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Abstract

We establish a connection between Bayesian case influence measures for assessing the influence 

of individual observations and Bayesian predictive methods for evaluating the predictive 

performance of a model and comparing different models fitted to the same dataset. Based on such 

a connection, we formally propose a new set of Bayesian case-deletion model complexity 

(BCMC) measures for quantifying the effective number of parameters in a given statistical model. 

Its properties in linear models are explored. Adding some functions of BCMC to a conditional 

deviance function leads to a Bayesian case-deletion information criterion (BCIC) for comparing 

models. We systematically investigate some properties of BCIC and its connection with other 

information criteria, such as the Deviance Information Criterion (DIC). We illustrate the proposed 

methodology on linear mixed models with simulations and a real data example.
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1. INTRODUCTION

The aim of this paper is to establish a formal connection between Bayesian case influence 

measures for assessing the influence of individual observations on a model and Bayesian 

predictive methods for choosing an appropriate dimension of a model and selecting the best 

model for a given dataset. In Bayesian analysis, such statistical measures are very important 
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and highly relevant in any formal statistical analysis, but their formal connection has not 

been fully explored. We will systematically examine the properties of these measures and 

establish such connections.

Bayesian case influence measures are developed to assess the influence of individual 

observations (or generally, a set of observations), but they also provide the importance of 

each observation in the analysis for a better model fit [33, 9, 25, 5, 7, 12, 11]. See [42, 43] 

for a comprehensive review of various Bayesian case influence measures and their 

properties. Among them, single case influence measures have been widely used for various 

specific statistical models including generalized linear models, time series models, survival 

models, and statistical models with missing data [18, 29, 20, 14, 12, 28, 43]. The influence 

of individual observations are often assessed either on the posterior distributions or the 

predictive distributions through case deletion. The two most popular Bayesian case 

influence measures are the Kullback-Leibler (KL) divergence [11] and the conditional 

predictive ordinate (CPO) [14, 12].

Bayesian predictive methods are developed to evaluate the predictive performance of a 

given model and to select a single model with the best predictive performance from a set of 

candidate models. For instance, many researchers have been interested in Bayesian model 

assessment tools based on criterion-based methods, such as the L-measure [17, 23, 15, 16, 

8]. See [39] and [4] for an overview of recent progress in cross-validation procedures and 

Bayesian predictive methods for model assessment, selection, and comparison. The main 

challenge is to estimate predictive model accuracy by correcting for the bias inherent in the 

double use of the data including both fitting and prediction. Cross-validation (CV) is a 

natural way of estimating out-of-sample prediction error [12, 41]. However, since cross-

validation requires repeated model fits, it is computation intensive, and hence, information 

criteria are commonly sought as alternative measures. Such information criteria include the 

Akaiki Information Criterion (AIC) [1], the Takeuchi Information Criterion (TIC) [35, 22], 

the Bayesian Information Criterion (BIC) [31, 24, 21], the Deviance Information Criterion 

(DIC) [32], and the Bayesian Predictive Information Criterion (BPIC) [2], among many 

others. All these information criteria incorporate different complexity terms for model 

choice and can be viewed as approximations to different versions of cross-validation [34, 

33].

Despite the extensive literature on Bayesian diagnostic measures and Bayesian predictive 

methods, very little has been done on systematically examining their connections in general 

parametric models. Based on such connections, we also develop Bayesian case-deletion 

model complexity (BCMC) measures for quantifying the effective number of parameters in 

a given statistical model and a Bayesian case-deletion information criterion (BCIC) for 

comparing different models. We calculate BCMC and BCIC in two theoretical examples 

including linear models and linear mixed models. We will show that BCMC can be regarded 

as a measure of model complexity, and show its asymptotic equivalence to the effective 

number of parameters in various information criteria. We systematically investigate the 

connection of BCIC with cross-validation methods and other information criteria, such as 

TIC and DIC. When the number of observations in each set, denoted as NS, is small, we will 
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systematically derive their asymptotic approximations, which facilitate their computation 

and establish their asymptotic equivalence.

