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Abstract
Dental research often involves repeated multivariate outcomes on a small number of subjects for
which there is interest in identifying outcomes that exhibit change in their levels over time as well
as to characterize the nature of that change. In particular, periodontal research often involves the
analysis of molecular mediators of inflammation for which multivariate parametric methods are
highly sensitive to outliers and deviations from Gaussian assumptions. In such settings,
nonparametric methods may be favored over parametric ones. Additionally, there is a need for
statistical methods that control an overall error rate for multiple hypothesis testing. We review
univariate and multivariate nonparametric hypothesis tests and apply them to longitudinal data to
assess changes over time in 31 biomarkers measured from the gingival crevicular fluid in 22
subjects whereby gingivitis was induced by temporarily withholding tooth brushing. To identify
biomarkers that can be induced to change, multivariate Wilcoxon signed rank tests for a set of four
summary measures based upon area under the curve are applied for each biomarker and compared
to their univariate counterparts. Multiple hypothesis testing methods with choice of control of the
false discovery rate or strong control of the family-wise error rate are examined.
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1. Introduction
Biomedical and dental research often involves the analysis of multiple outcomes recorded
on repeated occasions (DeRouen, Hujoel, and Mancl 1995). In many studies, there is often
interest in identifying outcomes that exhibit significant change in their levels over time as
well as to characterize the nature of that change. In particular, periodontal research often
involves the repeated measures analysis of molecular mediators of inflammation. Because
such studies are typically performed on a small to moderate number of subjects,
nonparametric multivariate methods, which have weaker assumptions and are less sensitive
to outliers, may be favored over parametric ones. Additionally, there is a need for statistical
methods that control an overall error rate for multiple hypothesis testing.
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This article presents a novel application of univariate and multivariate nonparametric
hypothesis testing procedures to longitudinal data to assess changes over time in biomarker
levels in a study of experimental gingivitis. Experimental gingivitis attempts to induce
gingivitis by withholding brushing and flossing for a fixed period of time and then to restore
good oral health by the resumption of dental care (Burrell and Walters 2008). Levels of
multiple biomarkers are measured through repeated sampling of the gingival crevicular fluid
over time both during induction phase and afterwards when routine oral health care has
resumed. Multivariate tests for a set of summary measures for each biomarker are compared
to their univariate counterparts. Special consideration is given to multiple hypothesis testing
methods with choice of method directed at either control of the false discovery rate or strong
control of the family-wise error rate.

Section 2 introduces the experimental gingivitis study. Section 3 defines summary statistics
for change over time based upon area-under-the-curve computations, and the univariate and
multivariate rank tests used to assess them (Ghosh, Grizzle, and Sen 1973; Dawson and
Siegler 1996). Multiple testing procedures are also outlined. Section 4 reports on the results
of the statistical analysis of the biomarkers. Finally, Section 5 concludes with discussion of
the proposed nonparametric analysis approach and the utility in this setting of the
investigated multiplicity methods.

2. Description of the Experimental Gingivitis Study
In this study of 22 humans, routine oral hygiene is temporarily discontinued to permit the
study of localized changes in biofilm overgrowth and inflammation associated with 31
inflammatory mediators (biomarkers). The study recruited and enrolled subjects with
naturally occurring gingivitis, defined as bleeding upon probing present, typically in at least
10% of dental sites, as these subjects were more likely to develop experimental gingivitis in
the course of the study. Gingivitis is induced by withholding tooth brushing by the use of
intraoral acrylic stents that cover selected teeth in each arch during tooth brushing to induce
local gingival inflammation. Mediator levels are determined from the laboratory analysis of
gingival crevicular fluid. At the end of the induction phase, stents are discontinued and
hygiene on all teeth is reinstituted to resolve inflammation over a subsequent resolution
period. The study design consists of a one-week hygiene phase (during which routine dental
care is encouraged), a three-week induction phase (the period of removal of the benefits of
brushing and flossing), and a four-week resolution phase of resumption of daily oral health
care. Gingival crevicular fluid is collected from the same oral sites at the beginning of the
hygiene phase (or Day −7, one week prior to baseline), the beginning of the induction phase
(Day 0 or baseline), Day +7, Day +14, and Day +21 (end of the induction phase/baseline for
the resolution phase), and during the resolution phase at Day +35 and Day +49. At the final
time point, four weeks after brushing/flossing is resumed, baseline levels are expected to be
restored for all biomarkers.

