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Abstract
Estimation of sparse covariance matrices and their inverse subject to positive definiteness
constraints has drawn a lot of attention in recent years. The abundance of high-dimensional data,
where the sample size (n) is less than the dimension (d), requires shrinkage estimation methods
since the maximum likelihood estimator is not positive definite in this case. Furthermore, when n
is larger than d but not sufficiently larger, shrinkage estimation is more stable than maximum
likelihood as it reduces the condition number of the precision matrix. Frequentist methods have
utilized penalized likelihood methods, whereas Bayesian approaches rely on matrix
decompositions or Wishart priors for shrinkage. In this paper we propose a new method, called the
Bayesian Covariance Lasso (BCLASSO), for the shrinkage estimation of a precision (covariance)
matrix. We consider a class of priors for the precision matrix that leads to the popular frequentist
penalties as special cases, develop a Bayes estimator for the precision matrix, and propose an
efficient sampling scheme that does not precalculate boundaries for positive definiteness. The
proposed method is permutation invariant and performs shrinkage and estimation simultaneously
for non-full rank data. Simulations show that the proposed BCLASSO performs similarly as
frequentist methods for non-full rank data.
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1. INTRODUCTION
Shrinkage of a high-dimensional covariance matrix or its inverse, known as the precision or
concentration matrix, particularly when the dimension of the matrix (d) is larger than the
sample size (n), has drawn a lot of attention in recent years. The abundance of high-
dimensional data in structural and functional magnetic resonance imaging where a few
dozen subjects are scanned with each scan having thousands of voxels or hundreds of
regions of interest [14], spectroscopy, climate studies and many other applications are just a
few examples. Another motivation is due to the major use of precision matrices in statistical
tools like principal component analysis, linear and quadratic discriminant analysis, inference
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on the mean parameters, analysis of independence and conditional independence in
graphical models, and so on. They all require estimation of the covariance or precision
matrix. The precision matrix has a partial correlation interpretation- off-diagonal elements
represent the conditional covariances between the corresponding variables. The results can
be summarized in a graph by linking conditionally dependent variables, thereby providing
an understanding of how variables, such as the genes or regions of the brain, are related to
each other. Hence it is suitable for network exploration.

In-depth theoretical studies of the sample (empirical) covariance matrix S have shown that
without regularization, the sample covariance matrix performs poorly in high dimensional
settings, hence stimulating research on alternative estimators. When the dimension of the
matrix is large, the largest eigenvalue can be very large compared to the smallest eigenvalue,
resulting in a large condition number and unstable estimators for the precision matrix S–1. In
practice, when n is relatively small compared to the dimension d, the S matrix approaches
singularity, therefore leading to unreliable estimates for the precision matrix S–1. In many
cases, such a situation may lead to near-zero eigenvalues for S. The problem is even more
serious for non-full rank data (when n < d). In this case, S has a maximum rank of n which is
smaller than its dimension d, and therefore S is singular.

In the frequentist framework, significant work has been done on model selection and
precision (covariance) matrix estimation in Gaussian models [1, 12, 11, 8, 31]. The original
paper by Dempster [6] introduced the idea of shrinkage estimation which forces some
elements of the precision matrix to be zero. In its infancy, the methods for shrinkage
estimation involved two steps: (i) identify the “correct” model by determining which
elements are zero; (ii) estimate the parameters for the non-zero elements. Edwards [9] has
discussed some standard approaches for identifying the model, such as greedy stepwise
forward-selection and backward-elimination procedures, achieved through hypothesis
testing. Drton and Perlman [8] proposed a conservative simultaneous confidence interval to
select a model in a single step as an improvement. [1] and [12] proposed the graphical
(covariance) lassso (CLASSO) penalty to force some elements of the precision matrix to
zero and simultaneously estimate the rest of the elements. [11] extended the CLASSO
approach to the adaptive covariance lasso (ACLASSO) and the smoothly clipped absolute
deviation penalty for covariance estimation (CSCAD). [31] and [22] used a penalty on the
off-diagonal elements only and called their estimator the sparse permutation invariant
covariance estimator (SPICE).

