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Abstract

The diffusion tensor imaging (DTI) protocol characterizes diffusion anisotropy locally in space,

thus providing rich detail about white matter tissue structure. Although useful metrics for diffusion

tensors have been defined, statistical properties of the measures have been little studied. Assuming

homogeneity within a region leads to being able to apply Wishart distribution theory. First, it will

be shown that common DTI metrics are simple functions of known test statistics. The average

diffusion coefficient (ADC) corresponds to the trace of a Wishart, and is also described as the

generalized (multivariate) variance, the average variance of the principal components. Therefore

ADC has a known exact distribution (a positively weighted quadratic form in Gaussians) as well

as a simple and accurate approximation (Satterthwaite) in terms of a scaled chi square. Of

particular interest is that fractional anisotropy (FA) values for given regions of interest are

functions of the Geisser-Greenhouse (GG) sphericity estimator. The GG sphericity estimator can

be approximated well by a linear transformation of a squared beta random variable. Simulated data

demonstrates that the fits work well for simulated diffusion tensors. Applying traditional density

estimation techniques for a beta to histograms of FA values from a region allow representing the

histogram of hundreds or thousands of values in terms of just two estimates for the beta

parameters. Thus using the approximate distribution eliminates the “curse of dimensionality” for

FA values. A parallel result holds for ADC.
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1. INTRODUCTION

Diffusion tensor imaging (DTI) holds tremendous promise for improving our understanding

of neural pathways, especially in the brain. The DTI protocol highlights the distribution of

water molecules (in three dimensions). In a medium with free water motion, the diffusion of

water molecules is expected to be isotropic. With water embedded in nonhomogeneous

tissue, motion is expected to be anisotropic and might show preferred directions of mobility.

DTI characterizes diffusion anisotropy locally in space, thus providing rich detail about

white matter tissue microstructure. DTI allows tracking fibers in the brain, a result which

has many potential applications in neuroscience and psychiatry. Combining fiber tracking

with functional MRI may elucidate structure-function relationships. Due to the fact that MRI

protocols are noninvasive and are deemed to provide essentially no risk to participants,

longitudinal studies of both diseased and normal participants may be especially promising.

DTI has already been used to show subtle white matter abnormalities in a variety of

diseases; for example, stroke, multiple sclerosis, dyslexia, and schizophrenia (Le Bihan et

al., 2001).

The current work was stimulated by a longitudinal study at the University of North Carolina

Neurodevelopmental Disorders Research Center. The study focused on whether a difference

in brain white matter integrity between autistic, developmentally delayed, and normal

children could be detected. DTI images and data from 53 independent patients were

acquired; however, a method for describing each individual patient and analyzing

differences between the groups was needed.

Definitions of credible statistical methods for analyzing DTI data are needed. Le Bihan et al.

(2001) considered a diffusion tensor, D, as a 3 × 3 estimated covariance matrix, Σ̂, at the

location of interest. To obtain an accurate evaluation of the probability distribution of

diffusion in a region, one must use an orientation invariant measure for each tensor. A

commonly used invariant index is fractional anisotropy. Fractional anisotropy is a

measurement of the fraction of the “magnitude” that can be ascribed to anisotropic diffusion.

It will be shown that one-to-one transformations of the fractional anisotropy (FA) measures

lead to accurate representations of their observed distributions in terms of only two

estimated parameters. Using these transformed values will lead to outcomes in statistical

models that avoid the “curse of dimensionality.” Exact distributional results and a similar

analysis for the average diffusion coefficient (ADC), volume ratio (VR) and relative

anisotropy (RA) are also derived.

This paper is organized as follows. Notation of the commonly used measures and the

statistical results are in Section 2. Simulations and real data analysis are in Section 3.

Finally, conclusions are stated in Section 4.

2. DTI MEASURES AND STATISTICAL PROPERTIES

2.1 DTI commonly used measures

The fact that diffusion can occur in three dimensions leads to using a diffusion tensor, D, a 3

× 3 covariance matrix. The simplest possible covariance structure is σ2I, referred to as
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sphericity due to the shape of the corresponding scattergram of data (and hence diffusion

pattern, which is isotropic). The three most commonly used DTI summary measures are

volume ratio, relative anisotropy, and fractional anisotropy. If {λ3} are the 3 eigenvalues of

D, then the measures are defined as follows.

