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Abstract
Analysis of a large longitudinal study of children motivated our work. The results illustrate how
accurate inference for fixed effects in a general linear mixed model depends on the covariance
model selected for the data. Simulation studies have revealed biased inference for the fixed effects
with an underspecified covariance structure, at least in small samples. One underspecification
common for longitudinal data assumes a simple random intercept and conditional independence of
the within-subject errors (i.e., compound symmetry). We prove that the underspecification creates
bias in both small and large samples, indicating that recruiting more participants will not alleviate
inflation of the Type I error rate associated with fixed effect inference. Enumerations and
simulations help quantify the bias and evaluate strategies for avoiding it. When practical,
backwards selection of the covariance model, starting with an unstructured pattern, provides the
best protection. Tutorial papers can guide the reader in minimizing the chances of falling into the
often spurious software trap of nonconvergence. In some cases, the logic of the study design and
the scientific context may support a structured pattern, such as an autoregressive structure. The
sandwich estimator provides a valid alternative in sufficiently large samples. Authors reporting
mixed-model analyses should note possible biases in fixed effects inference because of the
following: (i) the covariance model selection process; (ii) the specific covariance model chosen; or
(iii) the test approximation.
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1. Introduction
1.1. Motivation

The Context—The general linear mixed model has become a standard tool for modeling
correlated continuous data from longitudinal and clustered sampling. The stacked-data
structure creates parallels with univariate linear regression. The arrangement allows simple
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interpretation of mean values, which has helped make it popular with researchers with
limited statistical background, as well as statisticians working with them.

The Problem—The flexibility of the general linear mixed model has created a false sense
of security about robustness to covariance misspecification and assumption diagnostics,
particularly in large samples. We demonstrate that underfitting the covariance structure for
the responses can optimistically bias inference about fixed effects. Furthermore, the amount
of bias remains unchanged as the number of subjects increases to infinity. Analytic,
simulation, and enumeration results quantify the amount of bias in small and large samples.

The Solution—Good statistical practice can avoid or solve the problem. Conscientious
application of existing tools gives a dependable strategy for selecting, verifying, and
reporting a covariance model giving accurate inference about fixed effects in small and large
samples. Analysis of a large longitudinal study of child care highlights the importance of the
strategy, even in large samples.

1.2. Asthma in childhood
Asthma affects more than nine million American children 0-17 years old [1]. In a cross-
sectional study, Blackman and Gurka [2] found that children with severe asthma were more
than four times more likely to have chronic developmental and behavioral problems of
various sorts, including depression or anxiety and conduct problems. However, the cross-
sectional sampling plan limits the value of the results.

In contrast, a longitudinal design lies at the heart of the Study of Early Child Care and Youth
Development (SECCYD) [3]. The SECCYD followed up children from 10 US sites from
birth through age 15 years. Families were recruited during hospital visits following the birth
of the child in 1991. A total of 1364 families enrolled from the 8986 eligible births. By
phase IV (2005-2008; age 14-15 years), 1056 families remained enrolled. The repeated
collection of standard psychometric measures throughout childhood provided a unique
opportunity to examine the role of chronic asthma in the development of a child. Interest lay
solely in fixed effects inference: does the average longitudinal profile for children with
asthma differ from the profile for those without? Although selection of the covariance model
was secondary, the choice was found to be vital in making correct decisions for the primary
aim.

2. Previous research and current views
The linear mixed model is composed of fixed effects, random effects, and a residual error. In
medical research, the first component is typically of interest, whereas the latter two
components comprise the covariance portion of the model. There are no fully reliable ways
to identify the best covariance model, at least in small samples [4]. Verbeke and
Molenberghs [5, pp. 125-127] noted that it is common to include random intercepts and
additional random effects only for time-varying covariates. They then presented a set of
guidelines for the inclusion of additional random effects, noting that they ‘favor the
inclusion of too many random effects rather than omitting some’ (p. 127). However, they
also noted that inclusion of too many random effects may lead to nonconvergence.

In practice, limitations of current software and user behaviors, magnified in small sample
settings or in the presence of missing data, make nonconvergence common. Many analysts
interpret a model failing to converge as empowering them to simplify the model, whether it
be through the fixed effects or the covariance model. A more parsimonious fixed effect
structure may be an effective remedy for nonconvergence, particularly in the presence of a
small number of subjects and/or a limited number of repeated measures (in the case of time-
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varying covariates). In the context of covariance model selection, the press of time and a
belief in the robustness of the mixed model with respect to fixed effects inference encourage
this approach.

Some authors have considered covariance misspecification for tests about means, that is,
fixed effects in mixed models. Liang and Zeger [6] proposed the ‘sandwich’ estimator for

 in seeking inference about the fixed effects robust to misspecified covariance. Verbeke
and Molenberghs [5, p. 62] noted the following: (i) the sandwich estimator is less efficient
than the one using the correct covariance model; and (ii) valid inference requires additional
assumptions about the missing data. In addition, the sandwich estimator has not been fully
evaluated in small samples.