At each time point, gingival crevicular fluid is collected from eight dental sites from the
stent teeth and the volume of fluid collected from each sample is recorded. There are four
different assays run, and a given biomarker is assessed with only one of these assays,
producing two measurements per subject at each time point. For each biomarker assay the
mass of each mediator is determined by comparison to authentic standards and a
concentration at each site determined based upon the volume collected. The average of the
two concentration measurements is taken. These two measurements are always observed
together; one is never observed without the other being observed. So the average of the two
measurements comprises the data.
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Although there is no clinical intervention per se, the goal of the experiment is to identify
new candidate biomarkers that are sensitive to poor oral health care as identified by their
patterns of change during induction and resolution of gingivitis. The data have been
previously analyzed using parametric modeling (Offenbacher et al. 2010). The next section
describes the proposed non-parametric statistical analysis of the pattern of response from
Day 0 to Day +49 based on subject-level area-under-the-curve summary measures.

3. Statistical Methods
3.1 Summary Indices of Change: Area-Under-the-Curve

A metric scale is assumed for the biomarker levels; the procedures for constructing summary
indices of change described here do not apply to strictly ordinal data. Because of heavy
skewness, all biomarker data are transformed to log base 10 after adding 1 to the original
data. Let Lijt be the log gingival crevicular fluid level of the jth biomarker for the ith subject
at the tth time point, for t = 0, …, 5, corresponding to Day 0, +7, +14, +21, +35, and +49,
respectively. Conceptually, we consider that each biomarker is one of three types. For a
positively sensitive biomarker, Lij0, Lij1, Lij2, and Lij3 are expected to be in increasing order
during the induction (stent) phase, while Lij3, Lij4, and Lij5 are expected to be in decreasing
order during the resolution (nonstent) phase. The opposite picture holds for a negatively
sensitive biomarker, with a decreasing trend during induction followed by a increasing trend
during the resolution phase. For positively and negatively sensitive biomarkers, Lij5 should
be compatible with Lij0. For insensitive biomarkers, the gingival crevicular fluid levels
should be comparable across the six time points. Some biomarkers may deviate from these
patterns. For example, the levels of a possibly positively sensitive biomarker, IL-1β,
corresponding to a single subject shown in Figure 1a are compatible with a pattern whereby
the levels peak earlier than Day 21. Next, the levels of a possibly negatively sensitive
biomarker, Resistin, shown in Figure 1b, suggest marked asymmetry, whereby levels not
only return to baseline after Day 21, but temporarily elevate above baseline. Figure 1
provides a visual aid to the specification of summary indices of change associated with
experimental gingivitis; in the case of Figure 1b, areas C and A have negative values, area D
has a positive value, and the two regions of B combine to form a region with essentially zero
area.

These considerations dictate that the statistical methodology employed should allow for
detecting change away from the null in any of these directions. We adopt an area-under-the-
curve approach to approximate the average change between two observed time points of the
continuously evolving biomarker levels. Formally, for the jth biomarker level from the ith
subject, define the change from baseline to time t as Yijt = Lijt − Lij0. With week as the unit
for time, define the following summaries of area under the curve:

Next, define four variates of interest to be assessed in the statistical analysis described in the
section to follow:
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(1)

The rationale underlying Xij1 and Xij2 is to examine whether the rate of induction is the same
as the rate of resolution; rejection of the null hypothesis would point to asymmetry. The
statistic Xij3 examines the rate of induction between Day 0 and Day 14. The statistic Xij4
examines the rate of resolution between Day 35 and Day 49. Together, these four variates
provide a nearly complete picture of a biomarker’s pattern of change over time. In the
context of the pattern shown in Figure 1b, for example, Xij1 is computed as a positive area
corresponding to region D subtracted from a negative area for region C, giving a large area
(in absolute terms) with a negative sign. Such deviations from the null pattern of no change
over time might not be detected by Xij3 or Xij4 since these variates do not directly compare
induction to resolution phases.

Reducing the dimension of a subject’s data for a biomarker from six to four data points
should translate into increased statistical power for the alternative statistical hypotheses the
summaries target. The logarthmic transformations employed are important to the rank
analysis described in the next section because of the differencing used in the definitions in
(1) and has the effect of defining the contrasts (Xij1, Xij2, Xij3, Xij4)′ on the multiplicative
scale instead of the additive scale of the untransformed data.

3.2 Univariate and Multivariate Rank Tests
Let k = 1, 2, 3, 4 index the variate. We employ, for each biomarker j = 1, …, J(J = 31), a
four-variate Wilcoxon Signed Rank Test to Xij = (Xij1, Xij2, Xij3, Xij4)′ to examine the four
variates simultaneously for departure from their null median values of 0, appealing to its
permutation distribution for generating an exact p-value. Let nj denote the number of
subjects without any missing elements in Xij (i.e., the number with complete data vectors).

For the kth variate, let , i = 1, …, nj be the ranks of the absolute value |Xijk| of the jth
biomarker, among the nj subjects. Following Sen (1998), define

and

(2)

and
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(3)

Note that assigning sign(Xijk) = 0 for Xijk = 0 implies that sign(XijkXijk′) = 0 because
sign(XijkXijk′) = sign(Xijk) × sign(Xijk′). This effectively removes zero values from
contributing to calculations of variances and covariances in (3), as well as from means in
(2). In the case of ties, only minor adjustments are needed, applying mid-ranks to Equations
(2) and (3) (Appendix A).