Volume ratio, η:

(1)

where  is the product of the 3 eigenvalues and  is the arithmetic mean of the

eigenvalues. Here η expresses a relationship between the geometric and arithmetic mean of

the variance of the diffusion.

Relative anisotropy, ζ:

(2)

where  is the arithmetic mean of the squared eigenvalues. Hence ζ is a normalized

standard deviation that measures the amount of anisotropy (non-sphericity) for the tensor.

Fractional anisotropy, ϕ

(3)

Here ϕ is a measure of the dispersion (variance) of the variances of the diffusion tensor.

2.2 Statistical properties

A covariance matrix always has a spectral decomposition with only positive or zero

eigenvalues. If ϒ is the matrix of eigenvectors of the covariance matrix, then Σ = ϒDg(λ)ϒ′

with ϒ′ϒ = ϒϒ′ = Ib. Also if Z ~ (0, Iν, Ib) and Σ = ΦΦ′ where Φ = ϒDg(λ)1/2, then Y =

ZΦ′ ~ (0, Iν, Σ) and

(4)

where  denotes a Wishart distribution with ν the number of independent replicates used to

find Σ̂ and b the numbers of rows in Σ̂ and (0, Iν, Ib) denotes a multivariate normal

density with mean 0, ν representing the number of independent replicates and b representing

the number of observations for each ν, and both I matrices representing the within and

between subject variations, respectively (Muller and Stewart, 2006).

Box (1954a, b) defined the parameter ε as a measure of variance heterogeneity
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(5)

where p is the rank of Σ. It can also be interpreted as a measure of sphericity of the

underlying principal components. The locally best invariant (LBI) test for testing sphericity

(H0 : Σ = σ2Ip) for unknown σ2, against all alternatives, is to reject the null hypothesis for

large values of U = tr(Σ̂2)/[tr(Σ̂)]2 (John, 1971). Thus the maximum likelihood estimate

(MLE), ε̂, of the parameter ε is a one-to-one function of the LBI test for sphericity, ε̂ =

1/(pU). In multivariate analysis of variance settings, ε̂ is defined as the Geisser-Greenhouse

sphericity estimator.

When p = 3, which is the case in diffusion tensors, the exact density function of U under the

null and non-null hypotheses are known (Sugiura, 1995). Although analytic expression are

known for both densities, the non-null density involves zonal polynomials, which makes

computations difficult due to the need to evaluate an infinite series.

The null hypothesis for the likelihood ratio (LR) test for sphericity is to be rejected for

sufficient small values of

(6)

(Khatri and Srivastava, 1971). The exact null and non-null densities of the LR test exist

when p = 3 (Sugiura, 1995). For the remainder of this paper, p = 3 will be assumed.

Although the non-null density exists, it involves infinite sums of infinite partitions; unless

convergence occurs quickly, computations will be a problem. Power comparisons confirmed

Grieve’s (1984) conjecture that the LBI test is more powerful than the LR test if the

population deviation from sphericity is large.

2.3 Statistical results

Given the assumption that the flow of water follows a Gaussian diffusion model arising

from Brownian motion theory, Σ can be defined as the population covariance matrix (tensor)

of the diffusion. Consequently νΣ̂ ~ (ν, Σ). The eigenvalues of Σ̂, {λ̂
i}, are variance

estimates for the underlying principal components and hence measures of diffusion in

orthogonal dimensions. The most popular measures of diffusion arising from DTI analysis

can be expressed solely as functions of the sample eigenvalues, and thus of estimated

variances.

First moment properties of eigenvalues (component variances)

Trace and ADC: Interpreting the eigenvalues, {λk}, as variances implies  is the average

variance, or the arithmetic mean of the variances. When S = νΣ̂ is a Wishart, tr(Σ̂) is often

called the generalized variance. Wishart properties imply the trace is a quadratic form in

Gaussian variables (Glueck and Muller, 1998). Hence the average diffusion coefficient,

ADC = tr(Σ̂), is distributed exactly as a weighted sum of central chi-square random

variables. Kim, Gribbin, Muller, and Taylor (2005) provide a convenient review of exact
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and approximate calculations of probabilities for such quadratic forms. Both exact

probabilities and excellent approximations are available. The following is the definition for

an approximation for the quadratic form. If  with γk > 0 and all mutually

independent Xk ~ χ2(νk, ωk), then an approximation, Q* = γ*X*, exists with γ* > 0, X* >

