HPV, persistence
is often defined in terms of the duration of a type specific infection. Unfortunately, it is
impossible to observe the duration of a type specific infection. Clinical trials and natural
history studies of HPV typically produce incomplete data where type-specific HPV infection
is observed intermittently at a sequence of discrete time points (study visits), resulting in
unobservable exact times of transition between infection states (i.e., “panel data”) [5, 6].
Even if infection status could be monitored continuously, HPV tests are typically based on
viral load being above or below a detection limit. Test results below a limit of detection do
not distinguish between the infection being cleared versus remaining latent in some reservoir
in the body. As a result of these issues, investigators typically resort to an operational
definition of persistence as a surrogate for the true unobservable underlying continuous
infection process. The aim of this paper is the development of a method for estimating the
distribution of type-specific persistence from longitudinal HPV test results based on
whatever particular operational definition is adopted by investigators.

This paper is motivated by HERS, a longitudinal study of 1310 women in the U.S. from
1993 - 2000 who either had HIV without an AIDS-defining condition (1987 Centers for
Disease Control and Prevention case definition) or were at risk of HIV infection due to
injection drug use or high-risk sexual behavior. There were a maximum of 15 study visits
per participant, each occurring at fixed scheduled visits approximately six months apart.
Each visit included a gynecological exam, cervicovaginal lavage to collect samples for
detecting HPV DNA, and Papanicolaou test screening. In an analysis of longitudinal HPV
data from the first 10 visits of HERS, Koshiol et al. [7] adopted an operational definition of
HPV persistence defined as the time between the date of the first type-specific positive visit
and the date of the first of two consecutive visits negative for the same HPV type. The
requirement of two consecutive negative tests allows for possible misclassification of test
results. In particular, a single intermittent type-specific HPV-negative test is not generally
believed to necessarily be indicative of a woman clearing infection and then becoming
reinfected with the same HPV type [4]. Rather a single intermittent type-specific negative
test may represent a false negative result, perhaps due to transient suppression of viral load
below the level of detection. On the other hand, two consecutive negative tests results for the
same HPV type suggest the infection may have cleared.

Estimating HPV persistence is challenging for several reasons. A method for estimating
HPV persistence needs to be sufficiently flexible to accommodate various operational
definitions of persistence. A persistence estimator must also accommodate the incomplete
data typically produced in clinical trials and natural history studies of HPV. In these settings,
HPV infection may be missing at certain time points; for example, a subject may skip a
clinic visit during the study for unknown reasons, the specimen drawn may be of insufficient
quality to perform a valid lab test, or the lab test result may be inconclusive. Even in the
absence of missed study visits or drop out, some type-specific HPV infections may still be
present at the conclusion of the study, such that some accommodation for right censoring is
necessary. If the operational definition of persistence allows for an HPV positive individual
to clear infection and subsequently acquire a new HPV infection, a persistence estimator
would also need to accommodate the possibility of repeated infections within an individual
over time.

Current analytical approaches typically employed in estimating time of persistence from
panel data entail using standard survival analysis methods, which we call “empirical
estimators” (EEs). In the absence of right censoring, EEs reduce to observed proportions.
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For example, if there are no repeated infections, the probability of a particular HPV type
persisting for at least time t is estimated by the proportion of study individuals infected with
that type where the infection lasted t or longer. In the presence of right censoring, these
simple estimators are extended using the Kaplan-Meier method. To deal with intermittent
missing HPV results, EEs often explicitly or implicitly assume that an individual is HPV
positive when a study visit is missed following a visit where an HPV positive result occurred
[7, 8, 9, 10, 11, 12]. EEs sometimes exclude individuals with consecutively missing HPV
results [7, 9]. Intuitively, such assumptions and exclusions will lead to bias or inefficiency
when estimating the duration of infection. Indeed, a simulation study is described below
confirming this intuition.

