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Summary
We develop reinforcement learning trials for discovering individualized treatment regimens for life-
threatening diseases such as cancer. A temporal-difference learning method called Q-learning is
utilized which involves learning an optimal policy from a single training set of finite longitudinal
patient trajectories. Approximating the Q-function with time-indexed parameters can be achieved by
using support vector regression or extremely randomized trees. Within this framework, we
demonstrate that the procedure can extract optimal strategies directly from clinical data without
relying on the identification of any accurate mathematical models, unlike approaches based on
adaptive design. We show that reinforcement learning has tremendous potential in clinical research
because it can select actions that improve outcomes by taking into account delayed effects even when
the relationship between actions and outcomes is not fully known. To support our claims, the
methodology's practical utility is illustrated in a simulation analysis. In the immediate future, we will
apply this general strategy to studying and identifying new treatments for advanced metastatic stage
IIIB/IV non-small cell lung cancer, which usually includes multiple lines of chemotherapy treatment.
Moreover, there is significant potential of the proposed methodology for developing personalized
treatment strategies in other cancers, in cystic fibrosis, and in other life-threatening diseases.
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1. Introduction
Discovering effective therapeutic regimens for life-threatening diseases is one of the central
goals of medical research. Finding powerful and general methodologies for accomplishing this
discovery is a major challenge. The prevailing approach is to develop candidate therapies in
the laboratory using basic science and then to test those therapies in animals and then in human
clinical trials. A major problem is that very few candidate treatments make it to human clinical
trials and only about 10% of treatments making it to human clinical trials demonstrate enough
efficacy to be approved for marketing [1,2]. Typical regimens for patients with certain
advanced cancers (such as breast cancer, lung cancer, and ovarian cancer) utilize a single agent
in combination with some platinum-based compound, and consist of multiple stages of
treatment (especially when relapse is common). For example, many studies demonstrate that
three lines of treatment can improve survival for patients with advanced non-small cell lung
cancer (NSCLC). For patients who present with a good performance status and stage IIIB/IV
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disease, platinum-based chemotherapy is the primary treatment which can offer a modest
survival advantage over best supportive care alone. Approximately 40-50% of patients in recent
first-line trials received second-line treatment. Some patients who maintain a good
performance status and tolerate therapy without significant toxicities will receive third-line
therapy [3].

A widely used approach is to give a maximum dosage of chemotherapy drug for some period
of time, followed by a period of recuperation in which no drug is given. Although this
therapeutic regimen can be easily clinically implemented, this may not be the best strategy for
minimizing tumor burden. Such problems have motivated the vast literature on drug-
scheduling strategies. In the past few years, there has been extensive research on applications
of adaptive design to clinical trials. Many investigators have developed various adaptive
designs to efficiently identify clinical benefits of the treatment, and demonstrated that
conducting adaptive designs can be very promising in clinical development. In general,
adaptive designs for multiple courses of chemotherapy allow modification of randomization
schedules based on varied probabilities of treatment assignment in order to increase the
probability of success. In choosing treatments for successive courses, one of the popular
adaptive designs to do this is the play-the-winner-and-drop-the-loser design, which is to repeat
a treatment that is successful in a given course and otherwise switch to a different treatment.
Thall et al. [4] provided a statistical framework for multi-course clinical trials involving some
modifications of the play-the-winner-and-drop-the-loser strategy. In their proposed design, all
treatments after the first course are assigned adaptively, thus increasing the amount of
information available per patient. Thall et al. [5] presented a Bayesian adaptive design for a
trial comparing two-course strategies for treating metastatic renal cancer. Each patient is fairly
randomized between two treatments at enrollment, and if a patient suffers disease progression
(s)he is then re-randomized among three treatments not given initially. One of the common
features of these adaptive designs is the use of parametric models accounting for efficacy,
toxicity, or time to some events (such as survival time). By defining a probability model, it is
easy to study the design's operating characteristics under a range of parameterizations and
clinical scenarios. However, as a result, it will lead to all individuals being assigned to the same
level and type of treatment. Therefore, the limitation is not only to ignore the heterogeneity in
treatment across individuals, but also to unsuccessfully incorporate the heterogeneity needed
for optimal individualized treatment across time.