χ2(ν*, ω*) and

(7)

(8)

(9)

Determinant: If the λi are thought of as measures of principal variation, then 

is the geometric mean of the variances. As an alternative to tr(Σ̂), the sample generalized

variance is often defined as |Σ̂|. It seems somewhat more natural to look at the geometric

mean, . Gupta and Nagar (2000, Chapter 3) showed the following. If S ~ (ν,

Σ), , with independent {μi} and , where i ∈ {1, …, p}. Also,

(10)

Second moment properties of eigenvalues: In order to achieve global scale invariance, the

measures of dispersion of diffusion (anisotropy) are standardized; thus the central

information will remain unchanged if a linear transformation is applied. The main goal is to

see if the variances are relatively the same in all three dimensions. The following discussion

describes the very direct and simple connections among the DTI measures and Wishart

distribution theory.

Volume ratio, η: By Equation 1, η̂ is equivalent to W.

(11)

Both η and η̂ are scale invariant with η̂ being exactly equal to the likelihood ratio test

statistic for sphericity.
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Relative anisotropy, ζ: By Equation 2,

(12)

It is straightforward to see ζ̂2 is not scale invariant. Relative anisotropy is a product of an

invariant parameter, ε, and a non-invariant parameter, ; thus ζ̂2 is not invariant to global

scale. The lack of scale invariance makes RA an unappealing choice relative to VR or FA.

Fractional anisotropy, ϕ: By Equation 3,

(13)

Hence ϕ̂2 is scale invariant and

(14)

Thus, a linear function of ϕ̂2 is a one-to-one function of a LBI test for sphericity. The LBI

test for sphericity will be more powerful with values of ε near one (Sugiura, 1995). If care is

taken to define essentially homogenous regions of tissue, DTI brain data can lead to values

of ε̂ that fit this case.

ε̂ and its relationship to a squared-beta distribution: It will be shown that ε̂ can be

approximated by a squared beta distribution. Thus, by equation 14, FA can also be

approximated by a squared beta distribution. Approximately matching the first two moments

of the ε̂ to a squared beta random variable results in a simple approximate distribution. The

fact that 1/p ≤ ε̂ ≤ 1 allows concluding

(15)

This leads to defining

(16)

If we let c1 = (p/(p − 1)) and c0 = (1/(p − 1)), then B2 = c1 ε̂ − c0 and ε̂ = ( B2 + c0)/c1.

With T1 = tr2(Σ̂) and T2 = tr(Σ̂2), it follows that ε̂ = T1/(pT2). While it is known that the

following assumptions are not precisely true, they were assumed to derive the approximate

results. First, assume that T1 and T2 are independent. Second, assume that
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. Muller et al. (2007) reported that 

and . Also, from (16), it is known

that B2 = (T1/pT2)[c1] − [c0]; thus, B2(p − 1) + 1 = T1/T2.

The special case of sphericity leads to T1 being exactly the square of a scaled, central chi-

square. In general, B′ ~ β(ν*1/2, ν*2/2) is true if and only if B′ = X1/(X1 + X2), with X1

independent of X2 and both distributed chi-square. It seems reasonable to find B* ~ β(ν*1/2,

ν*2/2) so that, in some sense, . Then,

(17)

Moments of a Beta are described in Johnson, Kotz, and Balakrishnan (1995, Chapter 25).

Thus, for such a B*,

(18)

with

(19)

As a Beta random variable, . Hence, by

taking the expectation of the numerator and denominator separately,

(20)

Similarly, as a Beta random variable,

(21)

Hence, by treating the numerator and denominator separately,

(22)

Without the (p − 1)/p term, this would be what one would expect for the variance of a

squared beta distribution. In more general cases, the approximation depends on p such that
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as p increases, the approximation gets better since ((p − 1)/p) → 1 as p → ∞. The

simulations below show that the approximations work well when p = 3. However, if larger

dimensional tensors were used in imaging analysis (for example, High Angular Resolution

Diffusion Imaging (HARDI)), then these approximations would only improve.