Among Bayesian shrinkage methods, [29] used reference priors on the eigenvalues of the
covariance matrix to regularize the eigen structure. Smith and Kohn [27] decomposed the
precision matrix Φ as Φ = BDBT where B is a lower triangular matrix with 1's on the
diagonal and D is a diagonal matrix. They introduced priors on the elements of B and D.
[13] extended this idea and used a Cholesky decomposition on the covariance matrix V =
CCT, where C is a lower triangular matrix. They also discussed how the ordering of the data
can change the zero patterns. These methods use priors on the Cholesky factors and
therefore are not permutation invariant; they may not be rational choices when there is no
natural ordering of the parameters in the matrix. [2] decomposed the covariance matrix as Σ
= diag(s)R diag(s), where s is the d × 1 vector of standard deviations and R is the d × d
matrix of correlation coefficients. They used priors on individual elements of these matrices.
[28] extended this idea to the precision matrix Φ and decomposed Φ = TCTT, where T =
diag(T1, . . . , Td) is a diagonal matrix such that Tk are the inverses of the partial standard
deviations and C is a correlation matrix with Ckk = 1 and Ckk′ = –ρkk′ for all k ≠ k′. The
graphical methods of [21, 3] rely on hyper-inverse Wishart based sampling. These two-step
methods need to exploit decombosibility structures of the graphs, which may not be the case
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for unstructured precision matrices. Moreover, they only use Wishart priors and are unable
to exploit other types of penalties.

The single-step Bayesian methods primarily rely on priors on the elements arising from
some sort of decomposition of the precision (covariance) matrix, which do not readily
translate to any recognizable priors on the elements of the precision (covariance) matrix
itself. Furthermore, most of these methods are based on sampling the elements of the matrix
one at a time which is not efficient. Specifically, these methods pick a single element at a
time, find an appropriate boundary that yields a positive definite matrix, and then draw a
sample of this element. Drawing one element at a time is inefficient, and coupled with the
additional computational complexities in computing boundaries for the elements, these
methods are not suitable for high-dimensional matrices. The full posterior distribution of the
elements of the precision and covariance matrices under lasso-type penalties have not been
explored. The direct L1 penalties on the elements of the covariance matrix have not been
studied in the Bayesian framework. There appears to be a lack of a connection between the
popular frequentist penalized approaches and their Bayesian competitors. Our goal is to
build a bridge between the frequentist and Bayesian approaches to covariance estimation.

We propose generalized priors which include common frequentist penalties like the adaptive
lasso penalty of [11], the lasso (L1) penalty of [12], and the SPICE penalty of [22] as special
cases. Then we introduce a new Bayesian approach for sampling from the posterior
distribution of the precision matrix one whole column at a time and rely on multiple tries to
achieve the desired acceptance rate. The proposed method is particularly attractive and
efficient compared to the existing single-step methods as it updates the matrix one entire
column at a time (on the order of d) instead of one element at a time (on the order of d2).
Our sampling scheme rejects any sample that is not a positive definite matrix and is
permutation invariant. In addition, the method is based on specifying priors directly on the
elements of the precision matrix instead of priors on the elements of a matrix decomposition,
and the proposed method performs shrinkage and estimation simultaneously. We also
explore the posterior distribution of the elements under the lasso penalty and provide a
Bayesian minimax estimator as an alternative to the popular frequentist posterior mode
estimators under L1 penalties.

To illustrate the proposed methodology, we consider data from functional connectivity
Magnetic Resonance Imaging (fcMRI) from 90 regions of interest (ROI) of 30 2-year old
children. All images were acquired on a 3 Tesla Magnetic Resonance (MR) scanner with a
gradient echo-planar imaging sequence. The imaging sequence was repeated 150 times. The
images of the first 10-20 time points were typically excluded from the data analysis to
ensure that magnetization reaches the steady state. All subjects are healthy normal controls
and imaged at sleep without sedation. In this study, the signals were obtained from the
remaining 130 time points. Our primary purpose here is to build a network between regions
when there is no prior information about the underlying structure of the network or graph.

2. THE GENERAL METHOD
Let Yi ~ Nd(0, Φ–1) for i = 1, . . . , n be n independent observations, where Φ = (θkk′) = Σ–1 is
a d × d precision matrix. Then the joint distribution of Y = (Y1, . . . , Yn)is given by
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where  is an indicator function of the event that Φ is positive definite.

 is the maximum likelihood estimator of Σ.

2.1 Proposed Priors
We choose independent exponential priors for the diagonal elements; φkk ~ Exp(βk) and
Laplace priors for the off-diagonal elements φkk′ ~ Laplace(0, bkk′) for k > k′ and k, k′ =
1, . . . , d. Then, the posterior distribution of Φ, p(Φ|Y), is given by

where det(·) denotes the determinant of a matrix. The log-posterior function equals

(1)

where C is a constant independent of Φ. The popular frequentist penalized likelihoods
including ACLASSO, CLASSO and SPICE can be derived from (1) as special cases as
follows. If we choose βk = ndλkk/2 and bkk′ = ndλkk′ (for k > k′), then (1) reduces to

(2)

[11] optimized equation (2) as the objective function in the ACLASSO method, which can
be interpreted as the posterior mode under Exp(ndλkk/2) priors for the diagonal elements and
Laplace(ndλkk′) priors for the off-diagonal elements of the precision matrix.