The four-variate test that all four medians of the variates for a biomarker are simultaneously
zero is

(4)

which will have an asymptotic chi-square distribution with four degrees of freedom (DF),
where Vj = {vjkk′} is the 4 × 4 covariance matrix of Wj = (Wj1, Wj2, Wj3, Wj4)′. Reducing the
dimension of a subject’s six repeated biomarker measurements to the four variates in Xij
translates into increased statistical power for the alternative statistical hypotheses
corresponding to patterns represented by Xij (possibly with loss of power for patterns of
changes not targeted by Xij). The increased power is most readily apparent in Equation (4),
since the DF for its asymptotic chi-square distribution have been reduced from six to four.

Alternatively, univariate tests are defined corresponding to the Xijk, four such tests for each
biomarker. The univariate testing approach applies the univariate Wilcoxon signed rank test
to each of the four measures for all 31 biomarkers resulting in 124 p-values. Whereas a
subject with any Xijk missing is omitted from the multivariate test in (4), all available data
are used for the univariate tests, substituting njk for nj in Equation (2) and for vjkk in (3);
note, for the test in (4), nj ≤ min(nj1, nj2, nj3, nj4). The univariate Wilcoxon signed rank

statistic for the kth variate is  which has an asymptotic chi-square distribution
with 1 DF under the null hypothesis that the median of Xjk is equal to zero.

It is noteworthy that the Wilcoxon signed rank tests have a broader application whereby the
null hypothesis corresponds to the joint conditions of a zero median and symmetry of the
distribution of differences, whereas the alternative hypothesis is either a nonzero median
difference or asymmetry. The nonparametric tests are sensitive to asymmetry in the
distribution of difference scores (even when the median is zero), since the difference in
mean ranks would not be zero.

Whereas the asymptotic theory for the univariate test holds up fairly well for sample sizes as
small as 20, sign invariance methods are needed for small sample sizes, and more so for the
multivariate tests. Since the sample size per univariate test ranges from 11 to 22 (because of
missing data), we apply exact permutation tests for all univariate and multivariate tests. Let
Sijk = sign(Xijk) and define the following matrices for the jth biomarker,
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and

In these definitions, and for the remainder of the section, we write n instead of nj to simplify
notation. The permutation distribution of the multivariate Wilcoxon signed-rank statistic is
given by computing the test statistic Qj where  are held fixed and Sj can have 2n

(conditionally) equally likely realizations ((−1)i1, S1j, …, (−1)inSnj)′, ir = 0, 1, 1 ≤ r ≤ n.
Note that in this sign-invariance permutation procedure, each Sij has a single complement
(−1)Sij and together the pair are the only possible outcomes for the ith subject in the
permutation scheme (see Appendix B for further details and justification). The permutation

based p-value is then the proportion of the resulting test statistics, say  that
exceed the value of the observed test statistic Qj. Note that when n is large, the permutation
distribution of Qj may be approximated using monte carlo methods, that is, taking a large
with-replacement sample of the 2n realizations. However, in our application of either
univariate or multivariate signed rank tests, the maximum number of permutations for any
test was just over four million (222 = 4, 194, 304), a number which was easily handled by
complete enumeration of the permutation distribution using a SAS/IML macro (Sas Institute
Inc. 2008) written for the explicit purpose; the macro took less than three minutes to run per
test. For either the univariate or multivariate procedure, adjustment for multiple testing may
proceed as described in the next section.

3.3 Adjustments for Multiple Testing
For the procedures described above, the set of M p-values so obtained, where M = JK or M =
J (depending upon the context of univariate or multivariate testing, respectively) may be
evaluated for statistical significance, taking into account multiplicity. Traditionally, the
overall family-wise error rate (FWER) α may be controlled with the Bonferroni adjustment
(Hochberg and Tamhane 1987). The FWER is defined as the probability that at least one
true null hypothesis is rejected when any of the null hypotheses hold. Application of the
union-intersection principle provides a Bonferroni correction requiring a statistical test to
have p-value less than α/M to be labeled as significant. Indeed, the overall test size is ≤ α
regardless of whether the M tests are independent or not (Simes 1986; Sarkar and Chang
1997). This test actually provides strong control of the FWER, in that for any subset of the
M hypotheses, the probability of falsely rejecting the null hypothesis that all individual
hypotheses are true is not greater than α (Hochberg 1988).