The rest of this paper is organized as follows. In Section 2, we review Bayesian case 

influence measures and Bayesian predictive methods. We propose BCMC for measuring 

model complexity and BCIC for comparing different models. We also systematically 

establish the connections between our two new measures including BCMC and BCIC and 

many existing model complexity measures and information criteria. In Section 3, we 

illustrate the proposed methodology on linear mixed models using both simulations and a 

real dataset involving the Yale infant growth data. We conclude the paper with some 

discussion in Section 4.

2. METHODS

2.1 Bayesian Case Influence Measures

We consider a probability function for an N × 1 vector , denoted by p(Y 

|θ), where θ = (θ1, ⋯, θp)T is a p × 1 vector in an open subset Θ of Rp, Yi = (yi1, ⋯, yimi)
T, 

and . Letting p(θ) be the prior distribution of θ, the posterior distribution for the 

full data Y is given by p(θ|Y) ∝ p(Y|θ)p(θ). Moreover, the dimension of Yi (or mi), such as 

the number of repeated measures in each cluster of longitudinal studies, may vary across all 

i.

Bayesian case influence measures are primarily used to assess the influence of deleting an 

NS × 1 vector of observations, denoted by S, on posterior inferences regarding θ. We use a 

subscript ‘[S]’ to denote the relevant quantity with all observations in S deleted. For 

example, if S = {i}, then Y[S] is the corresponding observed data with all of Yi deleted, 

whereas for S = {i1, i2}, Y[S] is the corresponding observed data with Yi1 and Yi2 deleted. 

Moreover, we may set S = {i1,⋯ ik} and S = {(i1, j1),⋯, (ik, jk)} to allow more complicated 

case deletions. We use YS and Y[S] to represent a subsample of Y consisting of all the 

observations in S and a subsample of Y with all observations in S (YS) deleted, respectively. 

We also calculate p(θ|Y[S]) ∝ p(Y[S]|θ)p(θ) as the posterior distribution of θ given Y[S], 

where p(Y[S]|θ) = p(Y|θ)/p(YS|θ).

Following [43], we briefly introduce three types of Bayesian case influence measures based 

on case deletion. First, we consider the ϕ-influence of Y[S], denoted by Dϕ(S), as a measure 

of the distance (discrepancy) between p(θ|Y[S]) and p(θ|Y). Letting R[S](θ) = p(θ|Y[S])/p(θ|Y), 

then Dϕ(S) is given by

(1)

where ϕα(u) is defined by 4{1 − u(1+α)/2}/(1 − α2) for α ≠ ±1, u log(u) for α = 1, and 

−log(u) for α = −1. The ϕ1(·) and ϕ−1(·) lead to the Kullback-Leibler divergence (K-L 

divergence), whereas ϕ(u) = ϕ1(u) + ϕ−1(u) leads to the symmetric K-L divergence. The 

L1−distance and the χ2−divergence correspond to ϕ(u) = 0.5|u − 1| and ϕ(u) = (u − 1)2, 

respectively [20].
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Second, we consider Cook’s posterior mode distance, denoted by CP(S), for quantifying the 

discrepancy between the posterior mode of θ with and without the ith case [10]. We define 

the posterior modes of θ for the full sample Y and a subsample Y[S] as θ̂ = argmaxθ log p(θ|
Y) and θ̂[S] = argmaxθ log p(θ|Y[S]), respectively. Then, CP(S) is given by

(2)

where Gθ is chosen to be a positive definite matrix. For instance, Gθ can be 

 evaluated at θ̂, where  represents 

the second-order derivative with respect to θ. If , then CP(S) 

is close to the well-known Cook’s distance for deleting a set of observations [10, 44]. A 

large value of CP(S) implies more influence of the set S on the posterior mode.

Third, we consider Cook’s posterior mean distance, denoted by CM(S), for quantifying the 

distance between the posterior mean of θ with and without the observations in S. Let θ̃ = ∫ θ 

· p(θ|Y)dθ and θ[̃S] = ∫ θ · p(θ|Y[S])dθ be, respectively, the posterior mean of θ for Y and Y[S]. 

The CM(S) is given by

(3)

where Wθ is chosen to be a positive definite matrix. A large value of CM(S) corresponds to 

an influential set S regarding the posterior mean.