3. SIMULATIONS AND DATA ANALYSIS

Simulations were conducted to evaluate the accuracy of the approximations, using one

million replications. Using a known ε, pseudo random Wishart matrices were generated by

first creating a random Gaussian Z matrix. Throughout ϒ = I without loss of generality

because the parameters and estimates of interest are invariant to ϒ (from trace and

determinant invariance properties). With ε a function of eigenvalues, Dg(λ) was chosen to

achieve the ε of choice and Y = ZϒDg(λ)1/2 = ZDg(λ)1/2 and Σ = Dg(λ). The following

entries comprised the matrix, Dg(λ): (0.80, 0.09, 0.10) for ε = 0.496 and (1.00, 0.55, 0.55)

for ε = 0.889. By (4), Y′Y was the resulting random Wishart matrix. For each Y′Y, ε̂ was then

computed. The values were then transformed into B values using the square root of (13). The

distribution of the transformed values as well as the corresponding beta distribution were

plotted.

Figures 1a and 1b show the accuracy of the approximations when p = 3. The solid line

represents the approximations based on a Beta random variable, while the histogram is from

the sample values from the simulation described above. Since so many replicates were used,

a p-value for a goodness of fit test does not make sense because if one were used, the fit

would need to be perfect in order to get a non-significant result due to the large sample size.

However, the Kolmogorov-Smirnov test statistic, KS = max |F̂(x) − Fobs(x)|, was calculated

as a measure of discrepancy.

Figure 1a summarizes the simulation when ε ≈ 0.496. In Figure 1a, the fit is good, but not

perfect (KS = 0.045). Given that the LBI test is more powerful for large values of ε, we

would expect better fits as ε → 1. Figure 1b summarizs the simulation when ε ≈ 0.889. The

figure shows that this distribution works extremely well for larger values of epsilon (KS =

0.011). This again was expected, as the LBI test is better test for large ε. For imaging

analysis, the definition of large can be arbitrary to define. The techniques below (see Data

Example section) will allow one to decide whether or not this approach would be

appropriate.

When dealing with DTI data, random noise must be accounted for. Thus, an additional

simulation was performed that created random D̂ by using the WLS algorithm defined in

Zhu et al. (2007) with 100, 000 replicates. Simulated diffusion-weighted images were

generated as follows: So, the signal intensity in the absence of a diffusion-sensitizing field

gradient, was fixed at 1, 500, values of σo were varied to provide differing signal-to-noise

ratios (SNR = So/σo) of 5, 10, 15, 20, 25 and 30. Similar to the simulations in Zhu et al.

(2007) paper, an imaging acquisition scheme {(bi, ri) : i = 1, …, 30} was defined with ri a 1

× 3 vector that represents the ith direction of the diffusion gradient such that , and bi

is the corresponding b factor of each ith DW MRI. The scheme included a total of m = 5

baseline images with b = 0 s/mm2 and n−m = 25 directions of diffusion gradient at b = 1000
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s/mm2 and ri equivalent to the matrix provided in the Hardin (1994) web site for m = 30. For

a given diffusion tensor, D, xi, and yi were generated from a Gaussian random number

generator with mean zero and standard deviation σ0. Similar to the simulations above, D was

defined with the diagonal elements as follows (units: 10−1mm/s): (0.80, 0.09, 0.1), for ε =

0.496 and (1.00, 0.55, 0.55) for ε = 0.889.

Finally, the resulting ith acquisition of the diffusion-weighted data was calculated by

. The ε̂ values were then calculated for each D̂ computed

by the WLS algorithm defined in Zhu et al. (2007) with k = 5. Similar to the first simulation,

the ε̂ values were then transformed into B values using the square root of (13) and plotted.

The distribution of the transformed values as well as the corresponding beta distribution

were plotted.

Figures 1c and 1d show the accuracy of the approximations when the simulation accounts

for random noise. The solid line represents the approximations based on a Beta random

variable, while the histogram is from the sample values from the simulation. Similar to the

first simulation, Figure 1c summarizes the simulation when ε ≈ 0.496. In Figure 1c, the fit

works reasonably well (KS = 0.029). This result is consistent with the results from the first

simulation. A main reason why the addition of the noise did not hinder the fits was that the

noise added was Gaussian, which helps homogenize the data. Beta random variables can be

expressed as functions of chi-square variables, which are functions of Gaussian variables.

