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Abstract
We present an asymptotic exponential bound for the deviation of the survival function estimator of
the Cox model. We show that the bound holds even when the proportional hazards assumption
does not hold.
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1. Introduction
The Cox proportional hazards model is often used to describe survival data in the presence
of covariates. Under the Cox model, the hazard of an individual is given as the
multiplication of a baseline hazard with the effect of the individual’s covariates Z. The effect
of the individual’s covariates is given by the exponent of the regression of the covariates on
some vector of coefficients β0. The survival function of each individual is then obtained

from the hazard using the product integral of  where Λ0 is the cumulative
hazard.

Standard results (Fleming and Harrington, 1991 ) show that when the proportional hazards
assumption holds, the maximizer of the partial likelihood for the regression vector β̂ is
consistent for β0, and that the Breslow estimator Λ̂, which maximizes the profile likelihood
at β̂, is consistent for the baseline cumulative hazard. Combining these two result, one can
show that the estimated survival function converges to the underlying true survival function
for each individual. Moreover, it can be shown that for every individual, the difference
between the estimated survival function Ĝ, and the true survival function G0, in the root-n
scale, converges to a mean zero tight Gaussian process.

Even when the proportional hazards assumption does not hold, it was shown by Lin and Wei
(1989) and Sasieni (1993) that the maximizer of the partial likelihood for the regressor

vector β̂ converges to some vector β*. Moveover,  converges to some mean zero
normal random vector. However, the convergence of the survival function, under the
misspecified model was not discussed.
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In this work we show that even when the proportional hazards assumption is violated, the
survival function converges to some well defined limit GP. Here, we regard the survival
function as a function of both time and covariates. Moreover, the difference between the
estimated and the limiting survival function in the root-n scale converges to a mean zero
tight Gaussian process. Finally, we provide an exponential bound for the tail difference
between the estimated survival function Ĝ and GP. More formally, Theorem 3.2 below
states that under some regularity conditions, for every ε > 0, and all n large enough,

(1)

where D1 and D2 are universal constants that depend only on the set of covariates , and
where τ > 0 is some constant (see Section 2 below). Note that this bound does not depend on
the proportional hazards assumption.

Maximal inequality bounds, such as the bound (1), play an important role in machine-
learning proofs of universal consistency (Steinwart and Chirstmann, 2008, Chapter 6). Here
universal consistency means that asymptotically, an estimator achieves the minimal risk
with respect to some loss function, regardless of the probability measure that generates that
data. However, when the data is subject to censoring, the usual maximal inequality bounds
do not apply and bounds like (1) are needed in order to derive universal consistency. For
example, Goldberg and Kosorok (2012a) use a maximal inequality bound to prove universal
consistency for multistage decision problems with censored observations. More recently,
Goldberg and Kosorok (2012b) proposed support vector regression estimators for right
censored data. In that work, when the censoring distribution is assumed to follow the Cox
model, a maximal inequality like the one proved here is used to bound the deviation of the
estimator from the Bayes function.

Exponential bounds for the tails of distribution functions are well known. The Dvoretzky,
Kiefer and Wolfowitz bound states that

where  and F are the empirical and true distribution functions, respectively (Kosorok,
2008, Theorem 11.6). In the context of survival analysis, the literature is limited. Bitouzé et
al. (1999) proved a non-asymptotic exponential bound for the deviation of the Kaplan-Meier
estimator from the survival function for right censored data, when no covariates are present.
We note that the bound (1) differs from these two bounds, since it is asymptotic in nature.
The difficulty of obtaining a non-asymptotic bound follows from two main reasons. First,

the finite-sample difference  involves the inverse of some empirical covariance
matrix (Lin and Wei, 1989 ). Second, the difference between the survival functions depends
on the distribution of covariates Z. Finding such a non-asymptotic exponential bound for the
Cox model is an important challenge which is beyond the scope of this paper.

The paper is organized as follows. The notation and some standard results for the Cox model
are presented in Section 2. The main results are presented in Section 3. Proofs are provided
in Section 4.
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2. Preliminaries
Assume that the observed data consist of n independent and identically distributed random
triplets {(Z1, U1, δ1), …, (Zn, Un, δn)} drawn from some probability distribution P. The
random vector Z is a covariate vector that takes its values in  ⊂ ℝd. The observed time U
equals T ∧ C, where T ≥ 0 is a failure time, C is a right-censoring time, and where a ∧ b =
min(a, b). Let δ = 1{T≤C} be the failure indicator where 1{A} is 1 if A is true and is 0
otherwise, i.e., δ = 1 whenever a failure time is observed. Let G(·|Z) = P(T > t|Z) denote the
survival functions of T given Z.

