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Abstract

We develop robust methods for analyzing clustered data where estimation of marginal regression 

parameters is of interest. Inverse cluster size reweighting in the objective function to be minimized 

is incorporated to handle the issue of informative cluster size. Performance of the resulting 

estimators is studied by simulation. Large sample inference and variance estimation is carried out. 

The methodology is illustrated using a periodontal disease dataset.
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1 Introduction

The method of least squares is applied most often to estimate the parameters of a linear 

regression model. It is equivalent to maximum likelihood estimation if one assumes that the 

model errors are normally distributed. However, these estimates are sensitive to the presence 

of outliers in the data. More robust estimators of the regression parameters can be obtained 

by partly replacing the residual by its rank in the objective function of the least squares 

criterion leading to the so called R-estimator (Jurecková, 1971; Jaeckel, 1972; McKean and 

Hettmansperger, 1978). The classical regression setup assumes that the data (response) are 

independent, though not identically distributed.

We consider R-estimation of regression parameters in a linear model when the data are 

clustered so that the observations (responses) within a cluster are correlated, but data 

belonging to different clusters are independent. Let M denote the number of clusters and Yij 

denote the jth value of the response variable in the ith cluster 1 ≤ j ≤ ni, 1 ≤ i ≤ M, where for 

each cluster i, ni denotes its size. In addition, suppose we have an observed covariate vector 

Xij which affects the distribution of Yij through a marginal linear model

(1.1)
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where Єij are the model errors within cluster i with a common distribution Fi. A common 

mathematically convenient assumption in modelling clustered data is that the errors єij are 

exchangeable. Although for many applications such an assumption may hold, we avoid 

making a within cluster exchangeability assumption on є for the broadest possible 

applicability of the proposed methodology (including dental data). Most of the existing 

approaches treat ni to be non-random and assumptions are made on each Fi; see, e.g., Jung 

and Ying (2003); Wang and Zhu (2006); Wang and Zhao (2008); Hettmansperger and 

McKean (2011).

We consider the possibility that the cluster size is random and informative (Hoffman et al., 

2001; Williamson et al., 2003; Gansky and Neuhaus, 2009; Nevalainen et al., 2013) in 

which case Yij may be statistically correlated with the cluster size ni. In practice, this could 

arise when the cluster size depends on a cluster level latent factor (such as a random effect), 

a cluster level covariate, or both. For a more formal definition of informative cluster size in 

a regression setting, see Nevalainen et al. (2013). We give an example of this in Section 5 

where the use of standard R estimator leads to substantially biased estimators of certain 

parameters.

The rest of the article is organized as follows: The R-estimating functions are introduced in 

the next section. Theoretical (large sample) results are developed in Section 3. Simulation 

results are presented in Section 4 where we compare the R-estimators with a weighted least 

squares estimator and a mixed effects model based estimator. We illustrate the use of our 

estimator with the dental data in Section 5 which motivated the statistical methodology 

developed in this article. We study the marginal effects of covariates such as smoking on 

attachment loss in a sample of periodontal disease patients. The clusters in this application 

are all remaining teeth belonging to the same individual. Since the number of remaining 

teeth may be indicative of a patient’s overall oral health, the cluster size is potentially 

informative. Also, the quantitative outcomes in this dataset were non-normal, making the 

use of robust methods more appealing. The article concludes with a discussion section 

(Section 6).