Another approach to covariance misspecification has been to ask whether underfitting can
allow valid inference. Jacqmin-Gadda et al. [7] demonstrated an inflated type I error rate
with covariance misspecification in simulations in the general linear mixed model with
Gaussian errors. For some special cases with complete and balanced Gaussian data, Lange
and Laird [8] proved that ‘fitting a parsimonious covariance structure need not give
inappropriate variance estimates, even if the parsimonious structure is inadequate.’ They
demonstrated in the special cases considered that inclusion of both a random intercept and
slope is conservative in that the variance estimates of the fixed intercept and slope will not
be biased downward. The theory and simulations in the present paper expand on their
discussion, specifically providing evidence against the use of the compound symmetry
assumption in general longitudinal settings.

Scientists in a variety of health and social science settings often assume compound
symmetry for the covariance model of longitudinal responses. Some do so by fitting a
random-intercept-only mixed model and assuming residual error covariance is diagonal with
homogeneous variances [9, 10], whereas others use the uncorrected univariate approach to
repeated measures (UNIREP) test [11, 12]. The unadjusted UNIREP test assumes compound
symmetry. Muller and Stewart [13], among many others, have provided further discussion of
the UNIREP approach. In addition, convergence failure leads some data analysts to remove
additional random effects and retain only a random intercept (and implicitly assume
compoundsymmetry of the responses). Scientists often assume compound symmetry to
simplify a power analysis for the design of a longitudinal study. Some free software for
planning repeated measures studies use compound symmetry exclusively [14].

Despite the widespread use of a compound symmetric (CS) covariance model for
longitudinal responses, little evidence can be marshaled to defend the approach. Equally
important, many authors studying the UNIREP approach, dating back to Box [15, 16], have
demonstrated inflated type I error when falsely assuming compound symmetry. We present
analytic and numerical evidence to demonstrate that underspecification of the covariance
model can lead to very inaccurate fixed effect inference in a mixed model because of an
inflated type I error rate and suggest ways to ensure accurate inference.

3. Analytic results
3.1. Notation

We use the notation in Chapters 3-5 of Muller and Stewart [13]. Subscripts have been added
as needed to distinguish distinct expressions, which play parallel roles in distinct model
formulations, with M for multivariate and m for mixed models. All results assume Gaussian
errors and testable hypotheses (estimable secondary parameters with full-rank contrast
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matrices). The linear mixed model, that in the form which Laird and Ware [17] described,
may be written in the notation of Muller and Stewart [13, Chapter 5] as follows:

(1)

Here, i ∈ {1,…, N }, for N the number of independent sampling units (usually subjects) yi is
a pi × 1 vector of observations on person i; Xi is a pi ×q known design matrix for person i,
whereas β is a q×1 vector of unknown population parameters. Also, Zi is a pi×m known
design matrix for person i corresponding to the m×1 vector of unknown random effects di,
whereas ei is a pi×1 vector of unknown residual errors. The vectors di and ei are Gaussian
and independent with mean 0 and covariance matrices Σdi (τd) and Σei (τe), respectively. In

turn,  is characterized by the finite set of parameters in
the r×1 vector τ containing the unique parameters in τd and τe.

A focus on inference about ‘fixed’ effects, the mean response values, has led others to
consider the ‘population average’ model,

(2)

where e+i = Zidi + ei. Formulation (1) allows conveniently specifying latent random
intercepts, slopes, and others, which implies a covariance model for the responses. In
contrast, formulation (2) allows directly specifying the response covariance model, which in
some cases implies the latent random components. A functional mapping from random
effects to a covariance structure always exists. However, the mapping need not be unique.

Clustered data arising from schools, hospitals, and others usually generate CS data. Such
observations have a common variance and a common correlation for any pair. Cluster i has
pi observations. The same covariance structure arises by specifying the following: (i) a
random intercept as the only random effect, so Zi=1pi and di is 1×1, a scalar; and (ii)

 (a conditional independence assumption for within-subject residual). The
responses have

(3)

For intraclass correlation coefficient ρ between observation j and j’, the model implies

 and . Having  requires ρ ≥ 0, whereas −1/ (pi – 1) < ρ
suffices for compound symmetry. The matrix ν (yi) has a largest eigenvalue of λ1iD=σ2 [1+
(pi – 1) ρ] with eigenvector pi

−1/2pi, whereas all other pi –1 eigenvalues are λ2=σ2 (1 – ρ).
Typically, cluster designs are discussed in terms of {γ2;ρ} [18] rather than the equivalent
pair {λ1i ;λ2}.