As an alternative to EEs, in this paper we consider fitting semi-Markov models to estimate
type specific HPV persistence from longitudinal HPV data. Markov models are often used in
modeling multi-state disease processes. However, the Markov assumption may not be
appropriate in modeling HPV since the probability of transitioning between states may
depend on the elapsed time in the current state. For example, the likelihood that an HPV
type-specific infection will not clear is known to increase with the amount of infection time
[10]. When future transitions depend upon the time spent in the current state, the stochastic
process is classified as semi-Markov. In the HPV setting, semi-Markov models allow for the
possibility that the probability of clearing an HPV type-specific infection may depend on
how long an individual has been HPV positive.

Recently, Kang and Lagakos [13] developed methods for fitting continuous-time semi-
Markov multi-state models to HPV panel data. Their methods were illustrated with a model
of the natural history of oncogenic genital HPV infection in women using data from the
placebo arm of an HPV vaccine trial. While Kang and Lagakos avoid the usual Markov
assumption employed in multi-state modeling, their proposed methods require some strong
assumptions which arise from modeling time as continuous. For instance, their methods
require assuming specific “guarantee time” for transitions from particular states, i.e., a-priori
specification of minimum times an individual must remain in a state (such as HPV infection)
before transitioning to other states. Kang and Lagakos also make parametric assumptions
about the transition time distributions.

In this paper we consider discrete-time semi-Markov models for estimating type specific
HPV persistence. Discrete-time models have advantages over continuous-time models, such
as not requiring the specification of guarantee times or parametric distributional
assumptions. Discrete time semi-Markov models have been applied in the HPV setting
previously, using either Bayesian or random effects modeling [14, 15]. Here we consider
fitting discrete-time semi-Markov models using nonparametric frequentist methods that do
not require specification of prior distributions or parametric assumptions as in Bayesian and
random effects modeling.

1.2. Outline
The outline of the remaining sections is as follows. In Section 2 an EE of type-specific HPV
persistence is illustrated using panel data. In Section 3 a maximum-likelihood estimator
(MLE) of type-specific HPV persistence is proposed using a semi-Markov two-state
discrete-time model. Section 4 describes a simulation study comparing the MLE and EE in
settings similar to HERS. Section 5 extends the two-state model from Section 3 to a more
general three-state model. In Section 6 the different estimators are applied to data from
HERS. Section 7 concludes with a discussion.
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2. Empirical estimator
In this section, we present an illustrative example of an EE motivated by Koshiol et al. [7].
Suppose we observe five subjects in one of two observable states (0=HPV type negative or
1=HPV type positive) at seven time points T0,…,T6. The following could occur:

Subject T0 T1 T2 T3 T4 T5 T6 τ̃i

1 0 0 0 0 1 0 0 1

2 0 1 0 1 * 0 0 4

3 0 1 * 1 1 0 0 4

4 0 1 0 0 0 0 0 1

5 0 0 0 1 * 0 0 2

where * represents a missing response. In the last column of the table above τ̃i denotes an
estimate of the duration of HPV type infection for individual i. Following Koshiol et al. [7],
the duration estimates assume intermittent negative responses (i.e., a single zero preceded
and followed by a one) and single missing responses following a positive response are
actually positive responses. The EE of the probability HPV type infection persists at least t

time points equals , where I[·] is the usual indicator function which equals 1
if · is true and 0 otherwise. The estimated times τ̃i rely on a key assumption: HPV type
positive individuals with a single missing visit would have tested HPV type positive if the
visit had not been missed. Intuitively one might expect such an estimator to be biased.
Indeed simulations studies in Section 4 below provide empirical evidence showing the EE is
biased. In the Appendix a proof is given showing the EE is not in general a consistent
estimator of the duration of infection, even if there are no missed visits.

3. Semi-Markov model
As an alternative to the empirical estimator, in this section we consider maximum-likelihood
estimation of HPV type-specific persistence using a semi-Markov two-state discrete-time
model for individuals starting in the same infection-free state.