If we set bkk′ = 2βk = nρ, the priors for φkk are i.i.d Exp(nρ/2) and the φkk′ are i.i.d
Laplace(nρ) for k > k′. Then (1) reduces to

(3)

where  is the l1 norm of Φ. [1] optimized equation (3) in their
covariance selection method (ignoring n/2), while [12] also optimized equation (3) in their
CLASSO method, which is essentially the posterior mode under Exp(nρ/2) priors for the
diagonal elements and Laplace(nρ) priors for the off-diagonal elements of Φ. [1] has shown
that (3) is concave in Φ, which yields that the posterior distribution of Φ is uni-modal.
Hence, we will use Exp(nρ/2) priors for the diagonal elements and Laplace(nρ) priors for the
off-diagonal elements of Φ so that our log-posterior is the same as the objective function of
CLASSO in (3).

If we choose not to penalize the diagonal elements of Φ, then we can let the hyperparameter
βk approach 0 (βk → 0) or equivalently choose improper uniform priors on (0, ∞) for the
diagonal elements of Φ. In that case, (3) further reduces to

(4)
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where Φ– has the same off-diagonal elements as Φ but all the diagonal elements are zero.
[31] and [22] used equation (4) as their objective function (ignoring n/2 and C) and
calculated the posterior mode in their SPICE method.

2.2 Full Conditionals
For k = 1, . . . , d, we partition and rearrange the columns of Φ and S as follows:

(5)

where φkk is the kth diagonal element of Φ, φk = (φk1, . . . , φk,k–1, φk,k+1, . . . , φkd)T is the
vector of all off-diagonal elements of the kth column, and Φ–kk is the (d – 1) × (d – 1) matrix
of all the remaining elements, i.e., the matrix resulting from deleting the kth row and kth
column from Φ. By using the Schur decomposition [25], we have det(Φ) = det(Φ–kk)Dk,

where Dk = (φkk – Ck) and  are scalar quantities. Similarly, skk is the kth
diagonal element of S, sk is the vector of all off-diagonal elements of the kth column of S,
and S–kk is the matrix of all remaining elements.

Our primary aim is to sample from the posterior distribution of the kth column of Φ for k =
1, . . . , d. It follows from (3) that the conditional densities for θkk and θk can be written as
follows:

(6)

where I(A) is the indicator function of the event A. The derivation of (6) is given in
Appendix I. Under the SPICE penalty, the full conditional distribution for θk is the same
while the full conditional distribution for θkk changes to

.

Note that in (6), we could replace Dk by det(Φ) which is computed faster than Dk since

 requires inverting a (d – 1) × (d – 1) matrix and then computing a quadratic form

of the same order. However, we will need to compute  to sample the diagonal
elements θkk and we will not require any additional computations when sampling the off-
diagonals θk. We are led to the following theorem whose proof is given in Appendix I.

Theorem 1: Suppose we start with a positive definite current value of Φ and sample from

 and

where γk = (γk1, . . . , γkd)T and γkj = sign(θkj) for j = 1, . . . , d. This sampling process
guarantees that we sample positive definite values of Φ at all subsequent steps.

Theorem 1 ensures that the Bayesian covariance lasso (BCLASSO) can achieve positive-
definiteness for any nonnegative penalty parameter ρ.
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2.3 Proposed Sampling Scheme
Gibbs sampling for the diagonal elements is straightforward since their full conditionals are
available in closed form. The full conditionals for the off-diagonals are not available in
closed form and therefore we will use the standard Metropolis-Hastings algorithm within
Gibbs to sample the off-diagonal elements. In many applications, the off-diagonal elements
are nearly symmetric suggesting a normal proposal density as a suitable choice. The mean of
the proposal density is chosen to be the current value of Φ and the choice of the variance of
the proposal density is determined from the Hessian matrix. We can write

The first-order derivative of the logarithm of full conditional distribution with respect to θk

is , where  is the first-order derivative of Dk
with respect to θk. The second-order derivative matrix of the logarithm of the full

conditional distribution with respect to θk equals ,

where  is the second-order derivative of Dk with respect to θk. Therefore, the

covariance matrix of the proposal density is , where
Q is a suitable estimate of Φ (such as S–1, (S + aI)–1, a > 0, etc.) and c > 0 is the variance
tuning factor discussed below. Note that Vk is positive definite almost surely as long as Q is

positive definite. Our proposal density is therefore taken as , where

 is the current value of the k-th off-diagonal column at iteration t. If x is the proposed value

for , then the Metropolis-Hastings acceptance probability is

. Therefore, we set  with

probability α and  with probability 1 – α.