2 Methods

We propose to estimate the vector of marginal regression parameters β by minimizing the 

following inverse cluster size weighted objective function:

(2.1)

i.e.,
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where , and Fi (·; β) is the empirical 

distribution of {eij (β), 1 ≤ j ≤ ni}; that is  for u ∈ ℜ Here φ 

defined on (0, 1) such that ∫ φ = 0 and ∫φ2 < ∞. Note that due to the presence of the factor 

of , the resulting estimator differs from the traditional R-estimator for clustered data 

(Hettmansperger and McKean, 2011, Ch. 5) which is obtained by minimizing the objective 

function:

(2.2)

where 1 ≥ R(eij(β) ≤ n is the rank eij(β) in the pooled sample of model residuals {e11 (β),…, 

eMnM(β)} and  is the total sample size. The readers may consult Hettmansperger 

and McKean (2011) for obtaining the necessary insights for the workings of the R-

estimators in the case of independent (e.g., non-clustered) data. As we shall see from the 

simulation results, the estimators obtained from (2.2) could be seriously biased in an 

informative cluster size setup. In order to differentiate between the two sets of estimators, 

we call our estimators derived from (2.1) ‘reweighted R-estimators’. The reason for using 

the inverse cluster size weighting is that each cluster (e.g., each patient in a dental study) 

should contribute the same amount to the marginal estimating function irrespective of its 

size. While these resulting estimators will be consistent (and asymptotically unbiased) 

irrespective of whether the cluster size is non-informative or not, methods that do not 

balance the weight of each cluster may lead to inconsistency and may exhibit substantial 

bias when the cluster size is informative (Williamson et al., 2003; Wang et al., 2011).

Once the regression parameter β is estimated, the marginal location parameter α can be 

estimated by

(2.3)

Once again, this is different from the traditional R-estimator of α which is taken to be the 

sample median of the residuals {e11 (β̂
R),…, eMnM (β̂

R)}, where β̂
R is the R-estimator of β.

We undertake an extensive simulation study in Section 4 comparing the performances of 

these two sets of R-estimators.

3 Large sample inference

A careful formulation of the estimation problem and technical arguments for its asymptotic 

analysis will be necessary since a zero median (or mean) property for the єij conditioning on 

the cluster size ni may not hold when the cluster size is informative. This necessitates us to 

formulate our assumptions on the overall marginal distribution of the errors given by:
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(3.1)

Note that F can be regarded as the distribution of the model error associated with a typical 

measurement (i.e., chosen at random from all units in that cluster) of a typical cluster (i.e., 

chosen at random from all available clusters). Mathematically speaking, consider two 

random indices I and J such that I ∼ uniform {1, …, M} and, given I = i, J ∼ uniform {1, 

…, ni}. Then F(t) = Pr{∊IJ ≤ t}, for t ∊ ℜ.

We assume T(F) = 0, where T is the median; other location functionals can be used as well 

which will lead to the corresponding estimators of the intercept parameter α.

Let, without loss of generality, the true β be 0. One can show that DM is almost everywhere 

differentiable and β̂ satisfies the estimating equation:

(3.2)

By similar argument as in Datta et al. (2012), , where

(3.3)

with  Next, mimicking the expansions for R-

estimators from Hettmansperger and McKean (2011, Ch. 3), we can obtain the following 

expansion under our setup:

in a local neighborhood of 0 (the true β) and hence

(3.4)

with 

, where f and f′ are the first and the second derivatives, respectively, of F given by (3.1) The 

details of the technical arguments (cf. Datta et al., 2012), which we omit here, show that 

besides moment conditions for certain cluster averages needed for an application of the 

central limit theorem we also need an L1 equicontinuity condition to hold (which is satisfied 

by the identity score φ (x) = x). This may be regarded as somewhat more stringent than what 

is required in the classical i.i.d. case and may not hold for certain unbounded scores. A 
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practical way around in such cases would be to use a truncated (bounded) version of the 

score if the use of such scores is desired.

For making statistical inferences based on this asymptotic normality result, we need to 

estimate the asymptotic variance covariance matrix. To that end, we will first discuss the 

estimation of τ. Our estimator, when specialized to the case of independent (i.e., non-

clustered) data, is different from (and arguably simpler than) the estimator proposed by Koul 

et al. (1987). Note that:

where S = (logf)′ and єij was defined as before. Therefore, if F and єij were known, a 

consistent estimator of τ−1 would be given by . We, 

however, can replace them by their observed data based counterparts to obtain

(3.5)

where є̂
ij = eij(β̂) − α̂,

and

Here h (↓ 0) is a bandwidth sequence and K is a density kernel.