In addition to the challenge of taking into account accrued information in clinical trial designs,
another major challenge is the examination of the long-term benefit of treatment due to delayed
effects. If we consider the larger context of the overall therapeutic strategy, in many clinical
settings a regimen with a lower initial response rate still can be the best choice in the long run.
This is quite plausible due to the potential for the regimen's comparatively better delayed
clinical benefit. For finding new treatment regimens with this motivation, one of the most
promising approaches has been referred to variously as “dynamic treatment regimes” or
“adaptive treatment strategies” [6]. In contrast to classic adaptive designs, dynamic treatment
regimes can allow dosage level and type to vary with time for subject-specific needs. As a
consequence, the optimal strategy is able to provide information not only on the best treatment
choice from the beginning but also treatment choices that maximize outcomes for a later time.
Dynamic treatment regimes are recently emerging as a new paradigm for the treatment and
long term management of chronic disease, and they have been utilized in some trials such as
sequential multiple assignment randomized trials (SMART) [6] and drug and alcohol
dependency studies [7]. However, to date, there are no clinical trial methodologies for
discovering new treatment regimens for life-threatening diseases. Thus, for diseases like
cancer, the use of clinical trials for evaluation and not discovery remains the prevailing
paradigm.
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In this paper, we present a general reinforcement learning framework and related statistical
and computational methods for use in the clinical research arena. Reinforcement learning has
been applied to treating behavioral disorders, where each patient typically has multiple
opportunities to try different treatments [8]. Murphy et al. [9] suggest Q-learning, which is one
of the most important breakthroughs in reinforcement learning, for constructing decision rules
for chronic psychiatric disorders, since these chronic conditions often require sequential
decision making to achieve the best clinical outcomes. Moreover, reinforcement learning has
been successfully applied to the segmentation of the prostate in transrectal ultrasound images.
Due to its use of knowledge obtained from the previous input image, the reinforcement learning
algorithm is potentially capable of finding the appropriate local value for sub-images and
extracting the prostate image [10]. However, reinforcement learning has not yet been applied
to life-threatening diseases like cancer where individual patients do not have the luxury to try
many different treatments. Our main aim is to illustrate the application of these methods to the
discover of new treatment regimens for life-threatening diseases such as cancer. This is a
paradigm shift from the standard clinical trial framework which is used for evaluating
treatments but not for discovery. We consider trials in which each patient is randomized among
a set of treatments at each stage and this treatment set consists of a continuous range of
possibilities including, for example, a continuous range of dose levels. Therefore, rather than
being constrained to a finite list of pre-specified treatments, our method allows for more general
multiplicities of treatments which may include a continuum of possibilities at each stage.
Reinforcement learning design has two attractive features that make it a useful tool for
extracting optimal strategies directly from clinical data. First, without relying on the
identification of any accurate mathematical models, it carries out treatment selection
sequentially with time-dependent outcomes to determine which of several possible next
treatments is best for which patients at each decision time. This feature not only helps us account
for heterogeneity in treatment across individuals, but also possibly captures the best
individualized therapies even when the relationship between treatments and outcomes is not
fully known. Secondly, in contrast to focusing on short-term benefits, the proposed approach
improves longer-term outcomes by considering delayed effect of treatments. Furthermore, we
find that reinforcement learning design can extract the optimal treatment strategies while taking
into account a drug's efficacy and toxicity simultaneously, which is supported by our simulation
studies.

The remainder of this paper is organized as follows. In Section 2, we provide a detailed
description of reinforcement learning and Q-learning. Two methods for estimating Q-
functions, support vector regression (SVR) and extremely randomized trees (ERT) are
presented in Section 3. The proposed “clinical reinforcement trial” method is presented in
Section 4. In Section 5, we describe extensive simulation studies we conducted to discover
individualized optimal treatment strategies. In Section 6, we conclude with a brief discussion
that includes an important future application to NSCLC.

2. Reinforcement Learning Background
Our goal in this section is to introduce reinforcement learning theory, specifically, Q-learning,
which will be used to discover individualized optimal therapies in cancer clinical trials.

2.1. Reinforcement learning
Over the last few decades, machine learning has become an active branch of artificial
intelligence. Some of the fields studied in machine learning involve stochastic sequential
decision processes, commonly referred to as reinforcement learning methods. The term
“reinforcement” is subject to the occurrence of an event, in the proper relation to a response,
that tends to increase the probability that the response will occur again in the same situation.
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From a computer science perspective, reinforcement learning is the first field to address the
computational issues that arise when learning from interaction with an environment in order
to achieve long-term goals. A detailed account of the history of reinforcement learning is given
in Sutton and Barto [11].

The basic process of reinforcement learning involves trying a sequence of actions, recording
the consequences of those actions, statistically estimating the relationship between actions and
consequences, and then choosing the action that results in the most desirable consequence. In
our reinforcement learning design, the thing a patient interacts with is called the “environment”,
which may indicate the complex system consisting of the human body and more sources of
error and greater restrictions on what can be measured. While these interactions continually
happen, we choose a sequence of actions applied to the patient and the environment responds
to those actions and provides feedback. To be specific, we use S and A to denote random
variables, where S represents the set of environmental “states” and A represents the set of
possible “actions”. Here “states” may represent individual patient covariates and “actions” can
be denoted by various treatments or dose levels. Both variables can be discrete or continuous.
Define time-dependent variables St = {S0, S1,…, St}, and similarly, define At = {A0, A1,…,
At}. We also define states to possibly include past actions (i.e., St can include At−1). We use
lower case letters, such as s and a, to denote the realized values of the random variables S and
A, respectively. Also, for convenience, define st = {s0, s1,…, st}, and similarly, at = {a0, a1,
…, at}. We assume the finite longitudinal trajectories are sampled at random according to a
distribution P. This distribution is composed of the unknown distribution of each St conditional
on previous (St−1, At−1). We denote these unknown conditional densities as {f0,…, fT}, and
denote expectations with respect to the distribution P as E.

As a consequence of a patient's treatment, after each time step t, the patient receives a numerical
reward rt. This could be denoted as a function (possibly random), which maps to a single
number the key elements: current state st, action at, and next state st+1. When t = 0, 1,…, T,
the reward is given by

We also define random variable Rt = R(St, At, St+1). Reinforcement learning is learning what
to do, how to map situations from state space S to action space A, and depending on what our
goal is, how to choose at to maximize or minimize the expected discounted return:

In this equation, γ is the discount rate (0 ≤ γ ≤ 1). We can interpret γ as a control to balance a
patient's immediate rewards and future rewards. As γ approaches 1, we take future rewards
into account more strongly. In the extreme case, where γ = 1, we fully maximize or minimize
rewards over the long run.