3.2. A useful class of mixed models
We restrict attention to tests of fixed effects in the general linear mixed model with Gaussian
errors. In this section and the next, we will prove the following statement:

Proposition 1 Inference for fixed effects in the general linear mixed model is
not robust to covariance misspecification—Specifically, we prove that falsely
assuming compound symmetry, which ignores heterogeneity within subject, creates biased
tests and confidence intervals for data with no missing values (complete and balanced). The
result holds in small and also in asymptotically large samples. The often-used assumption of

Gurka et al. Page 4

Stat Med. Author manuscript; available in PMC 2012 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



compound symmetry serves as a logical counterexample that allows us to make the
previously mentioned claim.

To prove and enumerate the impact of under fitting the covariance model on tests of fixed
effects, we focus on a restricted class of models, which allows finding closed-form and
small-sample (exact) answers. Hence, our proof centers on the following: (i) mixed models,
which can be stated as a multivariate model; and (ii) hypotheses, which can be stated as a
general linear multivariate hypothesis. The multivariate model corresponds to the
‘population average’ model formulation in Equation (2), which has no explicitly defined
random effects. This multivariate model, as Muller and Stewart [13, Chapter 3] defined, has
restrictions that demand a design with complete balance within subjects, with no missing or
mistimed data and no repeated covariates. An unstructured covariance matrix will be
assumed to be the correct model for the responses.

Muller and Stewart [13, Table 6.5, Table 6.6, Section 12.1, and especially Equation 12.5]
described how to state any multivariate model as a general linear mixed model. As
traditionally written, the multivariate model Y =XMB+E describes N rows of independent
sampling units (subjects) and p columns of repeated measures. Here, B is a q×p matrix of
parameters with rows corresponding to between-subject effects and columns (time indicator)
to within-subject (time) effects. By describing only the data for subject i and therefore row i
in the multivariate model gives 1×p matrix Yi = XM i B + Ei, with Yi = rowi (Y) and XMi =
rowi (XM), whereas Ei = rowi (E). The equivalent mixed model form arises as

(4)

which is the population average model with n = N · p observations, and ⊗ is the Kronecker
product. The error term can be interpreted as e+ i = Zidi + ei . For example, if Zi =1pi and
elements of the residual ei are independent and identically distributed (i.i.d.), then ν (yi) will
be CS.

For inference about population means (i.e., fixed effects), the parameter matrix of mean
differences for the multivariate model is Θ =CMBU with hypothesis H0 : CMBU = Θ0.
Transforming to the mixed model creates vector θ = Cmβ=vec (Θ)=(Cm ⊗ U’)vec(B’). The
multivariate matrix CM defines contrasts between groups. The multivariate matrix U defines
contrasts within an independent sampling unit (such as person) across level of response
(such as time). The mixed model contrast matrix Cm does the work of both CM and U.

3.3. Incorrectly assuming compound symmetry; ignoring heterogeneity within subject
A test of all time trends from linear through p–1 for p repeated measures will illustrate the
analytic and simulation results, which actually cover a wider class of situations. Stacking all
of the data together as ys=[y’1 … y’i … y’N]’ and Xs=[X’1 … X’i … X’N]’ allows writing
ys=Xsβ+e+s and provides a convenient form for the Wald statistic in the mixed model:

(5)

with am = rank(Cm) and . A mixed model corresponding to a multivariate model

has Cm = (U’ ⊗ CM and . Kenward and Roger [16] mentioned
that in such models, Fm is a 1−1 function of the Hotelling–Lawley statistic in the
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multivariate model. The exact distribution of Fm when falsely assuming compound
symmetry for a multivariate equivalent model may be derived as outlined in Appendix A.
Assuming compound symmetry in the mixed model further reduces the statistic to the
original UNIREP statistic. The following theorem and corollary summarize the most
important conclusions that can be deduced.

Theorem 1—An interesting class of general linear mixed models have the following: (i)
complete and balanced Gaussian data; (ii) a common (finite and full rank) population
covariance matrix for each independent sampling unit (e.g., subject); and (iii) no time-
varying covariates. Assuming CS covariance of the responses for any such model leads to a
simple closed-form expression for the Wald statistic from a test of fixed effects. Algorithms
for computing the distribution function of quadratic forms allows exact calculation of test
size and power.

Proof—Appendix A contains an explicit derivation of easily computed expressions for the
distribution function of the test statistic in small and asymptotic samples.

Corollary 1—Incorrectly assuming compound symmetry among responses inflates type I
error rate for Wald tests of fixed effects in a general linear mixed model for small or large
samples.

Proof—Finite and infinite large-sample examples in the exact calculations in the following
text (Section 3.4) prove the corollary by giving counterexamples to the implicit claim of
guaranteed correct test size.