Motivated by the stringency of the Bonferroni adjustment we consider alternative
multiplicity adjustments including the Bonferroni “step-down” procedure of Holm (1979).
This procedure starts by examining the smallest p-value P(1). If P(1) > α/M, then all null
hypotheses are H01, …, H0M are accepted (and procedure stops). Otherwise, if P(1) < α/M,
then reject H0[1], the null hypothesis corresponding to P(1), and proceed to the second step.
In the second step examine the second smallest p-value P(2). If P(2) > α/(M − 1), then the
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null hypotheses H0[2], …, H0[M] are accepted (and procedure stops). Otherwise, if P(2) < α/
(M − 1), then reject H0[2] and proceed to the third step. This continues until all remaining
null hypotheses are accepted, or until the last hypothesis H0[M] is rejected. Like the standard
Bonferroni correction, Holm’s sequentially rejective procedure is applicable to both
independent and dependent tests. And like the Bonferroni correction, it provides strong
FWER control, while being less stringent (or more powerful).

Alternatively, the “step-up” procedure of Hochberg (1988), which provides strong control of
the FWER in certain situations, is as follows. Start by examining the largest p-value P(M). If
P(M) < α, then all null hypotheses are rejected. Otherwise, if P(M − 1) < α/2, then all null
hypotheses H0[1], …, H0,[M − 1] are rejected. If not, then compare P(M − 2) with α/3, and so
on. The set of significant tests is given by the set {(m): m = 1, …, m*} determined by the
largest (m), say (m*), such that P(m) < α/(M − (m) + 1).

It is noteworthy that while the Holm and Hochberg procedures contrast the ordered p-values
with the same set of critical values, the Hochberg procedure is sharper in the sense that the
set of individual null hypotheses rejected will always contain the corresponding set of null
hypotheses rejected by the Holm procedure. While Holm’s procedure places no restrictions
on the dependency of p-values, the use of Hochberg’s method has some controversy in this
regard, particularly for multiple endpoints, as in the case of the experimental gingivitis
study.

When the aims of a study are exploratory, multiplicity may be alternatively addressed by
controlling the false discovery rate or FDR (Benjamini and Hochberg 1995). The FDR is
defined as the expected fraction of rejected null hypotheses for which the null hypothesis is
true, conditional on the number of rejected hypotheses being greater than zero, multiplied by
the probability of having at least one rejection. First, define the ordered set of the M p-values
from smallest to largest, {P(m)}, and define α as the FDR one is willing to accept. The set of
“significant” tests is given by the set {(m): m = 1, …, m*} determined by the largest (m), say
(m*), such that P(m) < ((m)/M) α. Because (m)/M ≥ 1/(M − (m) +1) (for M ≥ 2), with
equality only when (m) = 1 or (m) = M, one can easily see that the FDR bounds are less
stringent than Hochberg’s FWER bounds. In other words, the FWER controlling procedures
described above cannot give more significant tests than the FDR procedure, and will often
produce fewer “significant” results.

Both the FWER (Hochberg 1988) and FDR (Benjamini and Hochberg 1995) methods may
only be justified under the assumption of independent tests, clearly not the case here since a
subject’s four variates Xij1, … Xij4 for biomarker j are correlated as are the tests from the
different biomarkers. Nonetheless, these multiple testing procedures are justified in our
setting as approximate procedures through appeal to the Chen-Stein Theorem (Chen 1975)
as shown by Sen (2008) and along the lines presented in Appendix C, with somewhat better
justification for the procedure involving JK univariate tests over the one for J multivariate
tests.

4. Results
Appendix D describes methods and results of simple imputation methods applied to the
experimental gingivitis data. Not all cases of missing data had values imputed, as the
imputations were based only on information from within-subjects. Missing data methods are
not emphasized in this article, as the purpose of the statistical analysis is not to provide a
definitive analysis of the gingivitis data, but rather to illustrate multiple hypothesis testing
methods for nonparametric tests applied to area-under-the-curve summaries.
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Figure 2 displays the mean level of log mediator levels for the 31 biomarkers, displayed in
three plots by biomarker type. In Figure 2a, three of the six matrixmetalloproteinases
(MMP1, MMP3, MMP13) show a decreasing trend prior to day 21, indicative of a pattern of
suppression of levels that characterizes negatively sensitive biomarkers. Among the five
adipokines, Figure 2b reveals Serpin-E1 to have a clear pattern of suppression throughout
induction and resolution periods, returning to baseline levels at Day 35. The other remaining
adipokines, particularly Complement-D, show suppression of levels through the induction
period, followed by elevation of levels in the resolution period, before finally returning to
baseline levels at Day 49. It should be noted that subject specific trends may exhibit
substantial variation from the corresponding population averaged trends for biomarkers that
are displayed in the plots of Figure 2.