Another key element of a reinforcement learning system is an exploration “policy”, p, which
maps (st, at−1) to the probability pt(a | st, at−1) (the probability that action a is taken given
history {st, at−1}). If the policy is possibly non-stationary and non-Markovian but deterministic,
we denote πt(st, at−1) = at. In other words, policy πt, as a sequence of decision rules {π1,…,
πT}, is an action. Let the distribution Pπ denote the distribution of training data when the policy
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π is used to generate actions. We can then denote expectations with respect to the distribution
Pπ by Eπ. Let Π denote the collection of all policies. Thus the expectations Eπ range over π ∈
Π. For simplicity and without loss of generality, we mainly concentrate in this paper on the
goal of discovering which treatment can yield a maximized reward for a given patient. Hence
seeking the policy that maximizes the expectations with respect to the sum of the rewards over
the time trajectories is our ultimate goal. To accomplish this, a “value function” is established
as a function of a state. Based on the condition of history st, the value function represents the
total amount of reward a patient can expect to accumulate over the future. That is,

According to this, the optimal value function can be simply defined as

Efficiently estimating the optimal value function is the most important component of almost
all reinforcement learning algorithms. Since a fundamental property of value functions used
throughout reinforcement learning is that they satisfy particular recursive relationships such
as the Bellman equation [12], it is clear that the optimal policy, π*, must satisfy,

Modern techniques in mathematical and computational areas have stimulated the developments
of many methods for estimating the optimal value functions or optimal policies. Many of the
existing methods can be categorized into one of the following two classes: dynamic
programming or Monte Carlo method [11]. Bellman [12] first provided the “dynamic
programming” term to show how these methods are useful to a wide range of problems. Minsky
[13] first described the connection between dynamic programming and reinforcement learning.
In classical dynamic programming methods, policy evaluation and policy improvement [12,
14] refer to the computation of the value function and the improved policy, respectively. The
computation in both methods requires an interactive process. Combining these two methods
together, we obtain two other methods called policy iteration and value iteration [15,16].
Although dynamic programming can be applied to many types of problems, it is restricted to
solving reinforcement learning problems under the Markov assumption. If this assumption is
violated, dynamic programming may not be able to find an exact solution. Additionally,
dynamic programming for solving reinforcement learning problems requires knowledge of a
complete and accurate model of the environment. This is almost always unrealistic in clinical
settings due to the heterogeneity in the model across individual patients.

2.2. Q-learning
Although the value function plays a fundamental role in reinforcement learning, it is usually
not possible to directly compute an optimal policy by just solving the Bellman optimality
equation, even if we have a complete and accurate model of the environment's dynamics. Sutton
[17] claims that temporal-difference (TD) learning is an alternative method to find optimal
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policies without any knowledge of the dynamic model. One fundamental expression of TD-
learning is the incremental implementation. Compared to Monte Carlo methods, TD-learning
requires less memory for estimates and less computation. Almost any TD-learning belongs to
the “eligibility traces” problem. For more details on this issue, see Sutton and Barto [11] and
Kaelbling et al. [18].

One of the most important off-policy TD-learning methods is Watkins' Q-learning [19,20]. Q-
learning does not estimate the value function directly; it estimates a Q-function instead. Q-
learning handles discounted infinite-horizon Markov decision processes (MDP). It requires no
prior knowledge, is exploration insensitive and easy to implement, and is so far one of the most
popular and seems to be the most effective model-free algorithm for learning from delayed
reinforcement. In the setting where we don't have any information about the transition function
or the probability distribution of the random variables, such a model-free method can be used
to find optimal strategies from the unknown system. The motivation of Q-learning is that once
the Q functions have been estimated, it is only necessary to know the state to determine the
best action. From a statistical perspective, the optimal time-dependent Q-function is

Note that since

it is relatively easy to determine an optimal policy, which satisfies

One-step Q-learning has the simple recursive form

(1)

In learning a non-stationary non-Markovian policy with one set of finite horizon trajectories
(also called a training data set)

we denote the estimator of the optimal Q-functions based on this training data by Q ̂t, where t
= 0, 1,…, T. According to the recursive form of Q-learning in (1), we must estimate Qt
backwards through time t = T,T − 1,…, 1, 0, that is, use the estimates beginning at the last time
point Q ̂T recursively back to Q ̂0 at the beginning. For convenience we set Q ̂T+1 equal to 0. In
order to estimate each Qt, we denote Qt(st, at; θ) as a function of a set of parameters θ, and we
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allow the estimator to have different parameter sets for different time points t. For example,
Qt(st, at; θ) may be of the form

where θt = (θt1,…, θtk) and {φt1,…, φtk} are selected basis functions. Once the backwards
estimation process is done, we save the sequence of {Q ̂0, Q ̂1, …, Q ̂T} for estimating optimal
policies

where t = 0, 1,…, T, and we thereafter use these optimal policies to test or predict for a new
data set.

There are many other promising learning methods based on modifications or extensions of Q-
learning, for example, Blatt, Murphy, and Zhu [23] proposed A-learning. However, some
properties of these methods have not yet been carefully investigated. Due to the simple
equations and minimal amount of computation, we restrict our attention in this paper to Q-
learning for discovering effective therapeutic regimens in our clinical trial settings.

3. General Methodology
In this section, our main aim is to estimate the Q-function for finding the corresponding optimal
policy. However, challenges may arise due to the complexity of the structure of the true Q-
function, including the non-smooth maximization operation in equation (1), the high-
dimension of the states variable S, the high-dimension of the action variable A, or having the
action variable be continuous. In order to obtain the estimator of interest, many authors have
considered different approaches in recent years. Murphy [24], Blatt et al. [23] and Tsitsiklis
and Van Roy [25] showed that Q-learning estimation can be viewed as approximate least
squares value iteration. The parameter estimators θ ̂t for the t-th Q-function satisfy