There are several possible sampling strategies. We could sample Φ one element at a time,
but that will be on the order of d2, which is less efficient and ignores the possible
correlations between the elements in the same column. We could also sample only the lower
triangular off-diagonal elements, in which we would sample the d – 1 vector (θ12, . . . , θ1d)
first, the d – 2 vector (θ23, . . . , θ2d) second, and so on. This would update all the elements
of Φ by virtue of symmetry, which might be the most efficient way of sampling. However,
this sampling procedure still ignores the correlations between the upper triangular elements
and the lower triangular elements within the same column. We recommend sampling the
whole off-diagonal column all at once, which yields an algorithm on the order of d.
Updating the whole off-diagonal column has another advantage in that each θkk′ (k ≠ k′) has
two chances to get updated. We update θkk′ when we update column k and again when we
update column k′ due to θkk′ = θk′k. For each cycle, the latter updated value of θkk′ will
replace the first updated value. Thus, this will result in one-step thinning to reduce
autocorrelations between samples. Thus the actual replacement rates for the individual
elements (θkk′'s) are higher than the acceptance rates of the columns θk. Our computations
show that the replacement rate is roughly (1 – acceptance rate)2, implying that the
acceptance of column k and column k′ (k ≠ k′) are nearly independent. This implies that, if
we target an average replacement rate of 36%, which is enough for an ideal sampling
scheme, we will need an average acceptance rate for a column to be around 20%. Therefore,
we can use fewer tries and/or a larger variance to obtain an ideal sampling scheme.
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Variance tuning will, in most cases, result in shrinkage. We tune the variance in cases where
the estimate Q of the parameter Φ leads to an unusually high variance of the proposal
density. Such a situation can lead to too many draws of multiple try method, small
acceptance rates, and high autocorrelations among sampled elements. This can also happen
when we take Q = S–1, where S–1 is still positive definite but the sample size is small relative
to the dimension, leading to an inflated Vk. For high-dimensional cases, when S is singular
or close to singular, we can choose Q = (S + aI)–1 for a suitable a > 0, that is we add a small
constant to the diagonals to make Q positive definite. This can also help in making Q more
stable when n is not sufficiently large compared to d, since for larger d/n the smaller
eigenvalues approach zero to destabilize the inversion.

Shrinking the variance too much can lead to a failure in exploring the full range of values for
θk and also result in high autocorrelations among the elements. Similar problems also arise
when there is no shrinkage at all. Thus, in order to optimize the acceptance rates, we shrink
the variance moderately and combine that with the multiple try method proposed by [17]
with some modifications as discussed below. A combination of shrinkage and multiple tries
is necessary since we have the positive definiteness constraint coupled with the high
dimension d of Φ. Figures 1 and 2 show the trace plots and autocorrelations for 3 different
choices of the proposal density variance. Ideal shrinkage will lead to nice looking trace plots
and greatly reduce the autocorrelations among successive values. The use of multiple tries
can lead to faster convergence requiring fewer burn-in samples. We can now formally state
our algorithm for the k-th off-diagonal column as follows:

1. Draw m independent vectors, w1, . . . , wm from the symmetric proposal density

, where m is the number of tries; in our simulation we choose m = 5.

2.
If  for all j = 1, . . , m then do not replace θk and stop;
otherwise select wj from w1, . . . , wm with probability proportional to p(wj|θkk,
Φ–kk). Denote the selected vector as w.

3. Draw  from Nd–1(w, Vk), and denote .

4. Replace  by w with probability

where .

Note that, in the above scheme Vk remains constant for all MCMC samples; p(wj|θkk, Φ–kk)

and  are in the same form as (6) where θk is replaced by wj and ,
respectively.

For the BCLASSO method, we have several options for choosing the hyperparameter ρ.
First, we can choose a conjugate gamma-type hyperprior for the penalty parameter. If we
choose ρ ~ Gamma(α0, β0), then it could be sampled using the Gibbs sampler. The full
conditional of ρ is ρ|α0, β0, Φ, Y ~ Gamma(α0, β0 + ||Φ||l1). This choice requires choosing
appropriate values of the hyperparameters α0 and β0; one could choose noninformative
hyperpriors for large sample, however, for small sample the choice is not trivial as it has to
be informative to impose penalty. An alternative is to choose the penalty parameter via

Khondker et al. Page 7

Stat Interface. Author manuscript; available in PMC 2014 February 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cross-validation using the log-likelihood as a maximizer; we chose 5-fold cross-validation
for the optimal choice of penalty parameters for each method.