Let τ > 0 be such that P(U ≥ τ) > 0. For every t ∈ [0, τ], define N(t) = 1{U≤t;δ=1} and Y (t) =
1{U≥t}. For a cadlag function A on [0, τ], define the product integral φ(A)(t) = ∏0< s≤t(1 +
dA(s)) ≡ exp(Ac(t)) ∏0< s≤t(1 + ΔA(s)) where ΔA(t) = A(t) − A(t−) and Ac(t) = A(t) −
Σ0<s≤t ΔA(s) (see, for example, Kosorok, 2008, Chapter 12). Furthermore, the product
integral can be generalized, in a natural way to functions from [0, τ] ×  to ℝ, that are
cadlag in the first variable. Denote this space of functions with the supremum norm D[0, τ]
×  (Billingsley, 1999, Chapter 3). For an integrable function f, denote its expectation as Pf

≡ ∫fdP. Define ℙn to be the empirical measure, i.e., .

The proportional hazards assumption states that the integrated hazard of T|Z is of the form

 for some unknown vector β0 ∈ ℝd and some continuous unknown nondecreasing
function Λ0 with Λ0(0) = 0 and 0 < Λ(τ) < ∞. Estimation of β can be done by maximizing
the partial likelihood. Define the estimating equation

Under the proportional hazards assumption, the zero of this estimating equation, β̂, is

consistent for β0, and  converges to a Gaussian random variable (Fleming and
Harrington, 1991, Chapter 8). Define Λ̂ to be an estimator for the cumulative hazard
function, where

(2)

It can be shown (Fleming and Harrington, 1991, Chapter 8), that Λ̂ is consistent for Λ0, and

 converges to a mean zero tight Gaussian process. The estimator for the survival
function can be obtained using the product integral operator, i.e., Ĝ(t, z) = φ(−eβ̂′zΛ̂(t)). By
the delta method (Kosorok, 2008, Theorem 2.8), it can be shown that Ĝ is consistent for G

and that  weakly converges in D[0, τ] ×  to a tight Gaussian process.

In the discussion above, it was assumed that the hazard model assumption holds. However,
even when the model is misspecified, it was shown by Lin and Wei (1989) and Sasieni

(1993) that under some regularity conditions,  is asymptotically normal, where β*

is the zero of the estimating equation
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(3)

Estimation for the cumulative hazard can be obtained as in (2).

3. Main Results
In the following, we first discuss the limit GP of the survival hazard estimator Ĝ defined
above. We note that GP ≡ G, the true survival function, only when the model is correctly
specified. Then we present an exponential bound on the deviation of Ĝ from its limit.

We need the following assumptions, adapted from Sasieni (1993):

(C1)  is a compact set.

(C2) There is no pair (α, φ) with α ≠ 0 ∈ ℝd and φ: ℝ ↦ ℝ, a monotone decreasing
function, such that for P(2)-almost all t < τ, α′ZdN(t) = φ(t)dN(t) P-almost
surely, and α′ZY (t) ≤ φ(t) P-almost surely, where P(2) is the marginal
subdistribution of U with δ = 1.

(C3) P(Y (τ) = 1) ≥ K > 0.

The assumption that  is compact can be relaxed to an assumption on the moments of Z at
the price of complicating the proofs (compare to Assumption (C1) in Sasieni, 1993 ).
Assumptions (C2)–(C3) ensure that β*, the zero of the estimating equation (3), exists and is
unique (Sasieni, 1993, Corollary 3.1).

Define . Define GP (t|z) = φ(−eβ
*′ zΛ*)(t). In the following, we

show that GP is the limit of Ĝ:

Lemma 3.1

Assume (C1)–(C3). Then . Moreover,  converges to a mean
zero tight Gaussian process on D[0, τ] × .

It can be shown, under some conditions, that the limiting survival function GP is the
minimizer of the Kullback-Leibler divergence between the functions within the Cox family
and the true distribution (see Kosorok et al., 2004, Theorem 6 and its conditions).

Standard results for the supremum of a mean zero tight Gaussian processes ensure that

. However, the constant in the exponent depends
on the distribution P. The main result stated below shows that under some regularity
conditions, an exponential bound can be given for which the constants are universal and do
not depend on the distribution P. Before we state this result, we need to strengthen our
assumptions:

(C4) α′Var(Z) α ≥ K1 > 0 for all α ∈ ℝd such that ||α||2 = 1.

(C5) inf z∈Z P (Y (τ) = 1|Z) ≥ K2 > 0.

(C6) β* ∈ BR where BR is the open ball of radius R around the origin.

Theorem 3.2
Assume (C1) and (C4)–(C6). Then for all ε > 0, and all n large enough,
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where D1, D2 are universal constants that depend on the set , the radius R, and the
constants K1 and K2, but otherwise do not depend on the distribution P nor on ε.

4. Proofs
Proof of Lemma 3.1

By Theorem 2.1 of Lin and Wei (1989) and Corollary 4.1 of Sasieni (1993),

 where V1 ~ N (0, Σ) for some positive definite matrix Σ. In the following
we use arguments similar to Kosorok (2008, Chapter 4.2) but without the assumption that
the proportional hazards model holds. Write

(4)

It follows from Assumption (C3) and Lemma 7.4 of Sasieni (1993) that Bn(t) converges to
zero uniformly in t. Since both N and Y are Donsker (see Kosorok, 2008, Lemma 4.1),

,  is compact, and the processes An, Cn, Dn, and En are smooth in β, we conclude
that each of these processes converges uniformly to zero. Since the product integral is

continuous, we obtain that .