An abundance of results [15, 16, 19, 20] make it clear that the uncorrected UNIREP test can
badly inflate type I error rate in small samples. The same test arises in the general linear
mixed model whenever compound symmetry has been assumed but does not hold. The
between-within approach for mixed models (SAS (SAS Institute Inc., Cary, NC, USA) PROC
MIXED) [21] provides one direct path. However, all other mixed model test choices (such
as containment, residual, Satterthwaite, and Kenward–Roger in SAS) will also inflate type I
error rate because of the assumption error. The proof contains results that show that type I
error inflation remains just as high as N → ∞.

3.4. Exact calculations
Exact calculations illustrate the bias described in the corollary for each combination of N ∈
{50, 100, ∞} and p ∈ {5; 10}, based on models that assumed two groups with a mean
model including only intercept, time (linear), group, and group time (linear), so Xi had rank
4. The pi time points were equally spaced from 0 to 1.

Using the same mean model structure, four covariance models were considered true. They
may be summarized as covariance model: random effects and within-unit residual error,
namely

1. 1,IID: random intercept and i.i.d. within-unit residual (i.e., compound symmetry);

2. 1,AR: random intercept and a first-order AR(1), autoregressive within-subject
residual;

3. 2,IID: random intercept and slope, with an i.i.d. within-unit residual; and

4. 2,AR: random intercept and slope (correlated = 0.25) with an AR(1) within-unit
residual.
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Population variances of the random intercept and slope (when included) were 2 and 1,
respectively. The within-unit residual variance was 1 with an AR(1) correlation of 0.25
when included.

Enumerations used the _QPROB module from the free software POWERLIB [22]. Kim et al. [23]
described the _QPROB algorithm (because of Davies [24]). Exact asymptotic calculations
used the SAS chi-square function. We calculated the type I error rate for testing the fixed
effect of group time (linear) interaction (i.e., the group difference in slopes) when assuming
compound symmetry.

Correctly assuming compound symmetry (1,IID) gives the correct type I error rate of 5%.
When p = 5, incorrectly assuming compound symmetry gives a type I error rate of 9.0%
when the true covariance was (1, AR). Type I error rate increases to 9.8% and 13.7% when
the true covariance also contains a random slope: (2,IID) and (2,AR), respectively. When p
= 10, the type I error rate rises to 14.5% and 19.7% when assuming compound symmetry,
and the true covariance is (2,IID) and (2,AR), respectively. The exact Type I error rates for p
∈ {5, 10} were equal (to three digits of accuracy) for N ∈50; 100;∞}. The proof requires no
missing data (to take advantage of simplifications in the theory for multivariate models).
Obviously, complete and balanced data rarely occur in some applications, such as clinical
trials. However, the simulations (Section 4) support the general proposition that with or
without missing data, incorrectly assuming compound symmetry inflates type I error rate in
the general linear mixed model.

For the sake of brevity, parallel results about ignoring heterogeneity between subjects, as
distinct from ignoring heterogeneity within subjects, have been omitted. Key features are
well-known from the study of univariate linear models: heterogeneity between subjects
strongly interacts with unequal cell sizes to inflate type I error rate for three or more groups
in ANOVA [25]. The mixed model inherits the same vulnerability. However, a
knowledgeable and conscientious analyst can directly model such heterogeneity in a mixed
model formulation.

4. Simulation study
We have proved that incorrectly assuming compound symmetry leads to inflated type I error
rates, with complete and balanced data. Simulations extend the results to missing data. All
simulations used SAS/IML, PROC MIXED, and the DATA step. The normal function generated
pseudorandom Gaussian values. The exact conditions presented in Section 3.4 were
replicated for the simulations. We generated 10,000 pseudorandom samples for each {N; pi}
∈ {{50, 5}, {50, 10}, {100, 5}, {100; 10}}, with each subject having pi time points equally
spaced from 0 to 1. With α = 0.05, the 10,000 pseudorandom samples give a confidence
region for the estimated type I error rate of . In practice, the
acceptability of a particular type I error rate will vary with the preferences of the reader. A
total of 20% of the data were set to missing by pseudorandom deletion within person
(uniform sampling without replacement).

We calculated the type I error rate for testing the fixed effect of Group×Time (Linear)
interaction (i.e., the group difference in slopes). For each of the four true population
covariance structures (listed in Section 3.4), we tabulated type I error rates when fitting the
same four distinct covariance models, in addition to fitting an unstructured covariance. We
employed restricted maximum likelihood (REML) estimation with the Kenward–Roger
approach [26] for all five cases. We also tabulated the type I error rate when assuming
compound symmetry with the sandwich estimator, which required the containment method
[21] because the Kenward–Roger approach does not apply.
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Figure 1 presents empirical type I error rates for the simulations with pi = 5 observations per
subject. Results from the simulations with {N; pi } ∈ {{50, 10} ; {100, 10}} were similar
and are not shown. The results illustrate the generality of the theorem and the substantial
bias that can occur. Even with a correctly specified covariance model, observed type I error
rate has some modest bias for smaller sample sizes, especially when the true models include,
an AR(1) within-unit error covariance. The (true) (1,AR) model has a 5.3% type I error rate
when correct, and the (true) (2,AR) model has a 4.7% type I error rate when correct, for N =
50. As expected, moderate to severe bias in type I error rate can occur when incorrectly
assuming compound symmetry, with type I error rates no smaller than 7.6% for any of the
other examined true covariance models. The bias remains substantial even when the number
of subjects increases from 50 to 100.