We first compute BCLASSOm, which is the minimax estimator under the L1-penalty [29].
Since BCLASSOm estimates all of the elements of Φ as non-zero, similar to posterior
means, we also compute adhoc BCLASSOs estimators by forcing credible interval-based
sparsity. That is, we construct the credible intervals and force an element of BCLASSOm to
zero if the interval contains zero. Sparsity can be controlled by either the penalty parameter
ρ or the width of the credible interval. A larger ρ or a prior with a larger mean will lead to a
more sparse matrix when the width of the credible interval is fixed. A wider credible interval
will also lead to a more sparse matrix when the penalty ρ or its prior mean is fixed. We
found a credible interval or around 30% to be ideal. Forcing some elements to zero can
theoretically result in non-positive definite matrices, however, they are positive definite with
high probability given a small credible region is chooses (we suggest below 30%). Our
simulation of 600 samples have all resulted in positive definite matrices as evidenced by the
ability to compute finite L1 losses for all cases, since any zero eigenvalue will result in
infinite loss and negative eigenvalue would lead to an undefined loss. This credible- interval
based thresholding has probabilistic interpretation and deserves further attention in other
Bayesian estimation problems in which there is a need for sparsity. The threshholding also
allows network exploration since forcing some zeros is the key in such network building.

2.4 Credible Regions
Suppose we have E MCMC samples Φ1, . . . , ΦE from the posterior distribution of the d
dimensional precision matrix Φ and let Ψe = log(Φe) be the matrix logarithm of the e–th
sample and Φe = exp(Ψe) be the matrix exponential of Φe. Note that, if λ1, . . . , λd are the
eigenvalues of Φ and γ1, . . . , γd are the eigenvalues of Ψ, then γk = log(λk) for k = 1, . . . , d.

Now, let  is the posterior arithmetic mean of Ψ1, . . . , ΨE then  is the
posterior geometric mean of Φe. We define the Euclidean distance between Ψe = (ψe,kk′) and

the posterior mean  given by

Then, we sort the E samples according to the values of dE,e and then use (dE,α/2, dE,1–α/2) as
the (1 – α)100% credible region for Ψ. Finally, we obtain (exp(dE,α/2), exp(dE,1–α/2)) as the
(1 – α)100% geometric confidence region for Φ.

3. SIMULATION STUDY
We used simulations to compare the performance of our BCLASSOm and BCLASSOs
estimators with the three frequentist penalized likelihood methods namely, CLASSO [12],
ACLASSO [11], and CSCAD [11]. Among the Bayesian methods, the [29] method uses
shrinkage on the eigenvalues. This is infeasible in our non-full rank setting as some of the
eigenvalues are zero since the dimension of Φ is larger than the sample size (hence the
matrix is singular). In [27] and [28], an element-wise sampling was used and does not
specify a recognizable prior on the precision (covariance) matrix. We restrict our
comparison to permutation invariant methods that work for non-full rank data, use priors
and l1-type penalties directly on the elements of the precision matrix, and perform
simultaneous shrinkage and estimation.
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For the simulation, we fixed the dimensionality d and considered 3 unstructured and 3
structured matrix types. Among the unstructured types, the sparse matrix has at least 80%
zeros on the off-diagonals, the moderately sparse one has at least 40% zeros on the off-
diagonals, and the dense matrix has less than 5% zeros on the off-diagonals. The structured
matrix types are tri-diagonal, autoregressive order one (i.e., AR(1)), and diagonal. In each
case, we first generated a precision matrix. Then we generated 100 datasets for a non-full
rank case where the sample size is less than the dimension (d = 20, n = 10) and compared
the performance of each method based on those 100 samples.

We relied on a Cholesky decomposition to generate the 3 unstructured positive definite
precision matrices of different sparsity levels. We generated a matrix A such that Akk = 1,
Akk′ = U[–.5, .5] with probability p and Akk′ = 0 with probability 1 – p for k < k′, and Akk′ = 0
for k > k′. Then we computed Φ = AAT and Σ = Φ–1. The degree of sparsity was controlled
by p, where a smaller p leads to a more sparse matrix. A tridiagonal precision matrix results
in an AR(1) covariance matrix. In this case, the elements of the covariance matrix Σ are σkk′
= exp(–q|rk – rk′|), where r1 < . . . < rd for some q > 0. Here, we chose rk – rk–1 to be i.i.d
from U[0.5, 1] for i = 2, . . . , d. An AR(1) precision matrix results in a tridiagonal
covariance matrix and we generated the elements θkk′ = exp(–q|rk – rk′|) as above. A
diagonal precision matrix results in a diagonal covariance matrix; in this case, we generated
the diagonal elements of Σ where σkk are independently generated from U[1, 1.25] for k =
1, . . . , d. For the BCLASSOs estimators we used thresholding on the elements of
BCLASSOm based on 30% credible intervals. This choice of the credible intervals is
arbitrary and will depend on the choice of the penalty parameter ρ or the value of the
hyperparameters on the prior of ρ.