where n is the empirical expectation. This is consistent with the one-step update of Sutton
and Barto [11] with γ = 1, and furthermore, it is general enough to permit function
approximation and non-stationary Q-functions. Another simple and standard estimating form
is provided by Murphy et al. [9]. They claim that Q-learning is a generalization of the familiar
regression model. When the dimension of the action space is small, linear regression methods
can sometimes be adequate; but, more generally, quadratic regression or higher order
regression is desirable for estimating the Q-function. In this article we apply two recent flexible
techniques from the machine learning literature, support vector regression (SVR) and
extremely randomized trees (ERT), as our main methods to fit Q-functions and to learn an
optimal policy using a training data set.
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3.1. Support vector regression
The ideas underlying SVR [26] are similar but slightly different from SVM [27] within the
margin-based classification scheme. The data xi are mapped into a feature space by a nonlinear
transformation Φ, which guarantees that any data set becomes arbitrarily separable as the data
dimension grows [28], then a hyperplane f(x) is fitted to the mapped data. One of the popular
loss functions involved in SVR is known as the ε-insensitive loss function, which is defined
as L(f(xi), yi) = (|f(xi) − yi| − ε)+, ε > 0 [27]. Other possible loss functions include quadratic
loss, Laplace loss, and Huber loss. In Q-learning, given training data  the
variable X may be replaced by {S, A} that represents states and actions information, and we
define attributes xit ∈ St × At, where i = 1,…, n, t = 0,…, T, St = {S0, S1,…, St} and At = {A0,
A1,…, At}; the variable Y may be replaced by the numerical rewards, and we assign the label
index yit to each total future reward value r ̂it. The hyperplane f(x) is equivalent to the Q function.

To fit the Q functions, let f(x) = wTΦ(xi)+b. Then SVR solves the optimization problem:

(2)

where ε is the width of the tube, ξi and  are slack variables, and C is the cost of error. C is
also called the tuning parameter in the machine learning field and is determined by cross

validation. By minimizing the regularization term  as well as the training error

 SVR can avoid both overfitting and underfitting the training data. The slack
variables ξi and  allow for some data points in the feature space to stay outside the confidence
band determined by ε. In other words, the goal is to find a function that has at most ε deviation
from the actually obtained targets yi for all the training data. Errors with deviation larger than
ε are not acceptable. A class of functions called kernels K : ∝m × ∝ m → ∝ such that K(xi,
xj) = Φ(xi)TΦ(xj) (for example, the Gaussian kernel is K(xi, xj) = exp (−ζ‖xi − xj‖2)) are used
in SVR to guarantee that any data set becomes arbitrarily separable as the data dimension
grows. Since the SVR function is derived within this reproducing kernel Hilbert space (RKHS)
context, the explicit knowledge of both Φ and w are not needed if we have information
regarding K. In this case, problem (2) is equivalent to solving an optimization dual problem
equipped with Lagrange multipliers λi:

Once the above formulation is solved to get the optimal λi and  the approximating function
at x is given by:
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Similar to SVM which calculates a hyperplane, the solution of an SVR function only depends
on the support vectors [29]. Usually support vectors just represent a small fraction of the
sample, therefore, the evaluation of the decision function is computationally efficient. This
attractive property is especially useful when dealing with data sets with a low ratio of sample
size to dimension. To achieve good performance by using SVR, some procedures such as data
scaling, kernel and related parameter selection need to be examined very carefully. We discuss
these procedures in more detail in the simulation studies below.

Compared to least-squares regression where ε is always zero, SVR is a more general and
flexible approach for regression problems. There are several examples where SVR is
successfully used in practice, and they generally perform better than other regression methods.
See Chen et al. [30] and Smola and Scholkopf [31]. For a detailed exposition with a more
computational discussion about SVR, refer to LIBSVM [32], which is a library for SVM.

3.2. Extremely randomized trees
The complex and unclear structure of the Q-function has also partly motivated the vast literature
on nonparametric statistical methods and machine learning. Ernst et al. [33] and Geurts et al.
[34] proposed an extremely randomized trees (ERT) method, which is called the Extra-Trees
algorithm, for batch mode reinforcement learning. Unlike the classical classification and
regression trees such as the Kd-tree or the pruned CART tree, this nonparametric method builds
a model in the form of the average prediction of an ensemble of regression trees (called a
random forest). Moreover, each tree built by this algorithm consists of strongly randomizing
both attribute and cut-point choice while splitting a tree node. In addition to the number of
trees G, this method depends on one parameter, called K, the maximum number of cut-direction
tests at each node, and nmin, the minimum number of elements at each leaf required to split a
node. The choice of an appropriate value of G depends on the resulting compromise between
computational requirements and prediction accuracy. K determines the strength of the
randomization: e.g., for K = 1, the splits are chosen totally independent of the output variable.
A larger nmin yields smaller trees but higher bias. The ERT algorithm builds G trees using the
training data set. To determine a test at a node for each tree, this algorithm randomly selects
K attributes with K randomized cut-points. A score is calculated for each test and then the one
which has the highest value is kept. The algorithm stops splitting a node when the number of
elements in the node is less than nmin. The complete ERT algorithm is given in the Appendix
of Geurts et al. [34].

Compared to standard tree-based regression methods, ERT successfully leads to significant
improvements in precision. Additionally, it can dramatically decrease variance while at the
same time decreasing bias, and it is very robust to outliers. ERT has been recently demonstrated
in a simulation of HIV infection [35] and adaptive treatment of Epilepsy [36]. While this
algorithm reveals itself to be very effective to extract a well-fitted Q from the data set, it has
one drawback: the computational efficiency is relatively low especially with increasing
numbers of patients in the training data set.

4. Clinical Reinforcement Trials
In this section, we propose a new design and analysis method for a new kind of clinical trial
for life threatening diseases, “clinical reinforcement trials”. The design for these trials consists
of three aspects:
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First, a finite, reasonably small set of decision times is identified. These times could be either
specific time points measured from trial onset or decision points in the treatment process such
as the starting times of each new line of cancer treatment. For example, in the simulation study
below, we create a synthetic cancer treatment setting where patients are monitored monthly
for six months and treatment for each month is determined based on patient biomarker values
available at the beginning of the month. As a second example, in NSCLC, it may be more
appropriate to have one decision time at the beginning of the first line of treatment, a second
decision time at the beginning of the second line of treatment, and possibly a third decision
time at the beginning of the third line of treatment. The third line is currently only available
for certain patients and there is only one FDA approved third line treatment, and so decision
possibilities are severely limited at the third decision time for this example. Note that the
decision time in this instance is really a stage of treatment and not a calendar time. Other
decision time sets, including hybrid variants of the previous two examples, are also possible.