It is important to note what works in the absence of reliable covariance model identification
techniques. Not surprisingly, if the covariance model chosen contained the true model as a
special case, or differed only modestly from the true model, then type I error rate was
roughly correct. For example, the random intercept and slope (i.i.d. error) covariance model
that Lange and Laird [8] considered controlled type I error rate for the four simple models
considered, with a small conservative bias when the true model is indeed compound
symmetry (4.1% and 4.2% when N = 50 and N = 100, respectively). Our results imply that it
would be a simple exercise to find other covariance patterns for which the choice fails to
control type I error rate. Fitting an unstructured covariance model always gives a safe choice
when focused on inference about fixed effects, if one is willing to accept a type I error rate
no greater than about 6%. It is clear that the unstructured covariance model is over-fitting
data generated from a model with at most two random effects. As many practitioners know,
estimating an unstructured covariance can create convergence problems, especially as the
number of observations per subject increases or the number of independent observations
decreases. For example, with N 100 and p 10 (results not shown), convergence for the
unstructured model was achieved only 61% ofDthe time. Among the models that converged,
type I error rates were inflated, no matter what the underlying true model was. For the
sample sizes considered, using the sandwich estimator improved inference no matter what
covariance model was assumed, without the convergence problems. However, bias similar
to what was observed for the unstructured model remains, particularly for small samples.

5. Application to the Study of Early Child Care and Youth Development
asthma data

Modeling behavioral outcomes over time in the SECCYD data further illustrate the
analytical and numerical results. Specifically, assuming CS errors or equivalently including
only a random intercept with conditional independence of within-subject error leads to
different inferences than for more general covariance models. Both look plausible, although
both cannot be correct because they disagree. The analytic and simulation results suggest
that the results for the complex covariance model are the correct ones.

Developmental measures collected in the SECCYD allow comparing children with and
without various phenotypes of asthma. The primary outcome was the Child Behavior
Checklist (CBCL) [27]. The CBCL measures social competence as well as externalizing and
internalizing behavior problems. The parent completed age-specific versions of the CBCL,
standardized as a ‘T-score’ (mean = 50, SD = 10), at age 36 and 54 months, as well as
during grades 1, 3, 4, 5, and 6, and at age 15 years. Higher scores indicate more problematic
behavior, with T-scores greater than 70 considered as clinically relevant.

We compared internalizing behavior trends between those who developed asthma early (by
age 4 years) and those who never developed asthma. Asthma status could be classified for
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795 children: 58 children had asthma, whereas 737 did not. Linear, through cubic orthogonal
polynomial trends for time, were initially included as predictors, as well as all corresponding
interactions, with the interactions of age with asthma status of particular interest. Covariates
included sex, maternal age at birth, the mean maternal depression score during years 0-3, the
mean home environment score (higher indicating better) during years 0-3, and the mean
child care quality score during years 0-3 (higher indicating better). Initially, compound
symmetry was assumed. A backward stepwise selection procedure was performed for the
fixed effects by removing the least-significant higher-order interactions one by one until
only significant interactions (and/or main effects) remained. Table I displays the estimates
and the p-values for the final fixed effects model of internalizing CBCL T-scores when
assuming compound symmetry. In addition, estimates were calculated for the final (fixed
effect) model using two additional covariance models: (i) unstructured; and (ii) random
intercept and slope with an AR(1) within-unit error. The sandwich estimator (with
containment) assuming compound symmetry was also applied. With respect to the
recommendation of Verbeke and Molenberghs [5, Section 2.3], we fitted additional models
not shown here. Given the consistency of these other models, we did not display results from
these others, including one with random effects through cubic age. Table I also displays the
corresponding fixed effects estimates and the p-values for these other covariance models.

Comparisons of the fixed effect estimates and the p-values for the various covariance
models reveal agreement for most values (Table I). However, asthma status was found to
significantly interact with age (p = 0:03) in a linear fashion when assuming compound
symmetry; there was no such significant interaction when fitting any of the other covariance
models (p ≥ 0:10 in all cases). If one were to have fit a random-intercept-only model to these
data, one would have concluded, apparently erroneously, that those with asthma exhibited
higher internalizing behavior scores over time. A similar contrast is also observed in
considering gender and behavior over time, with the compound symmetry model giving a
significant linear change in behavior scores between boys and girls as they mature. We
emphasize that it is safer to select the fixed-effect model based on a sufficiently complex
covariance model. We omit the details simply for the sake of brevity and simplicity.