3.1. Model
Let X(·) = {Xτ : τ ∈ {0, 1, 2,…}} denote a discrete-time stochastic process with state space S
= {0, 1} where Xτ = 0 denotes HPV type negative and Xτ = 1 denotes HPV type positive at
time τ. Assume X0 = 0, i.e., all individuals are HPV type negative at time 0. Let Yi ∈ {0, 1}
denote the i-th state visited by the stochastic process, and let Ti ∈ {1, 2,…} denote the i-th
sojourn time (i.e., the amount of time that an individual stays in Yi−1 before transitioning to
Yi). Thus, X(·) is equivalent to {Y1, T1, Y2,…,Yi, Ti,…}. Assume X(·) is a time-homogeneous
semi-Markov process [17, 18] such that for j ≠ k and i = 1, 2,…

(1)

i.e., the probability of transitioning to state k after sojourn time t in state j is independent of
the history of the process. Let pjk(t) = P{Yi+1 = k, Ti+1 = t∣Yi = j} for j ≠ k and let pjj(t)
denote the conditional probability of remaining in state j after sojourn time t, i.e., pjj(t) = 1 −
Σj≠kpjk(t).

A special case of a semi-Markov process is when future transitions depend only upon the
current state, independent of time. The stochastic process is classified as Markov if
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(2)

Let pjk = P{Xi+1 = k∣Xi = j}. The Markov property (2) implies pjk(t) = pjk(1 − pjk)t−1, i.e., the
sojourn time follows a geometric distribution.

Under the Markov assumption, the stochastic process is governed by fewer parameters (p01
and p10) than under the semi-Markov assumption. Thus, Markov models are easier to fit, but
may not be flexible enough to adequately model complex processes. For example, there is
evidence that the probability of clearing an HPV type infection depends on how long an
individual has been infected [10]. On the other hand, there may be no reason to believe that
the probability of acquiring an HPV type infection depends on how long the individual has
been uninfected. Following Kang and Lagakos [13], for now we assume that the stochastic
process leaving state 1 (HPV type positive) is semi-Markov and leaving state 0 (HPV type
negative) is Markov [13]. That is, we assume (1) holds for j = 1, k = 0 and that (2) holds for j
= 0, k = 1. Models relaxing this assumption are considered in Section 5.

Typically in HPV studies an individual's disease process is only observed until some time
point at which follow-up ends. Let nt represent the total number of possible observed time
points after study entry. Under the assumption above, the observable process X(·) is
characterized by the (nt + 1)-dimensional vector p = (p01, p10(1), p10(2),…,p10(nt − 1),
p1+(nt)) where in general

for j ∈ {0, 1}. Let the random variable M (with realization m) denote the total number of
states visited by time nt such that YM is the state occupied at nt. Let tM+ denote the sojourn
time in YM at nt, i.e., tM+ is the amount of time an individual has occupied YM at the end of
the study. Let x = (x0, x1,…,xnt) denote the path up to time nt and let πx(p) = P{(X0, X1,
…,Xnt) = x}. Then

(3)

3.2. Estimands
Below we show that HPV type-specific persistence at any particular time point may be
written as a function of p. Here the operational definition of persistence discussed in Section
1 is adopted. However, other definitions of persistence could also be used provided the
estimand can be written as a function of the transition probabilities.

Let ϕj(p) denote the probability an individual is HPV type positive for j units of time
followed by two HPV type negative tests allowing for single intermittent negative results.
For example, if j = 1 then the probability HPV persists 1 unit of time is
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where X(0:n) ≡ (X0, X1,…,Xn). Similarly, for j = 2 and j = 3, the probabilities HPV persists 2
or 3 units of time equal

and

respectively. More generally, define for x(0:j+2) ∈ [0, 1]j+3, a vector of length j + 3 zeroes
and ones,

(4)

That is, ηx(0:j+2) is an indicator function that equals 1 if an individual becomes HPV type
positive at time 1 and does not have two consecutive HPV type negative results until time j
+ 2; otherwise, ηx(0:j+2) equals zero. Then for j = 1, 2,…

(5)

and the probability type-specific HPV persists at least j units of time is

(6)