Second, for each decision time, a set of possible treatments to be randomized is identified. The
choice of treatments can be a continuum as mentioned earlier or a finite set and can include
restrictions which may be functions of observed variables such as biomarkers. For example,
in our simulations we restrict the dose of chemotherapy at the first decision time to be above
a threshold so that all patients are guaranteed some initial treatment. When the set of treatments
is finite, the proposed design reduces to a SMART design.

Third, a utility function is identified which can be assessed at each time point and contains an
appropriately weighted combination of outcomes available at each interval between decision
times and at the end of the final treatment interval. In our simulation study below, we use a
combination of tumor size and overall patient health as our utility function.

We now briefly describe how a study using the proposed method would be conducted. First,
a clinical reinforcement trial addressing the targeted clinical disease is designed using the
principles described above. This may require developing a virtual patient model as we do in
the next section. Once a design has been determined, patients are then recruited into the study
and randomized to the treatment set under the protocol restrictions at each decision point,
outcome measures used to compute patient state and utility are obtained, and each patient is
followed through to completion of the protocol or until the end of the trial. The patient data is
collected and Q-learning is applied, in combination with either SVR or ERT applied at each
time point as described above, to estimate the optimal treatment rule as a function of patient
variables and biomarkers, at each decision time. We allow the Q-functions to differ from
decision time to decision time. This yields an individualized, time varying treatment rule that
can be significantly better than the standard of care, although it may be important to validate
this treatment regime in an additional phase III clinical trial. We will show in the simulation
study below that our proposed approach is able to generate treatment rules that lead to improved
patient outcomes. One open question which we will pursue in a later paper is how to determine
sample size mathematically. Fortunately, it appears from our simulation studies that the sample
sizes required are similar to and not larger than the sizes required for typical phase III trials.

5. Simulation Studies
We simulate a sequentially randomized clinical reinforcement trial as a numerical example to
examine the performance of the proposed design and analysis methodology. To demonstrate
that the optimal therapy found using Q-learning is superior to any other regimens, the
treatments at each course are specified in terms of a continuum of dose levels of a single drug,
and the comparisons we consider are between the optimal regimen identified from our proposed
clinical reinforcement trial procedure and various constant-dose regimens. We first present a
simple mathematical model for disease and chemotherapy which we will be using for our study.
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We then present the specific implementation of Q-learning which we will use for the
simulation. This section concludes with a presentation of the results of the simulation study.

5.1. Simple chemotherapy mathematical model
To construct a set of training data reflecting a hypothetical cancer trial, we need a simple
chemotherapy mathematical model to generate virtual patients and virtual clinical trial data.
The goal for such a chemotherapy mathematical model is to allow for sufficient complexity so
that the model will qualitatively generate clinically observed in vivo tumor growth patterns,
while simultaneously maintaining sufficient simplicity to admit analysis. Thus, the model we
present must exhibit: (1) tumor growth in the absence of chemotherapy; (2) patients' negative
wellness outcomes in response to chemotherapy; (3) the drug's capability for killing tumor
cells while also increasing toxicity; and (4) an interaction between tumor cells and patient
wellness. To obtain data which satisfy these requirements, we propose using a system of
ordinary difference equations (ODE) modeled as follows:

(3)

where time (with month as unit) t = 0, 1,…, T − 1, and Ẇt and Ṁt indicate transition functions.
Note that these changing rates yield a piecewise linear model over time. Without loss of trade-
off between toxicity and efficacy, the piecewise linear model can be implemented very easily.
For simplicity, we here consider tumor size instead of number of tumor cells. Mt denotes the
tumor size at time t, M0 indicates the value of tumor size when the patient is at the beginning
of the study. Wt measures the negative part of wellness (toxicity), similarly, W0 indicates the
initial value of patient's wellness. Dt denotes the chemotherapy agent dose level. The value of
other different parameters for the model are fixed as: a1 = 0.1, a2 = 0.15, b1 = 1.2, b2 = 1.2,
d1 = 0.5 and d2 = 0.5. The indicator function term 1{Mt > 0} in (3) represents the feature that
when the tumor size is absorbed at 0, the patient has been cured, and there is no future recurrence
of the tumor. Note that this model is not meant to reflect a specific cancer but to reflect a generic
plausible cancer created for illustration.

Before generating simulated clinical data, it is easy to notice that the dynamic model has two
state variables (Wt, Mt) and one action (treatment) variable (Dt). The state variables can be
obtained via:

where t = 0, 1,…, T − 1 are the T decision times we will utilize in our simulated trial design.
We generate a simulated clinical reinforcement trial with N = 1000 patients (replicates) with
each simulated patient experiencing 6 months (T = 6) of treatment based on this ODE model.
The initial values W0 and M0 for each patient are generated from independent uniform (0, 2)
deviates. The treatment set consists of doses of a chemotherapy agent with an acceptable dose
range of [0, 1], where the value 1 corresponds to the maximum acceptable dose. The values
chosen for chemotherapy drug level D0 are simulated from the uniform (0.5, 1) distribution,
moreover, D1,…, D5 are drawn according to a uniform distribution in the interval (0, 1). Thus
our treatment set is restricted differently at decision time t = 0 than at other decision times to
reflect a requirement that patients receive at least some drug at onset of treatment. Various
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other distribution settings for the action space are possible, and clinical researchers have
tremendous flexibility in utilizing this approach.

Figure 1 provides a disease progression example of one patient to show dynamic treatment
results with influence of different levels of chemotherapy agent. The system is clearly sensitive
to the chemotherapy dosing regimen. Note that when the dose level switches to low, the tumor
size grows to a dangerous level. Moreover, the toxicity increases (decreases) once the dosage
is changed to a higher (lower) level. Note that in this model we have taken a simplistic approach
for illustration and have excluded a number of potentially important factors such as the
distinction between reversible and irreversible toxicities.