6. Discussion
A common choice for a covariance model of the responses in a general linear mixed model
arises from including only a random intercept and assuming homogeneous and independent
errors within subject. The choice requires the responses to have CS covariance, an
assumption that arises in a variety of ways.

We proved that incorrectly assuming compound symmetry inflates type I error for inference
about the fixed effects in a general linear mixed model, in both small and large samples.
Numerical results illustrate the magnitude of the problem. Simulations demonstrate that the
problem occurs with missing data. Our focus here has been the compound symmetry
assumption; the proof does not directly apply to other assumed covariance structures (e.g.,
random intercept plus slope, etc.). However, our results prove that robustness of fixed
effects inference with an underspecified covariance model cannot be guaranteed in small or
large samples. The generalization applies not only to mixed models that incorporate random
effects but also to any multivariate model, particularly those with repeated measurements.

The results provide some guidance for achieving accurate inference for fixed effects. The
first step involves considering general covariance models. Many analysts, including
ourselves, would not consider compound symmetry for longitudinal data. Despite that, many
recently published studies explicitly or implicitly make the assumption. The false hope that
large samples allow ignoring insufficient covariance model complexity may motivate the
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approach. In contrast to longitudinal data, cluster-based sampling typically provides
exchangeability of observations and hence CS correlation within cluster. A careful review of
the sampling plan to ensure the validity of the exchangeability assumption seems necessary.

In addition to the use in data analysis, the compound symmetry assumption has been used
often for power analysis. Although preferred for cluster samples, realistic correlation
patterns for longitudinal data include a linear exponent autoregressive (LEAR) reliable or
damped exponential model [28], which generalize AR(1) structure. In parallel to the results
on type I error rate, a valid power analysis requires a covariance model aligned with the
population. The example power values for repeated measures designs in [29] allow
concluding that misspecification of the covariance matrix can lead to computing power
either too high or too low because of misalignment.

If the data allow it, one should model an unstructured covariance. Unfortunately,
convergence often becomes an issue with mixed models. Cheng et al. [30] provided practical
advice on improving the chances for convergent models. The least appreciated strategies
center on minimizing collinearity in both fixed and random predictors. The importance of
centering and scaling all predictors (especially time) and the use of full-rank coding
schemes, preferably orthogonal, cannot be overemphasized.

When a simple covariance model (compound symmetry, unstructured) can not be assumed,
the mixed model provides advantages in that one can incorporate random effects to model
the covariance structure. Our work extends the results of Lange and Laird [8] by
demonstrating that modest expansion of the random effects (covariance structure) helps but
cannot be guaranteed to be sufficient. We warn against underspecification of the covariance
model, no matter whether it is a general structure or one composed of random effects.
Fortunately, conscientious attention to good statistical practices in covariance model fitting
can provide confidence in fixed effect inference in a mixed model.

The sandwich estimator appeals simply because it does not require an elaborate covariance
model selection process and can simplify convergence. As far as we know, its performance
in small-sample settings has been relatively unstudied and should be the focus of future
work. Specifically, DOF approximations should be studied with the sandwich estimator.
However, in large-sample settings, where we prove that assuming compound symmetry
results in substantial bias, the sandwich estimator seems to be a valid alternative.

We have focused on settings with primary interest in inference about fixed effects and little
interest in covariance structure itself. Even with a focus on fixed effects, accurate inference
requires selecting an adequate approximation for the true covariance structure.
Unfortunately, although many model selection criteria have been suggested, none has been
found to be clearly superior. Part of the difficulty stems from the interaction between fixed
effect and covariance model selection. Overall, one principle seems clear: controlling type I
error for tests of fixed effects demands avoiding an underfitted covariance model.
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Appendix A. Proof of the theorem
For the sake of brevity, we use the notation and many results in [13, Chapters 1, 3, 5, 12, 14,
16, 18] without specific references. We restrict attention to mixed models that are valid
multivariate models. Stacking all of the data sorted by subject gives vec(Y’) = vec[(XMB)’]
+vec(E’) = (XM ⊗ Ip)vec(B’)+vec(E’), which may be stated as ys=Xsβ + e+s, the population
average model for all n= N·p observations. Here, ys=[y’1 … y’i 7#x2026; yN]’ and Xs=[X’1
… X’i … XN]’.

With ν (yi) = Σi for subject i , the multivariate model gives maximum-likelihood estimations

noniteratively:  and . Here  is functionally
independent of , so  is invariant to , a property not guaranteed in the mixed model.

REML estimates are  and  for rM = rank(XM). Mixed model estimates

are , ,  for subject i and . Hence,

 and

. The Wald statistic reduces to .
Here, Fm is invariant to full-rank transformation of columns of U and

. Singular value decomposition gives U =L+Dg(s)R’ with L+ and R orthonormal by column.
Using T =RDg(s)−1 allows assuming U =L+, the eigenvectors of UU’ for nonzero
eigenvalues.