Computationally, the proposed case influence measures can all be approximated using only 

MCMC samples from the full posterior distribution, p(θ|Y). For diagnostic purposes, it is 

desirable to derive computationally feasible approximations to these case influence 

measures. For completion, we include an important theoretical result regarding such 

approximations, whose proof can be found in [43], as follows.

Proposition 1—Assume that Assumptions C1–C4 in the Appendix hold and NS is bounded 

by a fixed constant. We have the following results:

a. Dϕ(S) = 0.5 ϕ̈(1) × CP(S) + Op (N−2) = 0.5ϕ̈(1) × CM(S) + Op (N−2).

b. θ̂
[S] = θ̂ +Op (N−1) = θ̂ − [JN(θ̂)]−1∂θ log pS(θ̂)[1+ Op (N−1)].

c. θ̃
[S] = θ̃ − [JN (θ̂)]−1∂θ log pS (θ̂)[1 + Op (N−1)].

d. Dϕ(S) = 0.5 ϕ̈(1)[∂θ log pS (θ̂)]T [JN (θ̂)]−1[∂θ log pS (θ̂)][1 + Op(N−1)], where 

 and pS (θ) = p(YS|Y[S], θ) is the conditional distribution of YS 

given Y[S].

Proposition 1 establishes a direct connection between Dϕ(S), CP(S) and CM(S) for any ϕ(·) 

and the one-step approximation of θ[̂S] and θ̃
[S] within the Bayesian framework. Proposition 

1 provides a theoretical and computational approximation of Dϕ(S), denoted by AD(S;θ̃), as

(4)
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The θ̃ and JN (θ̃) can be easily computed from the MCMC samples. Moreover, it is 

straightforward to compute ∂θ log pS (θ) = ∂θ log p(Y|θ) − ∂θ log p(Y[S]|θ). As an illustration, 

we consider a normal linear model to illustrate the calculation of Bayesian case influence 

measures.

Example 1—We consider a normal linear model as Y = Xβ+ ε or , where β and 

xi are p × 1 vectors, β is unknown, ε = (ε1, ⋯, εn)T ~ Nn (0, τ−1I), and τ = 1/σ2 is assumed 

known for simplicity. We consider a conjugate prior for β as Np (μ0, τ−1Σ0). For a given set 

S, p(β|Y) and p(β|Y[S]) are, respectively, given by

and

where 

, X[S] 

is X with all xi deleted for i ∈ S, and Y[S] is Y with all yi deleted for all i ∈ S. Note that 

 and .

Let S = {i1, ⋯ iNS} and ES = [ei1, ⋯, eiNS
] be an N × NS matrix, where ek is an N × 1 vector 

with a 1 at the k-th element and 0 elsewhere for k ∈ S. With some algebraic calculations, we 

have

where , in which , and 

. For the KL divergence, we get

Note that the posterior mode and the posterior mean are the same in this example. If we set 

, we have
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Since log  and , we have

2.2 Cross Validation and Model Complexity

Bayesian case influence measures (BCIM) and cross-validation (CV) methods share the 

same strategy of splitting the data into two subsamples, but they differ from each other in 

validation [33, 34, 13, 4]. BCIM divides the data into a target sample YS and a training 

sample Y[S] and then estimates θ[̃S] based on the training sample Y[S]. Note that all 

development below is valid for θ̂
[S], but we focus on the posterior mean from here on for 

notational simplicity. BCIM for a given set S represents the influential level of S. In contrast, 

the CV method divides the data into two subsamples including a training sample Y[S] for 

model fitting and a validation sample YS for assessing model fit. Compared to BCIM, CV 

usually uses the predictive distribution p(ỸS|Y[S]) for model validation, where ỸS is an 

independent copy of YS. One choice of the predictive distribution is to use p(ỸS|Y[S],θ̃
[S]), 

where θ̃
[S] is estimated based on Y[S]. Let NB be an integer and S1,⋯, SNB is a sequence of 

non-empty proper subsets of {(1, 1), ⋯, (n,mn)}. The CV estimator of the model p(θ|Y) 

based on IS = (Sk)1≤k≤NB is defined by

A challenging issue associated with BCIM and CV is to calculate the θ[̃S]’s for all possible 

splits. Most BCIM and CV methods split the data with a fixed size of the training sample. 