3.1 Criteria for comparison
There are several loss measures proposed for evaluating the performance in estimation of the
precision and covariance matrices as discussed in [29]. Among these, the entropy loss,
denoted as L1, and the quadratic loss, denoted as L2, are the most commonly used. The L1
and L2 loss functions for Φ are defined as

(7)

where vec(A) = (a11, · · · , a1d) ad1, · · · , add)T for any d × d matrix A = (aij). Similar loss

functions for Σ will result in the Bayes estimators  and

respectively. We use  in our simulation

studies as the BCLASSO estimators for Φ and Σ, respectively. Since  and  are
computationally less efficient, requiring inversion of a d2 × d2 matrix at each step of the

Monte-Carlo sampling, we do not use them in our simulation. Our estimators  and  in
the simulation are Bayes under the L1 loss, but not under the L2 loss. Nevertheless, we were

able to achieve reasonable L2 loss for  and  in our non-full rank simulation cases.
Moreover, using L1-Bayes estimators is more intuitive since we are using an L1 penalty.
Another measure known as the matrix correlation was defined by [10] as
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. In this measure, the closer the estimator  is

to Φ, the higher the value of . We compared our estimates  and  with the
CLASSO, ACLASSO, and CSCAD methods for the L1 loss, the L2 loss, and the matrix
correlation based on 6 different matrix types of dimension 20. For each of the 6 matrix
types, we used 100 Markov chain Monte Carlo (MCMC) samples of size 10 each. For all
cases we choose Q = (S + aI)–1 with a = 0.1, the number of tries as m = 5, the value of c =
0.5 was chosen to get about 30% acceptance rate. We collected 10, 000 MCMC samples
after 5, 000 burn-in, which gave us an average computation time of about 10 minutes for
each simulation.

We can also define the L1 and L2 loss functions for in a similar fashion. The optimal
estimators minimize these loss functions. [29] showed that the Bayes (hence minimax)
estimators of Φ under L1 and L2 are, respectively, given by

3.2 Results
Table 1 summarizes the mean L1 losses and their standard deviations for the six types of
precision and covariance matrices. The CSCAD method performs poorly in terms of L1 loss
for small sample non-full rank cases for all types of structures in both the precision and
covariance matrices. For both the precision and covariance matrices, CLASSO, SPICE,
ACLASSO, BCLASSOm, and BCLASSOs perform similarly. Table 2 summarizes the mean
L2 losses and their standard deviations for these four methods. For all structures, except the
diagonal case, CSCAD is worse than CLASSO, SPICE, ACLASSO, BCLASSOm and
BCLASSOs, while these five methods perform somewhat similarly for all six structures
compared. Only for the diagonal precision matrix does CSCAD perform the best among the
5 methods compared. Table 3 summarizes the mean matrix correlations and their standard

deviations. In terms of the matrix correlation measure , CLASSO, BCLASSOm
and BCLASSOs perform somewhat similarly in both the precision and covariance matrices.
The ACLASSO and SPICE methods perform similarly in the precision matrix, but they are
worse than BCLASSO and CLASSO in the covariance matrix. The CSCAD method
performs the worst among all the methods in both the precision and covariance matrices for
all six types of structures considered. As evident from Tables 1 and 2, although there is
minimal or no loss in credible interval based sparsity in the precision matrix, there are
substantial gains in matrix loss for the covariance matrix. The SPICE estimator seems to
improve on the covariance over CLASSO. Performance of both SPICE and CSCAD
improves when sparsity increases. The poor performance of CSCAD is somewhat surprising
due to small sample sizes.