A p × p CS covariance is

. Here, λ1 = σ2

[1+(p – 1) ρ] and λ2 = σ2 (1 – ρ), whereas ν0=1p/p1/2 and Vt may be taken to be any p×(p –

1) orthonormal matrix with .

Three distinct classes of hypotheses occur: (i) pure between hypotheses have p×1 U =w·ν0
for w ≠ 0; (ii) pure within hypotheses have U’ν0 = 0; and (iii) combinations have U’ν0 ≠ 0
and rank(U) > 1. For the sake of brevity, we provide an explicit form only for pure within
hypotheses. The other cases have the same structure with different weights in the resulting
quadratic forms. If U’ν0 = 0 and p × bU = L+, then without loss of generality Vt = [L+L0]
with L0 any p – 1 – b ≥ 0 eigenvectors of UU’ for zero eigenvalues.

Compound symmetric estimates may be computed in terms of the unstructured maximum

likelihood  and unstructured REML  covariance estimates [31]. Here,

 and

 give

 and

.
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Hence, the REML estimate for a CS covariance matrix in a general linear mixed model
corresponding to a multivariate model may be computed noniteratively as

. Assuming compound symmetry in the mixed model

gives 

For pure within hypotheses (such as a test of the linear trend),

. With  indicating
column k of ,

(6)

Writing  implies  with am = aMb for Θ aM ×b.

Multivariate model results give  and 

independent of , which insures  independent of .

Under H0,  for i.i.d. Xhk~χ2 (aM) and λhk an eigenvalue of Σh=U’ΣiU. If

, then . In turn,

. Here,

 so

 and  with

. Hence,  for i.i.d. Xek ~ χ2 (νe; 0) and
λek an eigenvalue of Σe =V’tΣVt . Finally,

, for

 a quadratic form with positive and negative weights.

The fact that Pr {Fm≤f } = Pr{Q ≤ 0} allows computing the exact distribution function of the
Wald statistic in finite samples with the Kenward–Roger approximation. Results in [12]
allows using modules from POWERLIB [28] that implements exact methods described in
[29].

In large samples, under H0, the numerator distribution of Fm does not change as N → ∞

because  does not depend on N for i.i.d. Xhk ~ χ2 (aM). The denominator converges to

a constant,  and thereby becomes known.

Hence, under the null , a quadratic form, which allows
exact probability calculations. Satterthwaite’s method gives an accurate approximation.
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Under HA, as in [15], U’ΣiU = γDg(λ*)γ’ defines noncentrality

 a diagonal element of Ω* = γ’ΔγDg(λh)−1. Here,

 for i.i.d. Xhk ~ χ2 (aM, ω*k) and λhk an eigenvalue of Σh = U’ΣiU.
Methods in [29] allow exact computation and accurate approximation of the cumulative
distribution function of Fm for finite samples. In large samples, as under H0,

. With nonlocal alternatives  and power → 1. For

local alternatives β. N−1/2 β and .
The essence matrix Es(XM) contains one copy of each unique row of XM, and MM =
N−1CMEs (XM)’ Es (XM)]−1 C’M.

References
1. National Center for Health Statistics. [Accessed: [February 2010]] Asthma prevalence, health care

use and mortality. 2002. http://www.cdc.gov/nchs/products/pubs/pubd/hestats/asthma/asthma.htm

2. Blackman JA, Gurka MJ. Developmental and behavioral co-morbidities of asthma in children.
Journal of Developmental and Behavioral Pediatrics. 2007; 28:92–99. [PubMed: 17435459]

3. Gurka MJ, Blackman JA, Heymann PW. Risk of childhood asthma in relation to the timing of early
child care exposures. Journal of Pediatrics. 2009; 155:781–787. [PubMed: 19683726]

4. Gurka MJ, Selecting the. best linear mixed model under REML. The American Statistician. 2006;
60:19–26.

5. Verbeke, G.; Molenberghs, G. Linear Mixed Models for Longitudinal Data. Springer; New York:
2000.

6. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;
73:13–22.

7. Jacqmin-Gadda H, Sibillot S, Proust C, et al. Robustness of the linear mixed model to misspecified
error distribution. Computational Statistics and Data Analysis. 2007; 51:5142–5154.

8. Lange N, Laird NM. The effect of covariance structure on variance estimation in balanced growth-
curve models with random parameters. Journal of the American Statistical Association. 1989;
84:241–247.