There are two major categories of splitting schemes including exhaustive data splitting and 

partial data splitting. Exhaustive data splitting includes the leave-M-out CV for all N ≥ M ≥ 

1. For each fixed M, NB = N!/(M!(N − M)!) and IS is the set of all possible sets with a fixed 

size M. However, except for relatively small M, it can be computationally restrictive to 

calculate BCIM and CV for every possible subset of the M data. Alternatively, one may 

consider partial data splitting methods, such as V-fold CV [4, 41].

An interesting question is whether there is any other connection between BCIM and CV 

besides the strategy of splitting the data. We can establish a connection between BCIM and 

CV by extending the well-known result on the asymptotic equivalence between CV and AIC 

[34]. We obtain the following theorems, whose detailed proofs can be found in the the 

Appendix.

Theorem 1—Let NS be a fixed constant. Then we have the following results:

i. Under Assumptions C1–C4 in the Appendix, CVE(IS) has an asymptotic expansion 

as
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(5)

where  is the mean of AD(Sk;θ̃)’s.

ii. Under Assumptions C1, C2, and C5 in the Appendix, we have

where  and , in which the 

expectation is taken with respect to the true data generator and θ* denotes the 

pseudo-true parameter [6]. Moreover, 

and

where a⊗2 = aaT for any vector a.

Theorem 1 shows a direct connection between CVE(IS) and MAD(IS) and an indirect 

connection between CVE(IS) and BCIM. According to Proposition 1, we can use the 

average of BCIMs to approximate MAD(IS) as follows:

(6)

A similar approximation also holds for both CM(S) and Dϕ(S). Moreover, MAD(IS) is 

always nonnegative. Throughout the paper, based on MAD(IS) and their approximations, we 

define the Bayesian case-deletion model complexity (BCMC) measures as

(7)

We will show below that our BCMC measures can be regarded as a generalization of many 

existing measures of model complexity. We first consider single cluster deletion (or the 

leave-one-out CV) for clustered data, in which the Yi’s are independent for different i, but 

the components in each Yi may be correlated. For the leave-one-out CV, we denote ILOO = 

{{1}, ⋯, {n}}. In this case, we have NB = n, p{i} (θ) = p(Yi|θ),

and

Zhu et al. Page 7

Stat Interface. Author manuscript; available in PMC 2015 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where →p denotes convergence in probability. Let p* = BCMC(ILOO) in this case. Using a 

uniform improper prior for θ, that is, , p* is the measure of model complexity in 

TIC. Furthermore, if the model p(Y|θ) is correctly specified, then p* reduces to p, the 

number of parameters, and MAD(ILOO) = p + op (1). In this case, p is the measure of model 

complexity in AIC. For general priors, p* is the effective number of parameters in the 

network information criterion (NIC) [27, 30]. Moreover, MAD(ILOO) is also associated with 

the effective number of parameters, denoted by pD, in DIC, where pD = Eθ|Y [−2 log p(Y|θ)] 

+ 2 log[p(Y|θ̃)]. Under the two conditions of approximately normal likelihoods and a 

uniform improper prior for θ, it can be shown that pD = tr{JN (θ̃)E[(θ − θ̃)⊗2]} + op (1) [32]. 

Moreover, using the fact that E[(θ − θ̃)⊗2] = JN (θ*)−1KN(ILOO|θ*)JN(θ*)−1[1 + op(1)] [6], 

we can obtain the following connections between pD and p*: pD = p* + op (1). Thus, 

MAD(ILOO) has many of the same properties as pD [32]. We also note that MAD(ILOO) is 

always nonnegative, whereas pD is not.

Second, we consider multiple cluster deletion (or the leave-M clusters-out CV) for clustered 

data. Specifically, we focus on deleting every possible subset of data from M clusters and 

using it for validation. Let ILMO be the set of all  subsets with M clusters. If we 

set S1 = {{i1}, ⋯, {iM}}, then we have

Therefore, by doing exhaustive data splitting, we have

(8)

which yields that MAD(ILMO) = M × MAD(ILOO). If m1 = ⋯ = mn, then BCMC(ILMO) = 

BCMC(ILOO). Similar discussions also hold for V-fold CV [4, 41].