5.2. Q-function estimation and optimal regimen discovery
We now return to Q-learning. Utilizing the proposed ODE model, we generate a simulated
clinical trial that provides a set of simulated finite horizon trajectories (or training data),

where each two-dimensional state variable St consists of (Wt, Mt), and each continuous action
variable At is a dose level Dt. Note that our model ignores, for simplicity, dose history in the
state variables, even though past dose is technically part of the history. We wish to emphasize
that it is not necessary to use all available data in Q-learning, and the user has tremendous
flexibility in implementing this general approach. Continuing with our example, we will use
Q-learning to maximize a sum of numerical rewards, which we now define, over six months.
We assume each reward only depends on the states observed right before and after each action,
that is, when t = 0, 1,…, 5,

We decompose this reward function Rt into three parts: Rt,1(Dt, Wt+1, Mt+1) due to survival
status, Rt,2(Wt, Dt, Wt+1) due to wellness effects, and Rt,3(Mt, Dt, Mt+1) due to tumor size effects.
It can be described by:

otherwise,

Zhao et al. Page 12

Stat Med. Author manuscript; available in PMC 2010 November 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In most phase III clinical trials, the primary endpoint of clinical interest is the overall survival
(OS): this is why we put −60 as a high penalty for patient death. Additionally, we assign a
relative high value 15 as a bonus when a patient is cured.

We assume that survival status depends on both toxicity and tumor size. For each time interval
(t − 1, t], t = 1,…, 6, we define the hazard function as λ(t), which satisfies

where μ0, μ1, and μ2 are constant pre-specified parameters. In particular, assigning μ1 = μ2 =
1 indicates that we consider wellness and tumor size to have an equally weighted influence on
the survival rate. The survival function is then

where  is the cumulative hazard function. The reason the term Rt, 1(Dt,
Wt+1, Mt+1) is expressed as a function of Wt+1 and Mt+1 is that the hazard function is only
determined by the states at the end of each time interval. The conditional probability of death
for each time interval is p = 1 − ΔF(t). The survival status (with death coded as 1) is drawn
according to a Bernoulli distribution B(p). Overall, by letting γ = 1 (we would like to fully
consider maximizing rewards in the long run), the one-step Q-learning with recursive form is
utilized, with Qt(St, At) predicting

where Rt = Rt,1(Dt, Wt+1, Mt+1)+ Rt,2(Wt, Dt, Wt+1)+ Rt,3(Mt, Dt, Mt+1), t = 0,…, 5. Note that
r ̂t mentioned previously is defined as a realization of R̂t. This recursive estimation process is
called SARSA (state, action, reward, next state, next action) in the reinforcement learning
literature.

To obtain the estimator Q ̂t, we apply SVR and ERT respectively for fitting Qt backward, and
save the results as {Q ̂5, Q ̂4,…, Q ̂0}. Figure 2 illustrates the treatment plan and relevant Q-
function estimation procedures. Because of the inner product property of the kernel in SVM/
SVR, scaling the data before applying SVR is very important. Another advantage for scaling
is to avoid states with greater numeric ranges dominating those with smaller numeric ranges.
In our simulation studies, every variable is scaled to zero mean and unit variance, and the center
and scale values are saved and used for later predictions. To do fitting of Q ̂t via SVR, we select
the Gaussian kernel (or Radial Basis Function), K(x, y) = exp (−ζ‖x − y‖2), because the Gaussian
kernel can nonlinearly map samples into a higher dimensional space. Consequently, it can
handle the case when the relation between rewards (labels) and states and actions (attributes)
is nonlinear. In the SVR approach there are two hyperparameters involved with the Gaussian
kernel: ζ and the tuning parameter C. To maximize the performance of the proposed method,
we apply a grid search to choose C and ζ by using cross-validation. Trying exponentially
growing sequences of C and ζ is recommended as a practical method to identify good
hyperparameters. Specifically, for each t in our simulated example, given a straightforward
coarse grid search with C = 2−5, 2−3,…, 215 and ζ = 2−15, 2−13,…, 23, we apply cross-validation
to each candidate pair (C, ζ), and then select the pair that yields the highest cross-validation
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rate. To do fitting of Q ̂t via ERT, we need to be careful with the choice of parameters G, K and
nmin. Based on empirical studies, Geurts et al. (2006) suggest that the default value of K should
be equal to the number of attributes in the regression problem. Thus we fix K as the dimension
of state variables plus the dimension of action variables, which is equal to 3 in our case. To
maintain good precision and small bias, G and nmin have been chosen equal to 50 and 2,
respectively.

Based on the sequential estimators {Q ̂5, Q ̂4,…, Q ̂0}, the individualized optimal policies as a
function of the state variables are estimated by maximizing over dose level (i.e., at):

In order to evaluate how the above estimated treatment policies performed, we generated a
virtual phase III clinical trial with 200 patients per each of 11 treatments consisting of the
estimated optimal treatment regime and each of the 10 possible fixed dose levels ranging from
0.1 to 1.0 with increments of size 0.1. The initial values of W0 and M0 for the patients were
randomly chosen from the same uniform distribution used in the training data.

The entire algorithm for Q-function estimation and optimal regimen evaluation is summarized
as follows:

1. Inputs: a set of training data consists of attributes x (states st, actions at) and index y
(rewards rt), i.e. {(st, at, rt)i, t = 0,…, T, i = 1,…, N}.

2. Initialization: Let t = T + 1 and Q ̂T+1 be a function equal to zero on St × At.

3. Iterations: repeat computations until stopping conditions are reached (t = 0).

a. t ← t − 1.

b. Qt is fitted with support vector regression (SVR) or extremely randomized
trees (ERT) through the following recursive equation:

c. Use cross-validation to choose tuning parameters C and ζ if fitting Qt via
SVR with Gaussian kernel; choose plausible values of parameters K, G,
nmin if fitting Qt via ERT (K = 3,G = 50, nmin = 2 in our simulation).