3.3. Inference
Maximum likelihood methods can be used to draw inference regarding the estimands of
interest, e.g., (6). One challenge in the analysis of longitudinal HPV studies is missing data.
That is, x may not be completely observable for some individuals. Assuming the missing
data mechanism is missing at random (MAR) [19] (i.e., given the observed data, the
missingness mechanism does not depend on the unobserved data), the likelihood
contribution for an individual is obtained by summing over all possible trajectories
consistent with that individual's observed data. For individual i, let αix = 1 if the path x is
consistent with the observed data for that individual, and 0 otherwise. Revisiting the
example in Section 2, for subject 1, α1(0000100) = 1 and α1x = 0 for all x ≠ (0000100); for
subject 5, α5(0001100) = α5(0001000) = 1 and α5x = 0 otherwise.

Under MAR the likelihood can be written as
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(7)

where the product is over all individuals and the sum is over all possible paths of length nt +
1. Let Ω denote the set of p satisfying the constraints

(8)

The MLE of p is obtained by maximizing the log-likelihood, log L(p), over the parameter
space Ω. The MLE of p in turn gives rise to the MLE of functions of p (e.g., ϕj(p)) due to the
invariance property of maximum likelihood [20].

Standard numerical methods for maximizing functions with linear equality and inequality
constraints can be used to maximize log L(p) over Ω. Many of these optimizers are readily
available in software. For example, the SAS Version 9.2 IML procedure (SAS, Inc., Cary,
North Carolina) offers a number of optimization subroutines for maximizing continuous
non-linear functions subject to linear equality and inequality constraints. In the results
below, the NLPQN( ) function, a (dual) quasi-Newton algorithm, was used to maximize log
L(p) over Ω.

Confidence intervals (CIs) for inference regarding the transition probabilities (as well as
functions thereof such as (6)) can be obtained using profile likelihood [21]. A likelihood
ratio test can be used to assess whether a simpler model assuming both states are Markov
adequately fits the data. In particular, the likelihood can be maximized under the full model
described above and under the null model H0 : p10(j) = {1 − p10(1)}j−1 p10(1) for j = 1,…, nt
− 1. Under the H0, the corresponding likelihood ratio test statistic will have approximately a
χ2 distribution with nt − 2 degrees of freedom.

4. Simulation study
A simulation study was conducted to assess the bias of the EE and semi-Markov MLE of
persistence described above. For the simulation study, time of persistence was defined as the
time from first HPV type-positive result until the time of the first of two consecutive HPV
type-negative results. Data sets, each with a sample size of 500 individuals, were randomly
generated to be similar to the HERS data analyzed by Koshiol et al. [7]. The number of
possible study visits was 10 (including study entry, such that nt = 9) with two visits per year.
The stochastic process leaving state 0 (HPV negative) was Markov and leaving state 1 (HPV
positive) was semi-Markov. A complete set of study visits ranging from visit 0 (study entry)
to visit 9 was first created for each subject. Next, to construct a pattern of missing responses
attributable to drop out, a woman was right-censored with probability 0.05 at visits 2-8 and
probability 0.10 at visit 9. Intermittent missing response probabilities were 0.12, 0.09, 0.11,
0.10, 0.11, 0.11, 0.08, and 0.09 for study visits 2-9, respectively.

Simulations were done under three different transition probability scenarios based on fitting
the two-state model from Section 3 to the HERS data for HPV types 16 (scenario I), 53
(scenario II), and 18 (scenario III). For scenario I, the transition probabilities were p
=(0.016, 0.653, 0.151, 0.085, 0.0001, 0.0001, 0.028, 0.0001, 0.0001, 0.083). Based on
equation (6), under scenario I, the probabilities HPV persists at least j = 1,…, 7 units of time
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(corresponding to 0.5 to 3.5 years) were 0.36, 0.21, 0.12, 0.12, 0.11, 0.09, and 0.08. For
scenario II, p =(0.038, 0.526, 0.225, 0.094, 0.059, 0.0001, 0.014, 0.0001, 0.042, 0.042). For
scenario III, p =(0.015, 0.570, 0.247, 0.076, 0.0001, 0.024, 0.0001, 0.0001, 0.0001, 0.081).