Third, we consider single observation deletion ISO = {{(1, 1)}, ⋯, {(n,mn)}} and examine 

MAD(ISO) for clustered data. We have  and

where Yi,[(i,j)] denotes Yi with yi,j deleted. The KN (ISO|θ̃) is given by
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Moreover,  can be regarded as a measure of model complexity for 

clustered data. Even if the model p(Y|θ) is correctly specified, p* does not reduce to p, the 

number of parameters, and MAD(ISO) ≠ p + op (1). Compared with p as the measure of 

model complexity in AIC,  accounts for the correlation structure in the 

clustered data. Although one may consider other case deletion mechanisms, we omit them 

here for brevity.

Example 1 (continued)—In this case, we have

According to Theorem 1, we have

For the leave-one-out CV, BCMC(ILOO) can be approximated by , where the 

pii’s are the diagonal elements of PX0. As  converges to zero, which corresponds to a 

non-informative prior, BCMC(ILOO) converges to the number of parameters in β.
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2.3 Bayesian Case-deletion Information Criterion

Based on the development of BCMC(IS) and CVE(IS), we develop a new model selection 

criterion, called the Bayesian case-deletion information criterion (BCIC), to select an 

‘optimal’ model from a pool of candidate models {Ml : l = 1, ⋯, L} for the same dataset. 

Specifically, for model Ml and the deletion set IS, BCIC is defined as

(9)

where θ̃(Ml) is an estimator of θ and pSk (θ;Ml) denotes p(YSk |Y[Sk], θ) under model Ml and 

Cn (IS, θ̃ (Ml),Ml) is a penalty term, which is a function of the data, the deletion set IS, and an 

estimator of θ(Ml). In (9), ∑Sk∈IS log pSk (θ̃(Ml),Ml) can be regarded as the conditional 

deviance function evaluated at θ̃ (Ml). We choose an ‘optimal’ model, denoted by Mopt, 

which minimizes BCIC(IS,Ml), as follows:

Different forms of the model penalty Cn (IS,θ̃ (Ml),Ml) lead to different criteria. Two popular 

choices of Cn (IS,θ̃(Ml),Ml) are the AIC-type penalty and the BIC-type penalty. For the AIC-

type penalty, Cn (IS,θ̃(Ml),Ml) = C0 × BCMC(IS), where C0 is a positive scalar. In practice, 

similar to AIC, DIC, and TIC [1, 35, 22, 32], it is common to set C0 = 2. For the BIC-type 

penalty, Cn (IS,θ̃(Ml),Ml) = C0,n × BCMC(IS) with limn→∞ C0,n = ∞. Similar to BIC, C0,n is 

often set as log(N) or other functions of N. Therefore, BCIC can be regarded as a 

generalization of existing model selection criteria.

Different deletion sets lead to slightly different BCIC(IS,Ml) for all l. For instance, if we 

consider the single cluster deletion ILOO and the single observation deletion ISO, then we 

obtain different BCIC measures. Thus, it is possible that Mopt (IS) may vary across IS. 

However, when we consider the leave-M clusters-out deletion for clustered data, we are able 

to obtain an invariance property of Mopt (IS). We are led to the following theorem.

Theorem 2—Assume that Yi’s are independent and Cn (IS,θ̃(Ml),Ml) = C̃
0,n × BCMC(IS), 

where C̃
0,n is in-dependent of IS and Ml, but it may depend on n, we have the following 

results.

i. For the leave-M clusters-out CV, we have 

 and Mopt (ILMO) = Mopt (ILOO) 

for any M ≥ 1.

ii. If BCIC(ILOO,Mopt (ILOO)) − BCIC(ILOO,Ml) >> Op (NBN−3/2) for all Ml ≠ Mopt 

(ILOO), Assumption C6 holds, and we use MAD(IS) to approximate BCMC(IS), then 

Mopt (ILMO) = Mopt (ILOO) in probability 1 for any M ≥ 1.

Theorem 2 shows that BCIC(IS,Ml) and Mopt (IS) are invariant for clustered data under 

different exhaustive splitting schemes. Due to Theorem 2, the two partitions of primary 
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interest are now single cluster deletion (ILOO) and single observation deletion (ISO). Under 

ILOO, BCIC can be simplified as

and under ISO, BCIC can be simplified as

where MC(ILOO) and MC(ISO) are shown in Section 2.2. Note that, unlike cross validation, 

there is no much additional computational cost associated with BCIC procedure except the 

programming efforts to calculate MC(IS).