We now move to show that  where V is a tight, mean zero
Gaussian process on D[0, τ] × . It follows from (4) that

(5)

where the reminder term is uniform in t and z. The joint asymptotic tightness of (Ãn, B̃n)
follows, since the marginals are asymptotically tight (Kosorok, 2008, Lemma 7.14). The
joint convergence is established using the Cramer-Wold device (Kosorok, 2008, Theorem
7.17). Using the continuous mapping theorem for the sum, we conclude that the limiting
process V is a tight, mean zero Gaussian process in D[0, τ] × . Finally, it follows from the

delta method that  converges to a mean zero,
tight Gaussian process.
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Proof of Theorem 3.2
By Assumption (C5) and the fact that  is compact, we obtain that there is a universal
constant M0, that depends only on K2 and , such that Λ*(τ) < M0. For all n large enough,
and by the consistency of Λ̂, we thus have Λ̂(τ) < 2M0. Using Lemma 12.6 of Kosorok
( 2008), on the event Ω = {Λ̂(τ) < 2M0, ||β̂||2 < 2R}, for every z ∈ , we have

(6)

where M1 = maxz∈ {||z||2}. Note that using similar arguments as in (5) on the event Ω,

(7)

By the compactness of both  and the closure of BR, and Assumption (C5), we obtain that
there is a constant K3 that does not depend on the distribution P, such that PY (s)eβ

*′Z > K3.
Hence

(8)

The influence function representation of  in Theorem 4.1 of Sasieni (1993),
together with (6)–(8), yield that

(9)

where , Remn is op(1),

and
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The inverse of A(β*) exists by Lemma 7.3 of Sasieni ( 1993). Note that the constants C1 and
C2 do not depend on the distribution P. We now show that for every α ∈ ℝd, such that ||α||2
= 1, α′A(β*)α > C4K1, where C4 > 0 does not depend on the distribution P. Write

where (Z1, Y1, N1) and (Z2, Y2, N2) are independent copies, distributed according to P. Note
that the denominator is bounded from above. Since  is compact and β* is bounded,
eβ

*′Z1eβ
*′Z2 in the nominator is bounded from below by some constant. Hence, for every α,

such that ||α||2 = 1,

where the last inequality follows from the monotonicity of Y and C3 > 0 is some constant

depending on K1, K2, R and M1. By Assumption (C5), both  and infz∈  P (Y (τ)
= 1|Z = z) are bounded from below. Thus we conclude that there is a constant C4 > 0 such
that

Since A(β*) is symmetric and positive definite, we conclude that ||A(β*)−1||2 ≡ max{||α||2=1}
α′A(β*)−1 α < 1/(K1C4) (Golub and Loan, 1983).

We would like to investigate the empirical processes defined by the functions l̃1 and l̃2. First,
note that l̃1 is a random vector such that each of its component is bounded by some constat
C5 that depends only on K1, K2, R and M1. To see this, recall that l̃1 ≡ C1A(β*)−1l̃3. Since
both  and β * are bounded and PY (s)Zeβ

*′Z> K3, each of the components of l̃3 is bounded
in absolute value by a constant, say C6. Since ||A−1||2 < (K1C4)−1, ||A−1||∞ < (K1C4)−1d1/2

(where ||A||∞ is the maximum absolute row sum of the matrix, see Golub and Loan, 1983),
and thus

Let ei be the i-th member of the standard basis of ℝd. Then

(10)

for any ε > 0, where the last inequality follows from Hoeffding’s inequality.
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Define the ε-bracketing entropy to be the log of the ε-bracketing covering number N[](ε, ,
L2(P)) (see Kosorok, 2008, Chapter 2). Define the class of sample pathes  = {l̃2(Z, U, δ)
(t): t ∈ [0, τ]}. We would like to show that for every 0 < ε,

(11)

The sample pathes of the random functions  and

 are monotone in t from [0, τ] to [0, C7] for some
constant C7 that does not depend on P. Hence, by Theorem 9.23 of Kosorok (2008), the ε-
bracketing entropy number of these classes is bounded by Ko/ε for some universal constant
Ko that depends only on C7. By Lemma 9.25 of Kosorok ( 2008), the ε-bracketing entropy
of the sum of these two classes is bounded by 4Ko/ε, where the sum of two classes of
functions  and  is defined as  +  ≡ {g1 + g2: gi ∈ Gi}. By changing variables we
obtain that (11) holds with the constant Co = 4KoC2. Fix an ε > 0, then using the bound (11),
and Corollary 2 of Bitouzé et al. (1999), we obtain that

(12)

where B is some universal constant.

We are now ready to bound . Fix ε > 0. It then follows from (9), (10), and
(12), that

where D1 = 2 min{log(2.5)(3Co)−2, log(2d)(dC5)−2} and D2 = log(2.5)B.
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