4. APPLICATION TO REAL DATA
Example 1: The first dataset is flow cytometry data on d = 11 proteins on n = 7466 cells
from [23]. In [23], a Bayesian network was developed and elucidated most of the signaling
relationships reported traditionally and also predicted novel interpathway network
causalities, which were verified through experiments. The data was also used by [12] for
comparison of the agreements of CLASSO under different values of the penalty parameter.
The data was generated from 9 simulations on 11 proteins. We adjusted the data for a
random simulation effect as well as fixed effects of simulation and protein. Our purpose was
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to build a network between proteins via partial correlations (via Φ). For the maximum
likelihood network in Figure 4(b), we used a hard-threshold that gives the same number of
connections as those of [23]. The penalties for the CLASSO in Figure 4(d), ACLASSO in
Figure 4(e) and CSCAD in Figure 4(f), were obtained through 10-fold cross validation.
Since the penalties based on cross validation resulted in a more sparse network for these 3
frequentist methods than that of Sachs, we decided to fix the penalty manually to get the
same number of connections. The results are shown in Figures 4 (g), 5(h) and 5(i),
respectively. For CSCAD, no matter how small ρ is, the number of connections does not
increase after a certain point. Finally, for BCLASSO, we used a gamma prior for the penalty
parameter, ρ ~ Gamma(1, 1), and used 80,000 MCMC samples after 20,000 burn-ins to
obtain posterior means and credible intervals. We constructed credible intervals of different
widths for each element as shown in Table 4; the Bayesian network that has the closest
number of connections to that of Sachs is shown on Figure 4. The level of agreement of each
of these 4 methods to those of Sachs’ results were computed and reported in Table 4. The
results indicate similar agreement between the networks of BCLASSO, ACLASSO and
CLASSO and [23]'s network when the number of connections are similar.

Example 2: While it is well recognized that the human brain forms large scale networks of
distributed and interconnected neuronal populations, the study of different brain networks
has been hampered by the lack of non-invasive tools. Recently, the introduction of the
resting functional connectivity MRI approach offers, potentially, a potent tool, to
specifically alleviate this difficulty, allowing a direct investigation of a wide array of brain
networks. Researchers are often interested in exploring the brain networks through partial
correlations where the connection between two regions is explored after removing the effect
of all other regions.

The data consists of average fcMRI signals from 90 brain regions (d = 90) of 30 2-year old
children (N = 30). All images were acquired on a 3T MR scanner with a gradient echo-
planar imaging sequence. The imaging sequence was repeated 150 times. The images of the
first 10-20 time points were typically excluded from the data analysis to ensure that
magnetization reaches the steady state. All subjects are healthy normal controls and imaged
at sleep without sedation. In this study, the signals were obtained from the remaining 130
repeats (T = 130, so that n = NT = 3900). Our primary purpose here is to build a network
between regions after adjusting for subject effects and region specific means. Let Yijk (i =
1, . . . , N; j = 1, . . . , T; k = 1, . . . d) represent the adjusted average fcMRI signal from
subject i at repeat (time) j in region k. Then Yij is the d-dimensional vector of adjusted
responses from subject i on repeat j and Yij ~ Nd(0, Σ). Let n = NT, the joint distribution of Y
is given by

The posterior distribution of Φ under the lasso penalty can be written as in (3) and the full
conditionals are given in (6). For the penalty parameter ρ, we take ρ ~ Gamma(1, 1). For
thresholding, we construct credible intervals of different widths to control sparsity. For
CLASSO, ACLASSO, and CSCAD, we used 10-fold cross validation to choose the optimal
penalty. We report the resulting precision matrices in Figure 5 and the networks in Figure 6.
The summary statistics of the number of connections along with the global efficiencies Eglob
(a measure of how efficiently the regions communicate in the whole brain) and local
efficiencies Eloc (a measure of how efficiently the regions in each local area communicate)
are reported in Table 5.
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The CSCAD method performs poorly compared to the other three methods and shows very
few connections across the entire brain, leading to rather low global and local efficiencies.
This result contradicts the well formed brain networks of 2 year olds, which has been
reported in the literature using both imaging and behavioral approaches [14]. In contrast,
CLASSO, ACLASSO, and BCLASSO appear to provide more similar results,
demonstrating well connected brain networks. Although there are differences in the regions
with the highest number of connections, some consistent patterns are observed from
CLASSO, ACLASSO, and BCLASSO. The brain regions that exhibit the highest number of
connections with other regions are consistently shown by these three methods in the
temporal, frontal and occipital lobes. These results suggest that even at the age of 2 years,
children develop well connected networks, particularly in the temporal and frontal areas.
More studies are clearly needed to further determine how the proposed approach is capable
of better delineating the development of brain networks across different age groups. The top
regions picked up by the different methods are listed in Table 5. The BCLASSO results are
based on thresholding with a 70% credible interval. This choice was made in order to
closely align the total number of connections from BCLASSO to that of CLASSO and
ACLASSO.