3. SIMULATIONS AND REAL DATA ANALYSIS

3.1 Simulation Studies

In this section, several simulation studies were carried out to investigate the finite sample 

performance of BCIC and compare BCIC with three existing Bayesian model selection 

criteria, including AIC, BIC, and DIC in linear mixed models. Specifically, we set AIC = −2 

log p(Y |θ̃(Ml)) + 2p, BIC = −2 log p(Y |θ̃(Ml)) + log(N) × p, and DIC = −2 log p(Y |θ̃(Ml))

+2pD, where p is the number of parameters in the model and pD is the effective number of 

parameters estimated by the posterior mean of the deviance minus the deviance of the 

posterior means. We consider both the leave-one cluster-out CV and the leave-one 

observation-out CV, the AIC- and BIC- type penalties, and calculate their associated BCICs.

Simulated datasets were generated from a linear mixed model with a random intercept. 

Specifically, we consider the following true model, given by yij = β0 + β1xij1 + β2xij2 + bi + 

εij for i = 1, ⋯, n and j = 1, ⋯, mi, where xij1 ~ Exp(1), xij2 = j, bi ~ N(0, τ−1ξ−1), and εij ~ 

N(0, τ−1). An additional covariate xij3 was simulated from a N(1, 1) distribution. The true 

parameter values were taken to be β0 = 2, β1 = β2 = 1, τ = 0.1, and ξ = 1 or ξ = 0.04, for n = 

10 or n = 20. The values of ξ being 1 or 0.04 represent a medium or high intracluster 

correlation coefficient (ICC). We chose the priors as follows: π(β, τ, D−1) ∝ |D|−1/2τ−1 and 

b|τ, D ~ Nnq(0, τ−1(In ⊗ D)), where D−1 = ξ in this simulation.

We considered five candidate models as follows:

M1 (true model) :yij |xij1, xij2 ~ N(β0 + β1xij1 + β2xij2 + bi, τ−1), bi ~ N(0, τ−1ξ−1);

M2 : yij |xij1, xij2 ~ N(β0 + β1xij2 + bi, τ−1), bi ~ N(0, τ−1ξ−1);

M3 : yij |xij1, xij2, xij3 ~ N(β0 + β1xij1 + β2xij2 + β3xij3 + bi, τ−1), bi ~ N(0, τ−1ξ−1);

M4 : yij |xij1, xij2, xij3 ~ N(β0 + β1xij1 +β2xij2 + β3xij2xij3 + bi, τ−1), bi ~ N(0, τ−1ξ−1);

M5 : yij |xij1, xij2, xij3 ~ N(β0 + β1xij1 + β2xij2 + β3xij3 + β4xij2xij3 + bi, τ−1), bi ~ N(0, 

τ−1ξ−1).
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We generated 1, 000 simulated datasets from M1 and then calculated AIC, BIC, DIC, and 

BCIC for the five candidate models M1–M5.

Tables 1 and 2 show the number of times out of 1000 simulations that each rank was 

achieved for the true model M1 for all model selection criteria. The columns correspond to 

the rankings of AIC, BIC, and DIC under different settings, and the rows corresponds to the 

proposed BCIC criteria for different choices of k and IS. Table 1 provides the results for the 

setting with n = 10 and mi varying between 3 and 10, representing deletion of moderate 

numbers of observations in an unbalanced design, whereas Table 2 shows the results for the 

setting with n = 20 and mi varying between 3 and 15, a setup with deletion of a relatively 

large number of observations in an unbalanced design. In the simulation, 1,000 burn-in and 

5,000 Gibbs samples were used in the calculation. The convergence of the Gibbs sampler 

was checked by trace plots, but was not included here.