Next, trends in mean log levels of 20 cytokines are shown in Figure 2c; for ease of
interpretation, only five of the cytokines were considered to have sufficiently distinguished
patterns to merit identification in the plot by a distinct line pattern. Two of these, IL-1α and
IL-1β, appear to be positively sensitive biomarkers; they show increasing mediator levels
during the induction period, followed by decreasing levels and a return to baseline values in
the resolution period. Three cytokines are negatively sensitive biomarkers. The biomarker
MIP-1β displayed the largest negative change in levels during the induction period, with a
fairly speedy return to baseline levels in the resolution period as indicated by the asymmetry
of patterns of suppression about Day 21. Two cytokines, IL-8 and TNFα, having patterns
essentially coincident with one another, show a lesser degree of suppression, bottoming out
prior to the end of the induction phase, and returning to baseline levels by Day 35.

Figure 3a displays the (ordered) exact permutation test p-values for the 24 univariate rank
tests (among 124 total tests) identified as significant by the procedure controlling FDR at
0.05. Table 1 identifies the 12 biomarkers that have at least one significant univariate test
under this criterion, and that together account for the 24 significant tests. Furthermore, tests
for X2 andX3 are both significant for seven of the biomarkers suggesting asymmetry about
Day 21, and suppression of biomarker levels within the first two weeks of induction.

Superimposed on the plot in Figure 3a is the strong FWER criterion at α = 0.05 and 0.10
control levels. At an overall FWER α = 0. 05, the seven univariate tests with the smallest p-
values are declared statistically significant; at α = 0.10, there are ten significant tests. The
fact that the jagged line for observed p-values in Figure 3a crosses over the FWER α = 0.05
(or α = 0.10) critical boundary line only once indicates that the results for Hochberg and
Holm’s procedures were the same. Table 1 identifies the seven biomarkers with at least one
univariate test achieving significance at α = 0.10.

Figure 3b reveals that 10 biomarkers have exact permutation multivariate test p-values
identified as significant at the FDR 0.05 level. Superimposed on the plot is the strong FWER
criterion at 0.05 and 0.10 control levels. Under FWER control, five multivariate tests are
significant at α = 0.05 and an additional three tests are also significant at α = 0.10. As for
Figure 3a, there are no “multiple crossings” of the jagged line over the boundary lines,
indicating that the results for Hochberg and Holm’s FWER procedures were the same. Table
1 identifies the biomarkers having significant multivariate tests.

5. Discussion
In this article, a nonparametric multiple hypothesis testing approach is advocated for the
analysis of repeated measures biomarker data. An attractive feature of the proposed
approach is its ability to assess a large number of biomarkers relative to the number of
subjects; this was illustrated with an experimental gingivitis study where the number of
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biomarkers exceeded the number of subjects. Moreover, computation of exact p-values from
the permutation distribution of univariate and multivariate Wilcoxon signed rank tests
provided an analysis of the small dataset based on only 22 subjects. In consideration of the
greater amount of problems caused by missing data in the multivariate testing procedure
described, the univariate method is advocated for the experimental gingivitis study, and
similar studies. Another potential drawback of the multivariate methods is their
susceptibility to singularities, especially for small sample sizes. The univariate methods also
may accommodate one-sided tests, although only two-sided tests were employed in the
experimental gingivitis study. The primary motivation for the analysis presented here is that
analysis of ranks provide tests less sensitive to outliers and Gaussian distribution
assumptions than provided by parametric analysis. It is possible to adapt the permutation
methods to produce exact t-tests as an alternative to rank-based methods.

In the proposed approach, the p-values generated by signed rank analysis are analyzed with
multiple hypothesis testing procedures. Specifically, the choice of procedure depends upon
one’s analysis goals. If a study is considered confirmatory in the sense that a high degree of
confidence is desired in the identification of significant biomarkers, procedures that control
the family-wise error rate in the strong sense are advocated. On the other hand, if the study
is exploratory in the sense that it is considered to be a screening study for potentially
important biomarkers that would be assessed definitively in a future confirmatory study,
procedures that control the false discovery rate (i.e., Benjamini and Hochberg 1995) are
advocated as these will yield a larger set of candidate biomarkers than would be obtained
under an FWER controlling procedure. The FDR procedure is better suited than the FWER
procedures for the experimental gingivitis study given the large number of biomarkers and
tests.

Given either FWER or FDR α-control, the various multiple testing procedures gave similar
results for the experimental gingivitis data. There were no differences among them for the
univariate tests, with mild differences among them for the multivariate tests, where the
number of tests was smaller (M = 31 vs. M = 124 univariate tests). We noted that, unlike the
Bonferroni and Holm procedures, the Hochberg and Benjamini-Hochberg procedures
strictly apply to independent tests with further justification necessary for their application to
dependent variates; to this end, recent advances in multiple testing considerations of Sen
(2008) provided justification, which is stronger for the univariate testing situation
considered than the multivariate testing procedure. Further investigation, with attention
given to the patterns of dependency among tests, is needed to compare the multiple
hypothesis testing procedures in our setting and to determine whether Poisson
approximation-based adjustments to Hochberg’s or Benjamini-Hochberg’s multiple
hypothesis testing procedures along the lines described in Appendix C lead to improved
inference for problems similar to the experimental gingivitis study.