5. DISCUSSION
We have introduced a general class of priors for the precision matrix which yield the
ACLASSO, CLASSO, and SPICE penalties as special cases. We have also developed a
sampling scheme for the estimation of the precision and covariance matrices under a special
case that corresponds to the lasso penalty, which can facilitate exploration of the full
posterior distribution of the matrix under L1 penalites. Although our proposed priors do not
guarantee positive definiteness of Φ, we have developed a fast sampling scheme that
guarantees positive definite MCMC samples of the precision matrix at each iteration
regardless of the value of the penalty parameter. Our proposed method is the first Bayesian
method that uses priors that directly translate into the L1 penalty, the method works well for
non-full rank data, and performs shrinkage and estimation simultaneously. Simulations show
that BCLASSO performs similarly to CLASSO, SPICE and ACLASSO for non-full rank
data when the sample size is small, while performing better than CSCAD. We will further
develop an efficient algorithm to sample from p(θk|y, θkk, ρ). The proposed method can be
easily extended to more complex models that account for subject-specific variation for
building networks in longitudinal data. The priors can be generalized to independent gamma
priors for the diagonal elements; θkk ~ gamma(αk, βk) and independent double gamma priors
for the off-diagonal elements θkk′ ~ double gamma(0, akk′, bkk′|) for k > k′; that is, p(θkk′) ∝ |
θkk′|akk′–1 exp(–bkk′|θkk′|), where akk′ > 0 and bkk′ > 0. Then, the posterior distribution of Φ is
given by

This is particularly attractive for Bayseian analysis since appropriate choice of shape and
scale paramters can lead to an infinite spike of the prior at 0 and heavier tails leading to
larger shrinkage of smaller parameters and smaller shrinkage of larger parameters compared
to L1-penalties.

Like many Bayesian methods, scalibility to larger dimensions is a challenge for BCLASSO.
Nevertheless, the posterior estimators for dimensions up to 50 do well and networks
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dimension near 100 works similar to CLASSO and ACLASSO as evidenced by the brain
imaging data example. The main advantage of a fully Bayesian approach is the ability to
sample the whole posterior distribution instead of just estimating the posterior mode.
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Appendix I
Proof of Theorem 1: Without loss of generality, we partition and rearrange the columns of
current Φ(t) as

Since , all of its diagonal elements are positive and all the leading determinants are

positive. In particular,  and so there exists an Ak such that 
based on the Cholesky decomposition. We only need to show that after updating the first

column (θkk and θk), the diagonal element  is positive and the last determinant is

positive, i.e., ; this implies  since .
When we update the last column (or equivalently row) we have

Thus, we have

Let x be the proposed value for . Then . Thus,

 is proportional to

However,  whenever Dx ≤ 0, so that the Metropolis acceptance
probability is
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That is, we can only accept the proposed value when Dx > 0. Thus, . This
is true for any column of Φ that we update, therefore leading to positive definite values of Φ
at any stage in the updating process. This completes the proof.

Derivation of (6): Let ρ ~ Gamma(α0, 0.5nβ0). Then the joint posterior of (Φ, ρ) becomes

which yields that

which is the kernel of a Gamma(α0, 0.5n(β0 + ||Φ||l1)) distribution. Now, using the partition

in (5), we can write det(Φ) = det(Φ–kk)Dk, where . Moreover, ||Φ||l1
= ||Φ–kk||l1 + 2||θk||l1 + θkk and tr(SΦ) is given by

Therefore, the joint posterior distribution of (Φ, ρ) can be written as

After dropping unnecessary constants, we have

To derive the full conditional distribution of θkk, we write

Thus, θkk – Ck|Y, θk, Φ–kk ~ Gamma(n/2 + 1, n/2(skk + ρ)) and this implies that θkk|Y, θk, Φ–kk
~ Ck + Gamma(n/2 + 1, n/2(skk + ρ)).
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Figure 1.
Trace plots of θ12 for d = 5 and n = 10 showing the impact of variance tuning of the proposal
density.
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Figure 2.
Autocorrelation plots for θ12 for d = 5 and n = 10 showing the impact of variance tuning of
the proposal density.
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Figure 3.
Image plots of the six types of precision matrices (Φ) considered in the simulation study.
The top 3 are unstructured and the bottom 3 are structured.
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Figure 4.
Networks for 11 proteins from Sachs et al. (2003)
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Figure 5.
Image plots of the partial correlation matrices for 90 regions of 2-year old children’ brains
using the five different methods
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Figure 6.
Networks for 90 regions of 2-year old children’ brains using the different methods
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