With n = 10, mi from [3, 10], and ICC = 0.5, M1 was ranked number one 556 (= 349 + 118 

+ 53 + 33 + 3) times by AIC, 548 times by BIC, 467 times by DIC, 390 times by 

BCIC(ILOO) and 544 times by BCIC(ISO) for C0 = 2, and 462 times by BCIC(ILOO) and 561 

times by BCIC(ISO) for C0,n = log(N), respectively. With ICC increasing to 0.96, M1 was 

ranked number one 675 times by AIC, 887 times by BIC, 536 times by DIC, 452 times by 

BCIC(ILOO) and 652 times by BCIC(ISO) for C0 = 2, and 582 times by BCIC(ILOO) and 875 

times by BCIC(ISO) for C0,n = log(N), respectively.

With n = 20, mi from [3, 15], and ICC= 0.5, M1 was ranked number one 719 times by AIC, 

847 times by BIC, 571 times by DIC, 614 times by BCIC(ILOO) and 724 times by 

BCIC(ISO) for C0 = 2, and 737 times by BCIC(ILOO) and 837 times by BCIC(ISO) for C0,n = 

log(N), respectively. With ICC increasing to 0.96, M1 was ranked number one 727 times by 

AIC, 966 times by BIC, 587 times by DIC, 610 times by BCIC(ILOO) and 749 times by 

BCIC(ISO) for C0 = 2, 839 times by BCIC(ILOO) and 970 times by BCIC(ISO) for C0,n = 

log(N), respectively.

These results indicate that there is no single model selection criterion can dominate the rest. 

Considering different BCIC approaches, BCIC(ISO)s outperforms BCIC(ILOO)s for both the 

AIC- and BIC-type penalty terms, the BIC-type penalty term outperforms the AIC-type 

penalty term, and BCIC(ISO) with BIC-type penalty has the best performance within BCIC 

model selection criteria. Compared with other existing model selection criteria, BCIC(ISO) 

with C0,n = log(N) perform similar to BIC, while BCIC(ISO) with C0 = 2 perform similar to 

AIC. The performances of DIC and BCIC(ILOO) with C0,n = 2 or C0,n = log(N) are among 

the worst in all scenarios.

3.2 Yale Infant Growth Data

We consider the Yale infant growth data, which studies whether cocaine exposure during 

pregnancy may lead to the maltreatment of infants after birth, such as physical and sexual 

abuse. There are a total of 298 children with 3176 records recruited from two exposure 

groups, the cocaine exposure group and the unexposed group. In this dataset, a unique 

feature is that different children had different numbers of visits, ranging from 2 to 30 

(interquantile range: 7–13), as well as different patterns of visits during the study period. See 
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Merikangas et al. [26] for a detailed description of the study design and data collection. We 

apply the proposed BCIC method and compare it to existing model selection criteria for 

these data to illustrate the application of BCIC.

The multivariate adaptive splines for the analysis of longitudinal data (MASAL) were used 

to analyze the Yale infant growth data in Zhang [40]. [40] selected the MASAL model

where the xij are the potential fixed effects covariates, given by

(10)

in which d and ga are the age at visit and gestation age, respectively, and s is the indicator 

for gender with 1 indicating a girl and 0 indicating a boy. In addition, we assume that εi = 

(εi1, ⋯, εimi)
T ~ N(0, Σi(τ, ξ)) and Σi(τ,ξ) is determined by the dispersion parameter τ and 

additional parameters ξ. During this reanalysis, we considered two covariance structures for 

Σi(τ,ξ), including the AR(1) and compound symmetry (CS) structures, along with four sets 

of fixed effect covariates: (a) xij ; (b) ( ); (c) 

( ); (d) ( ). The combinations of different 

covariance structures and fixed effects lead to a total of eight candidate models. The same 

priors of Section 3.1 were used in the real data analysis. The additional correlation 

coefficient parameters in the AR(1) and CS had independent Unif(−1, 1) priors.

Table 3 shows the values of AIC, BIC, DIC, and four BCIC measures normalized by NB as 

well as the ranks of all eight candidate models for each criterion. The best model selected by 

the different criteria are slightly different − AIC, BIC, and DIC ranked the mixed model 

with the fixed effects of  and the AR(1) covariance structure as the best model, and the 

four BCIC measurements ranked the model with the fixed effects 

 and the AR(1) covariance structure of AR(1) as the best 

model. However, the numerical values of the measurements for the models ranked from 1–4 

(all the models with AR(1) covariance structure) and for the models ranked from 5–8 (all the 

models with CS covariance structure) are almost indistinguishable, implying great 

uncertainty of the ranking decision. Furthermore, the finding that models with the AR(1) 

covariance structure always provides a better fit to these data than the models with the CS 

covariance structure, is consistent with the longitudinal nature of this dataset.