Figure 1d summarizes the simulation when ε ≈ 0.889. The figure shows that this

distribution works well for larger values of epsilon (KS = 0.018). The reason for the fit not

being as good as Figure 1b is that this simulation was with SNR = 5, which means a larger

σo was used to define xi and yi. As SNR increases, the fits also improve.

Thus, it has been shown that ε̂ can be approximated by a beta-squared random variable and

that the approximation holds in the DTI setting when random noise is incorporated into the

diffusion matrix. For region of interest analysis of DTI images this is extremely useful, as

there is now an approximate statistical distribution that can be associated with the FA values

coming from a given region. As noted earlier, even better approximations or exact results

are available for ADC.

Data example

The UNC Neurodevelopmental Disorders Research Center performed a study to identify if

differences in the brain exist between autistic, developmentally delayed and typical children.

This study was approved by both the University of North Carolina at Chapel Hill and Duke

Institutional Review Boards and parental assent was obtained for all participants. Data was

provided for the 32 developmentally delayed and typical children. All scans were acquired

on a 1.5T GE Sigma Advantage MR scanner. DTI images were acquired using 4 repetitions

of 12-direction spin-echo single-shot echo planar imaging (EPI) sequence with a 128 × 128

× 130 image matrix at 1.875 mm × 1.875 mm × 3.8 mm resolution with a 0.4 mm gap using

a b-value of 1000 s/mm2. Using a custom program designed to automatically remove slices

that fall outside predetermined parameters, each DTI slice was screened for motion and

other artifacts. After cleaning, both correction of eddy-current based image distortions using

Clement-Spychala et al. Page 9

Stat Interface. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



mutual information based unwarping and the calculation of the diffusion tensor elements

were performed using another custom software package. The resulting eigenvalues and

eigenvectors of each diffusion tensor were also calculated and FA values were computed.

The FA values from different regions of the brain were transformed into B values from (13).

The distribution of the transformed values as well as the corresponding approximating beta

distribution were plotted. Diagnostic tests were used to see how the fits performed. The data

were ordered from smallest to largest for each subject.

Having the ordered data allowed for simple computation of the empirical quantile function

to be used. QQ-envelope plots were used on the ordered data to see how the fit relates to

other samples from the same beta distribution. Programs supplied by Marron (2007) delved

into an approach called QQ-envelope to use a Q-Q plot to test the distributional form against

standard distributions. This method creates a typical Q-Q plot, but then simulates pseudo

sets of data from the assumed distribution to look at random variability. All pseudo data

points, as well as the original observations, are plotted. If the original data points are

enveloped by the pseudo data points and the line with a slope of 1, then the distributional fit

works; if not, then the distributional assumption was not correct. This approach was used in

Hernández-Campos et al. (2004) to fit distributions to Internet traffic data.

The right cerebellum is a structure located between the cerebrum and the brainstem which is

the unit of motor control. There are 453 voxels that make up this region. Figure 2 depicts a

sample of fits of the transformed right cerebellum data, with the y-axis being the percent of

data points and the x-axis, the B value. All of the fits seem to work well; however, we will

still look at the diagnostic tests.

In QQ-envelope, the data are plotted on the y-axis and the values from the assumed

distribution are plotted on the x-axis. The red bold solid line is the Beta Q-Q plot for the

transformed FA data; the green dashed line is theoretically what would occur if the data

were drawn with no sampling variation from the beta distribution; and the blue dot-dash

lines are the result of resampling the exact beta distribution. If the results fit, then the red

line will be encompassed by the blue lines.

Figures 3 and 4 show the worst and best fits from Figure 2, respectively. The Q-Q plot for

the transformed FA data (red solid line) in the QQ-envelope plots can deviate quite a bit

from the theoretical beta distribution (green dashed line) and is not always encompassed in

the 1,000 resamplings of the beta distributions (blue dot-dash lines). In Figure 3, it appears

that the data in the lower 5th percentile deviates from the estimated distribution. In Figure 4,

the red line is encompassed by the blue lines at all points except a small region around 0.55

on the x-axis. The occurrence of multimodality was considered, but did not exist.

Thus, the beta distribution approximation works well in the best case and not as well for

other subjects in the right cerebellum region of interest. The fits for the right cerebellum

appear to work well enough to be used in analyses, as the fit did work for all but a small

fraction of the data in the worst case, mainly the left tail.