For each scenario, 1000 data sets were generated. For each simulated data set, the MLE and
EE of the probability of HPV infection persisting at least t years (t ∈ {0.5, 1.0,…, 3.5}) were
evaluated. The MLE was computed based on equation (6). Here and in the sequel the EE
was evaluated using the Kaplan-Meier estimator as described in Koshiol et al. [7]. In
particular, to compute the EE the duration of individual type-specific infections was
calculated as the time between the first HPV positive visit and the first of two consecutive
HPV negative visits. The previous HPV result was carried forward for single intermittent
missing HPV results. HPV infections followed by a single HPV negative result at an
individual's last study visit were censored at the last visit. Six months was added to the
duration for HPV infections that were positive at the final visit. Women with missing HPV
results at two or more consecutive visits were excluded.

The average estimates over the 1000 simulations for scenario I are presented in Figure 1. As
expected, the EE tended to over-estimate the probability of HPV persistence. On the other
hand, the MLEs were approximately unbiased. Results from scenarios II and III were similar
(not shown). For each simulated data set, 95% profile likelihood-based CIs associated with
the MLEs were calculated. Empirical coverage for each scenario was calculated by the
proportion of simulations where the CI overlapped the true probability HPV persists at least
j = 1,…, 7 units of time. The empirical coverage of the profile likelihood-based CIs given in
Table 1 indicates approximate nominal coverage.

5. Extensions
In the semi-Markov model developed in Section 3, a woman can occupy one of two possible
states: HPV type negative (state 0) or HPV type positive (state 1), where state 0 is assumed
to be Markov and state 1 is allowed to be semi-Markov. Extensions of this two-state model
are considered in this section. Note the two-state model makes no distinction between (i)
women who have never been infected during the study and (ii) women who have been
infected during the study but subsequently cleared infection. For both (i) and (ii) the
probability of infection in the two-state model equals p01, i.e., no distinction is made
between the probability of the initial HPV infection (after time 0) and the probability of
subsequent infections. To allow for such a distinction, the two-state model can be extended
to a three-state model with state space S = {0*, 0, 1}, where state 0* denotes being HPV
type negative with no prior type-specific infection (since time 0), 0 denotes being HPV type
negative after an HPV type infection, and as before 1 denotes HPV type positive. Assume all
individuals are in state 0* at time 0, that states 0* and 0 are Markov, and that individuals
may transition from states 0* to 1, from 1 to 0, and from 0 to 1. Then the likelihood
development and inferential procedures for the three-state model are analogous to those in
Section 3, except there is one additional parameter to estimate, namely the probability of
transition from state 0* to 1, denoted by p0*1.

The two-state model can be viewed as a special case of the three-state model where p01 =
p0*1. Thus the three-state model can be used to assess the fit of the two-state model using a
likelihood ratio test comparing the two models. Under the null hypothesis the two-state
model holds, i.e., p01 = p0*1, the likelihood ratio test statistic will have approximately a χ2

distribution with 1 degree of freedom.

The three-state model can be generalized even further by letting state 0 be semi-Markov.
Likelihood development and inference are again similar to Section 3, except the single
parameter p01 is replaced by nt − 1 parameters p01(1), p01(2),…, p0+(nt − 1). Note the
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transition probabilities from state 0 to state 1 are only identifiable from the observable data
for sojourn times up to nt − 2 since all individuals are assumed to begin in state 0*. For the
estimands defined in Section 3.2, p01 is replaced by p01 (1). Based on this more general
three-state model a likelihood ratio test can be employed to assess whether the simpler three-
state model assuming state 0 is Markov adequately fits the data, with the test statistic having
approximately a χ2 distribution with nt − 3 degrees of freedom (assuming nt > 3). Further
generalization of the three state model allowing for state 0* to be semi-Markov is more
difficult as the duration a woman has occupied state 0* prior to the start of a study will in
general not be known.