4. DISCUSSION

We have systematically examined the connection between Bayesian case influence measures 

and Bayesian predictive methods. Based on these connections, we have developed a BCMC 

measure for quantifying the effective number of parameters in a given statistical model and 
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a BCIC measure for comparing models. We have systematically investigated some 

properties of BCIC and BCMC and their connections with cross-validation and other 

existing information criteria. We have shown that BCIC is a valuable tool for Bayesian 

model assessment.

APPENDIX: ASSUMPTIONS AND PROOFS

We need to introduce some notation. Let FN (θ) = ∂θ log p(θ|Y) and FN,[S] (θ) = ∂θ log p(θ|
Y[S]). Under certain conditions [6], the posterior mode θ̂ converges to the θn* that minimizes 

E{− log p(θ|Y)}, where the expectation is taken with respect to the true distribution of Y. For 

simplicity, we further assume that θn* = θ* for all n. We use ‖·‖ to denote the Euclidean 

norm of a vector or a matrix and use λmax(A) and λmin(A) to denote the largest and smallest 

eigenvalues of a symmetric matrix A, respectively. We use the mathematical symbols (e.g., 

O(N−1)) and the stochastic-order symbols, such as Op (1), op (1), and Op (N−1) throughout.

The following assumptions are needed to facilitate the technical details, although they are 

not the weakest possible conditions. Because we develop all results for general parametric 

models, we only assume several high-level assumptions as follows.

Assumption C1

θ̂ and θ̂[S] for all S are consistent estimates of θ* ∈ Θo.

Assumption C2

Let Δ(θ) = θ − θ* and suppose

and

uniformly for all . Moreover, N−1/2FN (θ*) = 

Op(1), N−1/2FN,[S] (θ*) = Op(1), maxS∈IS supθ, θ′∈B(θ*,N−1/2δ0) ‖JN,[S](θ) − JN,[S](θ′)‖ = op 

(N),

and
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Assumption C3

Assume that for small θ0 > 0, if NS ≤ N0, a fixed constant, then

and

Assumption C4

log p(θ|Y) and log p(θ|Y[S]) for all S ∈ IS are Laplace regular [19].

Assumption C5

 and limN→∞ N−1E[JN(θ*)] = J*, where the 

expectation is taken with respect to the true data generator. Moreover, for a small δ0 > 0, we 

have

and

Assumption C6

Each component of  is asymptotically tight.

Remarks

Assumptions C1 and C2 are very general conditions and have been widely used to examine 

the asymptotic properties of the extremum estimator, such as the maximum likelihood 

estimate in general parametric models such as time series models [3]. Sufficient conditions 

of Assumptions C1 and C2 have been extensively discussed in the literature [3]. Assumption 

C3 is needed to examine the asymptotic properties of the three case influence measures for 

each S ∈ IS. Most models with a smooth likelihood automatically satisfy Assumption C3. 

Assumption C4 is needed to use the Laplace approximation formula [19, 36]. Assumption 

C5 is ensured by the law of large numbers [38]. Assumption C6 is usually ensured by central 

limit theory. Recall that pS (θ) = p(YS|Y[S], θ). If pS(θ) only depends on a few observations in 

Y[S], then we can apply the theory of U-statistics to establish Assumption C6 [37].
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Proof of Theorem 1

It follows from Assumptions C1–C3 that we can expand log pSk (θ̃[Sk]) at θ̃ for each S and 

obtain

where ΔSk = θ[̃Sk] − θ̃. It follows from Proposition 1 (c) that

which yields Theorem 1 (i). Theorem 1 (ii) directly follows from Assumptions C1, C2, and 

C5.

Proof of Theorem 2

We consider the exhaustive splitting for the leave-M clusters-out CV. For any Sk = {{i1}, ⋯, 

{iM}}, we have

and

Therefore, we have

which yields Theorem 2 (i). Theorem 2 (ii) directly follows from Assumption C6.
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