With respect to experimental gingivitis, the interpretation of X1, X2, X3, and X4 as reflecting
symmetry or asymmetry has potential implications relating to the biology of the system.
Biomarkers that generally increase in concentration may demonstrate monotonic increases
as a log function proportional to the stimulus concentration. After the removal of the
stimulus a first-order decay in biomarker level might be expected to reflect passive diffusion
or transport from the local tissues and would be reflected in symmetry. Asymmetric changes
would reflect active transport from the site following the removal of the stimulus or
metabolic destruction. When considering the decrease in biomarker level during the
induction of disease the inhibition of basal synthesis would logically follow a similar pattern
with an uncoupling of synthesis during induction and recoupling during resolution reflecting
a symmetrical pattern. Asymmetry would likely be expected from secondary signals which
are involved with feedback to suppress the inhibitors to reactivate synthesis and restore basal
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secretory levels. This is undoubtedly an oversimplification of the process involved, but this
example provides potential insight to discriminate whether there are differences in the
homeostatic mechanisms which regulate the steady-state levels of different biomarkers.

An important limitation of the proposed nonparametric approach is that it is a hypothesis
testing approach and so it does not provide estimation of the mean (or median) response
pattern over time. To draw interpretations for specific biomarker patterns over time, the
hypothesis testing results were supplemented with appeal to graphics showing average
trends in the observed data. Thus, the proposed nonparametric multiple hypothesis testing
procedures are complementary to fully parametric model-based methods in the sense that
their prospective strengths and weaknesses are opposite. Whereas parametric or
semiparametric longitudinal nonlinear modeling approaches provide direction estimation of
the trends in biomarkers over time (which the nonparametric testing method does not), their
validity depends on strong assumptions regarding the form of the mean model (including
uncertainty pertaining to the transformation of the response) and the missingness process, as
well as assumptions about the nature of left truncation of observations due to a lower
detection limit. Conversely, the nonparametric method appears well suited for identifying
biomarkers that have important roles in disease processes in the presence of such
challenging and messy data.

In this regard, a limitation of the statistical analysis of the experimental gingivitis study was
that it used deterministic (within-subject) imputations for selected missing data (Appendix
D). However, we conjecture that the use of permutation tests in the proposed procedures
ameliorates many of the usual problems (i.e., underestimation of variances) encountered
when deterministic imputation methods are employed, say, with many parametric analysis
methods. A comparison of the proposed nonparametric procedures with parametric ones in
both balanced and unbalanced (missing data) situations like those addressed in this article
warrants investigation.
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Appendices

A. Adjustment of Test Statistics for Ties
If there are r0jk observations for which Xijk = 0, not only for each of them we have Sign(Xijk)
= 0 but also their mid-rank score is (r0jk + 1)/2. In the same way, if rhjk absolute values of

the Xijk(1 ≤ i ≤ nj) are tied at xhjk and if there are  observations with absolute values less

than xhjk, then the midrank score for these tied observations is . This

adjustment for ties, though routine, affects the sum of squares  and reduces it to

where qjk = # of distinct order values of the |Xijk|, 1 ≤ i ≤ nj. Therefore, the presence of ties
reduces the null variance of the Wjk (without affecting their mean (=0)). When standardizing
the Wjk, this adjustment is necessary to use asymptotic critical levels and p-values. In the
same way, for the multivariate case, denoting VHj as the hypothetical covariance matrix in

the absence of ties for which the diagonal elements equal , adjustment for ties leads
to a covariance matrix Vj such that VHj – Vj is positive semi-definite. Thus, in (4), for
defining the Qj we need to use the Vj not VHj. In small samples, for Wjk, the permutation
distribution will be generated by the 2nj sign-inversions as is elaborated in Appendix B. The
permutation-based p-value can also be obtained with reduced computational effort using the
permutation distribution generated by the 2nj–r0jk sign-inversions with removal of the r0jk
observations for which Xijk = 0. This equivalency arises because the set of test statistics
resulting from the 2nj–r0jk sign-inversions is replicated by the factor 2r0jk to produce the full
set.
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B. Null Distributions of Test Statistics
In this study, in the complete case, we have, for each of n (= 22) subjects, J (=31)
biomarkers and K (=4) response variates (X1, X2, X3, X4). Thus, we have the set of responses

For any i, the Xijk (1 ≤ j ≤ J, 1 ≤ k ≤ K) are not independent. Thus, we let

for i = 1, …, n. The (joint) distribution of Xi is denoted by G(x), x ∈ ℜJK. Under the global
null hypothesis H0, all the JK marginal distributions (of G) are symmetric about 0, thus
prompting us to incorporate the classical Wilcoxon signed-rank statistic along with its
multivariate generalizations (Puri and Sen 1971) in our testing problem. We define the
coordinate-wise Wjk as in (2) and their multivariate versions Qj(i ≤ j ≤ J) as in (4).