Hence, the data from a region for each subject can be represented by a Beta distribution with

subject and region specific parameters. Note that the F-distribution is a one-to-one function
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of the Beta. Using the F distribution yields a non-bounded distribution with scale-free

random variables, with several simple statistical properties. Unlike the Beta, the F varies in

the same direction as FA, which simplifies understanding of the analysis of a novel outcome

variable and its relationship to the physical property that it represents. Each subject can be

identified with a single summary measure, δ̂= mean + standard deviation of the F

distribution.

A general linear mixed model assuming Gaussian errors was fitted with δ̂ as the response,

and fixed effects of age, group, gender, age by group interaction. The analysis was used to

look at differences in the right cerebellum between developmentally delayed children and

typical children across time. Figure 5 shows the least square means of each group at given

ages. Note that at less than 24 months the difference between subjects is greater than that at

60 months. Even with these differences, there was no significant difference between the two

groups of children in the right cerebellum (p-value = 0.16).

4. CONCLUSIONS AND FUTURE RESEARCH

A multivariate Gaussian has a sample covariance following a Wishart distribution. This

corresponds with DTI analysis in simple ways. In the absence of sphericity, Box (1954)

proposed quantifying the deviation from sphericity with ε a function of the trace of the

covariance matrix and the trace of the matrix squared. The parameter corresponds to the

locally best invariant (LBI) test statistic. The likelihood ratio (LR) test statistic for sphericity

is a function of the determinant of the covariance matrix over the squared trace of the

covariance matrix.

Common DTI measures can be expressed as functions of the LBI and LR tests. Both FA and

RA essentially only depend on the LBI test statistic for sphericity. However, FA is scale-

free; thus, the use of RA should be dismissed. Choosing between FA and VR should reflect

the performance of the corresponding tests for sphericity. The LBI test for sphericity (test

using FA) will be more powerful with values of ε near one. Symmetrically, the LR test for

sphericity (test using VR) will be more powerful with small values of ε. Power comparisons

were also made and Grieve’s (1984) conjecture that the LBI test has more power if the

population deviation from sphericity is large was confirmed. Experience with a limited

range of MRI data for brains, as in the Autism study, shows that ε is typically close to one.

Thus, FA is the more sensible measure.

Two types of simulations were performed to show that the approximation of FA by a

squared Beta distribution is valid. The first simulation showed that, in a general setting, the

distribution of the Geisser-Greenhouse sphericity statistic can be approximated by a squared

beta distribution. This approximation works best when ε ≈ 1; this is understandable due to

its relationship to the locally best invariant test for sphericity. In order to show that this

approximation works well in a DTI setting, another simulation was performed that added

random noise to acquire a resulting tensor. This simulation also showed that a function of

FA can be approximated by a squared beta distribution. Thus, ε̂ can be approximated by a

squared random variable and in the DTI setting this results in a way to analyze regions of

interest using distributions with known properties. This approximation was then shown to
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work on the UNC Neurodevelopmental data; however, it is necessary to perform diagnostic

tests.
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Figure 1.
Approximate (line) and simulated (histogram) densities of ε̂ when p = 3. 1a: ε ≈ 0.496 (KS =

0.045); 1b: ε ≈ 0.889 (KS = 0.011); 1c: ε ≈ 0.496 and SNR = 5 (KS = 0.029); 1d: ε ≈ 0.889

and SNR = 5 (KS = 0.018).
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Figure 2.
Six histograms of the fits of the transformed right cerebellum data; actual values (histogram)

and approximate beta distribution (line).

Clement-Spychala et al. Page 15

Stat Interface. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
QQ-envelop plot of the subject (ID = 515000402) with the worst fit from Figure 2 (plot on

third row, second column). Q-Q plot for the data (red solid lines), Q-Q plot for the

theoretical distribution (green dashed), and Q-Q plot for the resampled data (blue dot-

dashed) are displayed. Fit works well except for the left tail (< 5th percentile).
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Figure 4.
QQ-envelop plot of the subject (ID = 514900302) with the best fit from Figure 2 (plot on

second row, second column). Q-Q plot for the data (red solid lines), Q-Q plot for the

theoretical distribution (green dashed), and Q-Q plot for the resampled data (blue dot-dash)

are displayed. The fit works well except for a small region around 0.55 on the x-axis.

Clement-Spychala et al. Page 17

Stat Interface. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
Least square means of δ̂ across time by group.
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