6. HIV Epidemiology Research Study (HERS)
In this section we analyze data from the HERS cohort described in Section 1.1. Women
were included in this analysis if they were HIV seropositive at baseline and had two or more
study visits, HPV DNA results at study entry, a cervix, and no cervical treatment in the past
6 months prior to enrollment. Only data from the first 10 visits were analyzed. At each visit
in HERS women were tested for 26 possible HPV types. For this analysis, HPV type 53, 16,
and 18 infections were analyzed separately. HPV type 53 was analyzed because it was the
most common individual type among HIV positive women enrolled in the study [7]; HPV
types 16 and 18 are the two most common cancer-associated HPV types worldwide [22].
Each type-specific analysis only included women who were HPV type-specific negative at
study enrollment. For instance, the HPV type 16 analysis included only the 524 women who
were not infected with HPV 16 at study enrollment. Similarly, there were 516 (500) women
who were not infected with HPV type 18 (53) at enrollment.

Type-specific persistence was estimated from the HERS data using the EE and the semi-
Markov models. The EE was computed as described above. In order to fit the discrete time
semi-Markov models to the HERS data, visit times were rounded to the nearest six month
scheduled time point; visit times were not rounded for calculating the EE. The two-state
model from Section 3 and the three-state models from Section 5 were fit separately for each
type. For type 16 the three-state model assuming states 0* and 0 are Markov and state 1 is
semi-Markov provided a better fit than the two-state model (likelihood ratio test p-value <
0.001). Similar results were obtained for type 53 (p-value < 0.001) and type 18 (p-value <
0.001). For type 16 there was no improvement in fit by allowing state 0 to be semi-Markov
(p-value = 0.23). Similar results were obtained for type 53 (p-value = 0.12). For type 18 the
more general three-state model provided a slightly better fit (p-value = 0.01), suggesting the
probability of reinfection with type 18 may be time dependent. Estimates of type-specific
persistence for the best fitting models are given in Table 2 for all types and in Figure 2 for
type 16. As expected, estimates using the EE are higher than from the semi-Markov models.

7. Conclusion
This research was motivated by an analysis of the HERS cohort to estimate HPV type-
specific persistence. Our results suggest EEs may result in overestimation of persistence of
HPV type infections. In general, EEs are not consistent, and simulation studies demonstrate
substantial bias of EEs in finite samples. Alternatively, using discrete-time semi-Markov
models, we consider a maximum likelihood-based estimator of HPV type-specific
persistence. If the model assumptions are correct, the resulting MLEs will in general be
consistent estimators of persistence; simulation studies indicate the MLEs are approximately
unbiased. Comparison of the EE and MLE applied to the HERS data indicates the bias of the
EE can be large in practice.
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There are several appealing aspects of the MLE of HPV type-specific persistence. First, this
estimator requires no parametric distributional assumptions or a priori specification of
guarantee times. Second, the underlying semi-Markov model allows the probability of
clearing an HPV type infection to possibly depend on the time infected with that type. Third,
the MLE gives valid large sample inference when the HPV infection model is correctly
specified and the missing data mechanism is MAR. Simulation results suggest the MLE is
approximately unbiased in finite sample settings similar to HERS. Finally, the method is
flexible with respect to estimands. Namely, an estimator of any definition of persistence can
be constructed provided the estimand can be written as a function of the transition
probability estimates. In other words, if an investigator wishes to consider more than one
persistence definition (e.g., time until first of two negative tests compared to time until first
negative test), the MLEs of both types of persistence are easily computed as functions of the
MLEs of the transition probabilities.

The proposed method depends on time being sufficiently discrete, which can be achieved by
rounding or coarsening of observation times for studies that do not have planned visit
schedules. This discretization may lead to bias or loss of precision. However, without
coarsening the observation times, the number of parameters in the semi-Markov model may
become prohibitively large. Thus, this method may be best suited for studies with regularly
scheduled visits (e.g., clinical trials), providing a non-parametric approach to summarizing
the observable discrete infection data from such studies. If, on the other hand, the goal is to
extrapolate from the observable data to the underlying unobservable continuous infection
process, then the methods proposed by Kang and Lagakos [13] may be more appropriate. By
treating time as continuous, the Kang and Lagakos method does not require discrete visit
times. Their method does however require certain strong assumptions, such as parametric
distributions and guarantee times, that the discrete time model does not require.