For each marginal Wjk, we have the basic property of exact distribution-freeness (under H0);
however, as the Wjk are not necessarily independent, they fail to be jointly distribution-free
(under H0). For this reason, in the multivariate tests based on the Qj, we advocate a basic
permutation (sign-invariance) procedure (as in Koch and Sen 1968 and Puri and Sen 1971).
This, however, needs a slightly more stringent regularity assumption that we formulate first.

Let Gj (x), x ∈ ℜK be the K-variate marginal distribution of the jth biomarker set (1 ≤ j ≤ J).
We say that Gj (x) is diagonally symmetric about 0 if Xij and (−1)Xij both have the same
distribution Gj(x). This assumption holds for many multivariate (symmetric) distributions,
including the multi-normal law.

Let Sij = (SignXij1, …, SignXijK)′, 1 ≤ j ≤ J, 1 ≤ i ≤ n. Also, for each j(= 1, …, J) and k(= 1,

…, K), we define the , 1 ≤ i ≤ n as before in (2), and let

Under the null hypothesis, letting

we have (Puri and Sen 1971) Sj = (S1j, … Snj)′ and  (conditionally) independent where Sj
can have 2n (conditionally) equally likely realizations ((−1)i1, S1j, …, (−1)inSnj)′, ir = 0,1,1
≤ r ≤ n. This conditional law generates a conditionally distribution-free test (based on Qj).
Further, if n is large, this permutation distribution can be well approximated by the (central)
chi-square distribution with K degrees of freedom.

We may note that for the marginal Wjk, under H0, the normal approximation is quite fast—
even for n ≥ 12, it works out well. However, for the Qj, the chi-square (K DF)
approximation may be a bit slower (in n), especially if K is not small. Thus, the use of the
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JK marginal Wjk can be advocated with two advantages. First, the marginal distributions are
known, well tabulated, and quickly convergent to normal ones. Second, they also allow
varying missing observations across the biomarkers as well as variates. In the case of the Qj,
missingness patterns varying over j(= 1, …, J) are allowed, but not over the K variates, all of
which are required to be observed.

C. Control of Errors in Multiple Hypothesis Testing
For control of the FWER error rate, Holm’s procedure (1979) was motivated by the
stringency of the Bonferroni adjustment, as was Hochberg’s method (1988). For dependent
tests, Hochberg’s procedure requires justification, which has been provided by Sen (2008).
That justification is summarized here, first giving consideration to a simpler case.

A refinement of Bonferroni’s bounds may be derived by using a Poisson approximation
known as the Chen-Stein Theorem (Chen 1975). We define

for some α* that determines the significance criterion for the individual tests. Under the
global null hypothesis, WM ~ Poi(α*). In words, the number of falsely rejected individual
null hypothesis is approximately Poisson distributed with mean α*. The approximation
applies to many multiple testing problems, since asymptotic independence holds for general
dependence patterns when the degrees of freedom (e.g., M for the multiple univariate tests)
is large, more so for small α. Now, P0{WM ≥ 1} = 1 − exp(α*). Setting the FWER to α, α* is
determined by solving 1 − exp(α*) = α, giving the adjusted Bonferroni criterion for
individual hypothesis tests as α*/M. For example, α = 0.05 gives α* = 0.05129. Then
adjusted Bonferroni levels are 0.05129/31 = 0.001655 (compared to the unadjusted
Bonferroni value of 0.05/31 = 0.001613) for the Qj and 0.05129/124 = 0.000414 (compared
to the unadjusted Bonferroni value of 0.05/124 = 0.000403) for the Wjk. These slight
adjustments, when using α = 0.05 (or α = 0.10) applied to the experimental gingivitis data,
produce identical results in terms of sets of significant tests as the unadjusted Bonferroni
procedure. Lastly, adjustments for the discreteness of the distributions (e.g., Westfall and
Wolfinger 1997) were not required because inference was based on a complete enumeration
of the conditional permutation distribution.