9. Bainbridge KE, Sowers MF, Crutchfield M, et al. Natural history of bone loss over 6 years among
premenopausal and early postmenopausal women. American Journal of Epidemiology. 2002;
156:410–417. [PubMed: 12196310]

10. Kotch JB, Lewis T, Hussey JM, et al. Importance of early neglect for childhood aggression.
Pediatrics. 2008; 121:725–731. [PubMed: 18381537]

11. Conner-Spady BL, Cumming C, Nabholtz JM, et al. A longitudinal prospective study of health-
related quality of life in breast cancer patients following high-dose chemotherapy with autologous
blood stem cell transplantation. Bone Marrow Transplantation. 2005; 36:251–259. [PubMed:
15937502]

12. Murphy MM, Molloy AM, Ueland PM, et al. Longitudinal study of the effect of pregnancy on
maternal and fetal cobalamin status in healthy women and their offspring. Journal of Nutrition.
2007; 137:1863–1867. [PubMed: 17634256]

13. Muller, KE.; Stewart, PW. Linear Model Theory: Univariate, Multivariate, and Mixed Models.
John Wiley and Sons, Inc; Hoboken, New Jersey: 2006.

14. Spybrook, J.; Raudenbush, SW.; Liu, XF., et al. [Accessed: [February 2010]] Optimal design for
longitudinal and multilevel research: documentation for the "Optimal Design" software (V 1.7.6).
2008. Available at http://sitemaker.umich.edu/group-based/optimal_design_software

15. Box GEP. Some theorems on quadratic forms applied in the study of analysis of variance
problems: I. effects of inequality of variance in the one-way classification. Annals of
Mathematical Statistics. 1954a; 25:290–302.

Gurka et al. Page 13

Stat Med. Author manuscript; available in PMC 2012 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.cdc.gov/nchs/products/pubs/pubd/hestats/asthma/asthma.htm
http://sitemaker.umich.edu/group-based/optimal_design_software


16. Box GEP. Some theorems on quadratic forms applied in the study of analysis of variance
problems: II. effects of inequality of variance and of correlation between errors in the two-way
classification. Annals of Mathematical Statistics. 1954b; 25:484–498.

17. Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982; 38:963–974.
[PubMed: 7168798]

18. Murray, DM. Design and Analysis of Group-Randomized Trials. Oxford University Press; New
York: 1998.

19. Muller KE, Edwards LJ, Simpson S, Taylor DT. Statistical tests with accurate size and power for
balanced linear mixed models. Statistics in Medicine. 2007; 26:3639–3660. [PubMed: 17394132]

20. Muller KE, Barton CN. Approximate power for repeated-measures ANOVA lacking sphericity.
Journal of the American Statistical Association. 1989; 84:549–555. corrigendum 1991, 86,
255-256.

21. SAS Institute Inc.. SAS/STAT User’s Guide, Version 9.1. SAS Institute Inc; Cary, NC: 2003.

22. Johnson JL, Muller KE, Slaughter JC, et al. POWERLIB: SAS/IML software for computing power
in multivariate linear models. Journal of Statistical Software. 2009; 30(5):1–27. [PubMed:
21666874]

23. Kim H, Gribbin MJ, Muller KE, Taylor DJ. Analytic and computational forms for the ratio of a
noncentral chi square and a Gaussian quadratic form. Journal of Computational and Graphical
Statistics. 2006; 15:443–459.

24. Davies RB. Algorithm AS 155: the distribution of a linear combination of χ2 random variables.
Applied Statistics. 1980; 29:323–333.

25. Greenhouse SW, Geisser S. On methods in the analysis of profile data. Psychometrika. 1959;
24:95–112.

26. Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum
likelihood. Biometrics. 1997; 53:983–997. [PubMed: 9333350]

27. Achenbach, TM. Manual for the Child Behavior Checklist/4-18 and 1991 Profile. University of
Vermont, Department of Psychiatry; Burlington, VT: 1991.

28. Simpson SL, Edwards LJ, Muller KE, et al. A linear exponent AR (1) family of correlation
structures. Statistics in Medicine. 2010; 29:1825–1838. [PubMed: 20658550]

29. Muller KE, LaVange LM, Ramey SL, Ramey CT. Power calculations for general linear
multivariate models including repeated measures applications. Journal of the American Statistical
Association. 1992; 87:1209–1226.

30. Cheng J, Edwards LJ, Maldonado-Molina MM, et al. Real longitudinal data analysis for real
people: building a good enough mixed model. Statistics in Medicine. 2010; 29:504–520. [PubMed:
20013937]

31. Kistner EO, Muller KE. Exact distributions of intraclass correlation and Cronbach’s alpha with
Gaussian data and general covariance. Psychometrika. 2004; 69:459–474.

Gurka et al. Page 14

Stat Med. Author manuscript; available in PMC 2012 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Observed type I error rate (×100) of fixed effect interaction for α = 0:05. Four true
covariance models, 20% missing completely at random, 10,000 replications per condition*.
*Except in the sandwich cases, we performed inference using the Kenward-Roger approach.
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