There are many possible avenues of further methodological research related to estimating
HPV persistence. For instance, both the proposed method and the Kang and Lagakos
approach assume all individuals are HPV type negative at baseline. However, in longitudinal
studies of HPV, a woman may already be infected at the first study visit, i.e., at study
enrollment. Further research is needed to allow for such “prevalent infections.” Additional
research is also needed on methods to combine data across HPV studies, where visit
schedules and patient characteristics may differ between studies.

Finally we note that while motivated by HPV, the discrete time semi-Markov model could
be applied to other settings where recurrent infections or re-activations occur, such as
malaria, herpes, or parasitic infection [23, 24, 25], and only panel data is available on the
infection/activation state.
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Appendix
Here we sketch a proof that the EE is not, in general, a consistent estimator of the duration
of infection. Consider the case where there are three follow-up time points (i.e., nt = 3) and
there is no missing data. The table below shows the eight possible observed data patterns
and for each pattern the corresponding estimated duration of HPV infection τ̃ used in
computing the EE (as described in Sections 2 and 4).

x = (x0, x1, x2, x3) τ̃
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(0100) 1

(0111) 3+

(0101) 3+

(0110) 2+

(0010) 1+

(0011) 2+

(0001) 1+

(0000) *

Here, for j ∈ {1, 2, 3}, we let j+ denote scenarios where the duration of infection is right
censored in the sense that from the observed data the duration is known to be at least j units
of time and possibly longer. For example, for x = (0111), the duration of infection is at least
3 time units. Because duration of infection is defined as the time between the first type-
specific HPV positive visit and the first of two consecutive type-specific HPV negative
visits, for x = (0101) the duration of infection is also at least 3 time units. Note in the last
row that x = (0000) does not have an estimated duration of HPV infection τ̃ since individuals
with this observed data pattern are never infected during follow-up and thus contribute no
information about the duration of infection.

As mentioned in Section 4, Koshiol et al. added one time unit to the estimated duration of
infection for HPV infections that were positive at the final visit. This convention is not
employed in the table above, but were this convention adopted the proof below remains
unchanged.

Now consider estimating the probability an infection is of duration 1 time unit (i.e., an
individual is HPV positive for one time unit followed by two consecutive negative tests).
Under the semi-Markov model, this probability equals ϕ(1) = p10(1)(1 − p01). Below we
show that the EE of the probability an infection is of duration 1 does not in general converge
in probability to ϕ(1). In particular, for a data set of individuals with three follow-up time
points and no missing data, the Kaplan-Meier estimator of the probability of an infection
having duration 1 equals

(9)

where the summation is over all individuals. The numerator of (9) is the number of
individuals with an infection of duration 1 time unit and the denominator of (9) is the
number of individuals with an infection of duration at least 1 time unit. By the weak law of
large numbers and Slutsky's theorem,

(10)

Clearly the right side of (10) does not in general equal ϕ(1) = p10(1)(1 − p01). In fact, the
right side of (10) will always be less than ϕ(1) provided 0 < p01 < 1.

To illustrate the extent of the bias that can occur by using the EE, suppose p01 = 0.016 and
p10(1) = 0.653. Then the probability an infection is of duration 1 equals ϕ(1) = 0.643. Yet as
the sample size tends to infinity, the EE ϕ ̃(1) will converge in probability to 0.218.
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Figure 1.
Mean of empirical estimator (EE) and maximum likelihood estimator (MLE) from
simulation study scenario 1 (p = (0.016, 0.653, 0.151, 0.085, 0.0001, 0.0001, 0.028, 0.0001,
0.0001, 0.083))
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Figure 2.
Empirical estimate (EE) and maximum likelihood estimate (MLE) of HPV type-16
persistence among women in HERS cohort who were HIV positive and HPV negative at
study entry.
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