In adapting the Hochberg (1988) and Benjamini and Hochberg (1995) procedures to control
the FWER or FDR, respectively, based on Qj (or Wjk), one must consider that these statistics
are not generally independent (nor necessarily positively associated). Generally, in the
context of high-level crossing probabilities for multivariate normal distributions, Sen (2008)
demonstrated the applicability of the Chen-Stein Theorem and has shown that it leads to a
discrete Poisson process. Heuristically, the theorem when applied to a bivariate normal
distribution with nonzero correlation provides that the largest marginal order statistics are
asymptotically independent. Applying the Chen-Stein Theorem to dependent binary
variables, some advances in the multiple hypotheses testing problem have been recently
made (Sen 2008), providing justification for both the FWER Hochberg and FDR Benjamini-
Hochberg multiple hypothesis testing procedures. Future work will investigate modifications
of the Hochberg (1988) and Benjamini and Hochberg (1995) procedures based on the Chen-
Stein Theorem to the experimental gingivitis data and similar problems.
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D. Details of Data Imputation
Data were available for 33 biomarkers measured from the gingival crevicular fluid for 25
subjects. Due to instances of excessive amounts of either missing data or data below the
lower detection limit, the analysis considers data from J= 31 biomarkers measured on n = 22
subjects. Because not all subjects had all six time points observed for all 31 biomarkers,
some preliminary data imputations were carried out in order to avoid very small sample
sizes in the data analysis and limit the amount of information that would be discarded due to
incomplete data. There were three different types of imputations, and all used only within-
subject information: imputations for left-censored data using the midpoint between the
recorded value of zero and a lower detection limit, imputation by substitution, and
imputation by linear interpolation. The latter two methods used only within-subject
information for imputations.

It is noteworthy that while left-truncation has implications for the symmetry of the observed
biomarker response data Lijt, the data Xijt being used in the univariate and multivariate
Wilcoxon signed rank tests are much less affected by left truncation since these correspond
to differences. Thus, the assumptions of the tests in Appendix B can be reasonably made.

First, since recorded biomarker levels of zero indicate values below a biomarker’s lower
detection limit, we imputed the log biomarker response level Lijt as the log base 10 applied
to half the lower detection limit plus 1. There were 122 subject-visits observed (5.54 visits
per subject). The total amount of recorded zeros varied substantially across biomarkers: 15
biomarkers had no zeros recorded, 6 biomarkers had eleven or fewer (less than 10%) 0
observations, two biomarker had between 17 (14%) to 29 (24%) zeros, 4 biomarkers had
between 51 (42%) and 68 (56%) zeros, and 4 biomarkers had between 77 (63%) and 85
(70%) zeros. Indeed, most ties in this data correspond to zero values for the variates Xijk
resulting from the differencing operations in (1) applied to fixed biomarker-specific values
assigned for left truncation.

Next, a small number of missing biomarker values were imputed using a substitution
method. Specifically, if a biomarker level at Day 0 was missing, we substituted the Day − 7
value, and if that was missing, the Day +49 value. If a biomarker level at Day +49 was
missing, we substituted the Day 0 value, and if that was missing, the Day − 7 value. The
justification for these substitutions is that levels of a biomarker are expected to return to
baseline at the end of the resolution phase. Applying these imputations, one subject that did
not have gingival crevicular fluid collected at Day 0 had Day − 7 data used for Day 0.
Another subject had Day +49 data used for Day 0.

Finally, linear interpolations using data from previous and next visits were performed
sequentially for biomarker levels missing at Day +7, Day +35, Day +21, and Day +14, in
that order. When insufficient data (real or imputed) was unavailable at any give stage, the
data was left missing. Two subjects did not have any data for one of the biomarkers, and
there were 52 instances when a subject had zeros recorded for all visits for a biomarker;
these observations were omitted. Thus, across all biomarkers, there are 22 × 31 − 2 − 52 =
628 sets of (possibly incomplete) longitudinal biomarker levels.

The final results of imputation are as follows. Over all six time points, there are a possible
628 × 6 = 3768 observations, of which 3222 (85.5%) were observed, 480 (12.7%) were
imputed, and 66 (1.8%) were missing. Table A.1 shows that highest amount imputations
were made at Day 7, followed by Day 0 and then Day 35. Few imputations (< 5%) were
made at Days 14, 21 and 49.
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Figure 1.
Experimental gingivitis biomarker levels from single subjects for IL-1β (Figure 1a) and
Resistin (Figure 1b). Letters denote a partition of area under the curve from which four
summary indices of interest (Xi1, Xi2, Xi3, Xi4) are computed.
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Figure 2.
Mean changes in biomarker levels from Day 0.
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Figure 3.
Exact permutation p-values from (a) univariate and (b) multivariate Wilcoxon Signed Ranks
tests. P-values below lines correspond to significant tests under the procedure indicated.
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Table A.1

Amount of imputed biomarker data across visits

observed imputed missing total

Day 0 485 (77.2%) 143 (22.8%) 0 628

Day 7 426 (67.8%) 170 (27.1%) 32 (5.1%) 628

Day 14 565 (90.0%) 31 (4.9%) 32 (5.1%) 628

Day 21 605 (96.3%) 22 (3.5%) 1 628

Day 35 521 (83.0%) 106 (16.9%) 1 628

Day 49 620 (98.7%) 8 (1.3%) 0 628

All time points 3222 (85.5%) 480 (12.7%) 66 (1.8%) 3768
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