4. Given the sequential estimates of {Q ̂0, Q ̂1,…, Q ̂5}, the sequential individualized
optimal polices {π̂0,…, π̂5} for application to the virtual phase III trial are computed.

5.3. Simulation results
In the simulated phase III trial, we examine Wt, Mt and the patients' cumulative survival
probability. All of these quantities were averaged over the 200 virtual patients. These averages
at time t = 6 are given, along with the survival results, in Table 1.

We used a sample size of 1000 for our simulated clinical reinforcement trial and estimated the
optimal treatment policy using both SVR and ERT. For the sake of simplicity, unless stated
explicitly otherwise, we only show results in the figures for the SVR method, since we obtain
very similar results when we estimate optimal therapy using ERT. In Figures 3 and 4,
trajectories (wellness and tumor size, respectively) that would have been observed by putting
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the patients on constant-dose regimens have been plotted. Note that the wellness measure has
been inverted so that larger values represent worse health. This is to make comparisons with
tumor size more direct. We test the behavior of estimated optimal regimens on 200 new
simulated patients by comparing the outcomes using π̂t from the Q ̂t (t = 0,…, 5) against the
results obtained using 10 different fixed Dt levels (t = 0,…, 5) in the ODE model. As shown
in both Figure 3 and Figure 4, the optimal regimens derived from Q-learning do not have better
performance for either wellness or tumor size compared to some constant dosing regimens.
This is not beyond our expectation. Because when a higher dose level decreases tumor size, it
can yield a higher toxicity simultaneously, and vice versa. However, due to our reward
functions structure, the estimated optimal policies have an appealing feature that seeks a good
balance between toxicity and efficacy. Figure 5 illustrates that the estimated optimal regimen
is absolutely superior to any constant-dose regimen when we combine toxicity and efficacy
(Wt + Mt) into one comparison criterion. Table 1 agrees with this conclusion by respectively
presenting W6 + M6 = 3.269 (SVR) or W6 + M6 = 3.194 (ERT) as the lowest number compared
to the others. Most notably, although the regimen derived from simulated data shows
suboptimal results in the first three months, it achieves the best performance eventually. These
findings agree well with reinforcement learning's substantially powerful long-run capabilities.

Figure 6 provides the dynamic optimal regimen for an individual patient as well as the toxicity
and efficacy values during the whole trial. This simulated patient comes into the trial with
initial condition W0 = 0.30 and M0 = 1.05. Optimal therapy begins with a very high dose D0 =
1.00 aimed at reducing the patient's tumor burden. The patient is then monitored for the
following month and then treated with another two consecutive high doses (D1 = 0.74, D2 =
1.00). In the third month, the tumor size suddenly reaches 0, i.e. the patient has been cured. As
expected, we find that the dosage to be administrated rapidly reduces to 0 in the following
months. Patients who recover after three months will not receive high dosing anymore because
the high dose will likely result in unnecessarily high toxicity. As we can see, rather than the
constant dose level for each t, optimal therapy usually has an up-and-down structure due to its
adaptive properties. This is an important result which demonstrates that the optimal policy can
be approximated very well by reinforcement learning.

Finally, compared to all fixed-level doses, Table 1 clearly shows that the therapy found using
the Q-learning approach with either SVR or ERT has better performance in terms of cumulative
survival probability (CSP). Both SVR and ERT appear to perform equally well with
comparable computational burden.

6. Discussion
We have developed a reinforcement learning method for discovering effective therapeutic
regimens in clinical trial design. To investigate the validity of such a purely data (model-free)
driven approach, we have generated clinical data by relying on a set of hypothetical (and
simplistic) but plausible ODE models. Based on these simulated data, we have found that
reinforcement learning is indeed able to identify individualized optimal regimens in clinical
trials which consist of multiple courses of treatment. Such regimens can reduce tumor burden
while taking into account a drug's toxicity. Treatment delay effects, which is an important issue
that must be considered for longer term outcomes, are fully assessed by this method. Another
appealing feature of our approach is the incorporation of Q-learning methodology with SVR
and ERT. Hence even in a data set comprised of high-dimensional attributes, our method is
capable of obtaining promising results without much computational burden.

There are a number of challenges we expect to face in future research. First of all, in our study
we have defined the reward as a straightforward function to map states and actions into some
integer numbers (15, 5, 0, −5 and −60). This simplistic reward function construction along with
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Q-learning represents an attractive way for trading off efficacy against toxicity and death.
However, it is unclear how changing these numbers affects the resulting optimal regimens
identified during discovery of effective therapeutic strategies. Understanding the robustness
of Q-learning to numerical reward choices is an interesting problem and clearly deserves further
investigation. Secondly, since the choice of reward function plays a crucial role in
reinforcement learning, therefore, it is very important to consider alternative rewards directly
reflecting primary endpoints (such as overall survival, progression-free survival, quality-of-
life adjusted survival, freedom from side effects, etc.) in clinical trial designs. One of many
feasible approaches for accomplishing this is to perform retrospective analyses on existing
clinical trial data to identify clinical factors that influence the outcome of patients treated with
chemotherapy drugs, and to build a model that can be used in practice to predict long-term
survival in this patient population. Such a model may assist us in building a more plausible
reward function, and thereafter determining a regimen which is as close as possible to an
optimal policy. To construct a clinically relevant reward function, we believe that close
collaboration with clinical researchers is required. An interesting illustrative example of a
related strategy is shown by Ernst et al. [35]. They consider discounted instantaneous costs
(which is a continuous function directly associated with actions) as their reward function: the
rationale behind this comes from a validated and identified HIV model [37].

In this paper, we observed that with sample size N = 1000 for a clinical reinforcement trial,
using SVR or ERT leads to a reasonably low bias for estimating optimal regimens. The
evidence for this is the confirmed success of the discovered treatment regimen on an
independent sample of 200 simulated patients. Clearly, in many settings, this assumption may
be violated due to the complexity associated with the performance of the approximation on the
Q function, the high-dimensional state or action space, the horizon time T, the connection with
SVR or ERT, and more importantly, estimation accuracy. Therefore, an interesting but
potentially difficult question would be: how to determine the number of patients N required in
a clinical reinforcement trial, utilizing SVR or ERT to fit Q, which can be guaranteed to obtain
a regimen that is very close to the optimal one. All these theoretical issues are under
investigation and will be presented elsewhere.

Since the work of this article is motivated by the clinical question of proper treatment for Stage
IIIB/IV NSCLC, as examined by several clinical trials conducted at the UNC Lineberger
Comprehensive Cancer Center (LCCC), an important future application is to refine our model
to more accurately reflect NSCLC and the associated treatment issues. The goal of this future
study is to compare strategies for multiple lines of treatment for patients with advanced NSCLC
who have not been treated previously with systemic therapy. In our future study we will apply
reinforcement learning to discover individualized optimal regimens while restricting attention
to first-line and second-line only, since there is only one approved agent (Erlotinib) indicated
for third-line treatment [38].

First-line treatment primarily consists of platinum-based doublets that include cisplatin,
gemcitabine, pemetrexed, paclitaxel, carboplatin or vinorelbine. Numerous studies have
compared these various platinum doublets, the great majority of these trials have concluded
that all such regimens are comparable in their clinical efficacy. As an example, see Scagliotti
et al. [39]. Their study represents the largest number of patients entered into a single phase III
study using either cisplatin + gemcitabine or cisplatin + pemetrexed regimen. Noninferiority
was demonstrated because the median survival time was an identical 10.3 months in each arm.
In addition to platinum-based doublets, some phase III studies have examined the efficacy of
various targeted therapies. Bevacizumab plus paclitaxel + carboplatin in the treatment of
selected patients with NSCLC showed a significant survival benefit [40], however, with the
risk of increased treatment-related deaths. Cetuximab plus cisplatin + vinorelbine demonstrated
superior survival in patients with advanced EGFR-detectable NSCLC [41]. The strategies of
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first-line therapy are essentially based on these four targeted combination therapies, the choice
depends on a number of factors, including the patient's histology type, toxicity profile, smoking
history, VEGF level, EGFR expression and race [39,40,41].

There are three agents approved for treating patients in a second-line regimen: docetaxel,
pemetrexed, and erlotinib. Similar to the first-line regimen, these agents appear to have similar
efficacies in terms of response and overall survival, but have significantly different toxicity
profiles. The choice of agent also depends on many factors, including the patient's number of
prior regimens, response to prior chemotherapy, the risk for neutropenia, EGFR expression,
and patient preference [42,43,44,45].

Due to the complexity of the biomarkers and unclear toxicities, the trial described here was
motivated by the desire to compare those agents in a randomized fashion, and the belief that
different combinations given between first-line and second-line may have interactive effects.
Another very important factor omitted from the cancer treatment model given in this paper is
the potentially enormous difference between reversible and irreversible toxicity. This
difference will need to be incorporated in future studies on this topic. Despite the difficulty of
discovering superior therapies, another primary challenge is to determine the optimal second-
line regimen's starting time, either immediate or delayed after induction therapy, having the
highest overall survival probability. Although Fidias et al. [44] provided some results to suggest
that an immediate transition to second-line therapy may be optimal, whether these findings are
specific to docetaxel or would hold true for other common second-line options such as
pemetrexed or erlotinib remains unknown. Hence, optimal timing of second-line therapy with
a non-cross-resistant agent is an important issue and still remains unclear. Furthermore,
including biomarkers as covariates to assess possible effects, such as biomarker treatment
interactions and biomarker second-line-timing interactions, is potentially useful. In our future
research, a better understanding of prognostic factors is needed, and this may lead us to discover
better individualized therapies using reinforcement learning. In addition to developing new
treatments for non-small cell lung cancer, there is significant potential of the proposed strategy
for developing personalized treatment strategies in other cancers, in cystic fibrosis, and in other
acute and chronic diseases.
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Figure 1.
Representation of the disease progression for a patient treated from randomized chemotherapy
drug. The solid curve represents the negative part of patient's wellness, the dashed curve
represents the tumor size, and the dotted curve represents the randomized treatment.
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Figure 2.
Treatment plan and the procedure for obtaining the sequential estimator {Q ̂5, Q ̂4, …, Q ̂0}.
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Figure 3.
Plots of averaged value of “wellness” (negative part) for 10 different constant-dose regimens
compared to optimal regimen. The results are based on 200 patients. Dashed curves represent
the constant-dose regimens, and a solid curve represents the optimal regimen.
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Figure 4.
Plots of averaged value of “tumor size” for 10 different constant-dose regimens compared to
the optimal regimen. The results are based on 200 patients. Dashed curves represent the
constant-dose regimens, and a solid curve represents the optimal regimen.
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Figure 5.
Plots of averaged value of “wellness + tumor size” for 10 different constant-dose regimens
compared to optimal regimen. The results are based on 200 patients. Dashed curves represent
the constant-dose regimens, and a solid curve represents the optimal regimen.
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Figure 6.
Representation of the optimal treatment for a patient with W0 = 0.30 and M0 = 1.05. The optimal
treatment sequence (Dt ∈ {1.00, 0.74, 1.00, 0.04, 0.01, 0.01}) is computed by the proposed
reinforcement learning methods on clinical data generated by 1000 patients. The solid curve
represents the negative part of patient's wellness, the dashed curve represents the tumor size,
and the dotted curve represents the estimated optimal regimen.
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