Finally, the asymptotic variance–covariance matrix of β̂ can be estimated from data by:

(3.6)

with

and
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Next, combining the arguments of Datta et al. (2012) with Hettmansperger and McKean 

(2011, equation 3.5.22), we get:

where α0 is the true value of α, and

Therefore,

(3.7)

where

with , assuming this limit exists.

An estimator of the asymptotic variance of α̂ is given by:

(3.8)

where

and

Here, , K͂ is a density kernel and h͂ is another bandwidth sequence.
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Theoretical investigation of the issue of optimal selection of h and h͂ is beyond the scope of 

the present article. In addition, one may have to make additional assumptions beyond the 

marginal model for this purpose. It may be possible to obtain a data-based selector 

minimizing a criterion function computed via resampling. In this article we have used h = 

M−1/7 and h͂= M−1/5, respectively, in order to reduce the computational burden for the Monte 

Carlo simulations conducted next. Assuming an extreme form of cluster dependence, these 

would correspond to asymptotically optimal rates of L2 estimation of a density and its 

derivative respectively (Singh, 1979).

4 Simulation

We consider a data generation scheme with M clusters. Two choices of M (50 and 100) were 

considered. First we generate a cluster specific random effects term µi from a mean zero 

normal distribution with standard deviations ranging from 1 to 5. More specifically, let 

, where σi = 5 if i is divisible by 5, and = i mod 5, otherwise, 1 ≤ i ≤ M. We 

also generate a cluster level binary covariate Zi taking values ±1 with equal probabilities. 

Informative cluster size is generated by relating it with both the latent variable µi and the 

cluster level covariate as follows:

Another individual level covariate Wij is generated independently for each individual 

following the standard normal distribution. Model errors ηij are generated following a 

distribution G(x) = G0(10x), where we make three choices for G0. The measurements with a 

given cluster i are then generated using the following linear model Y = µi + 3Zi + Wij + ηij. 

Note that data generated this way satisfy the marginal model (1.1), with α = 0, β1 = 3, β2 = 

1, Xij = (Zi, Wij)T, ∊ij = µi ηij. For this investigation we use the normalized identity score 

.

In Table 1, we report the bias and the standard deviation of four sets of competing estimators 

including two R-estimators, one incorporating the inverse cluster size weighting (weighted 

R) and one without (naive R). Each of these entries is computed using a Monte Carlo sample 

size of 500. As can be seen from this table, the naive R-estimators for the intercept term α 

and β1, the coefficient of Z, are biased whereas that of β2 is not. This is due to the fact that in 

these simulations, the cluster size is related both to the random effects and the covariate Z 

but not to W. This phenomenon was observed in literature with estimators obtained from 

generalized estimating equations (Neuhaus and McCulloch, 2011; Wang et al., 2011). The 

weighted R-estimators, on the other hand, are nearly unbiased.

We have also investigated the behaviour of the least squares estimator (LSE) and the one 

obtained from a classical mixed effects modelling of the data. To be fair, we use the same 

inverse cluster size reweighting in computing the least squares estimator since without these 

weights, the LSE for α and β1 will be biased just like the naive R-estimator (details not 
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shown). It turns out that both these estimators perform fairly well for the normal and double 

exponential errors under the cluster size distribution considered here. However, they exhibit 

substantial bias and/or variance in case of a heavy tailed error (Pareto) distribution. Note that 

for Pareto errors, the response does not have a finite first or second moments and hence 

these estimators fail to be consistent and asymptotically normal. Thus, overall, the weighted 

R-estimator is the only one to have low bias and variance in all cases.

We also investigate the performance of the variance estimates for our weighted R-estimator. 

In Column 7, we report the average estimated standard errors over the Monte Carlo samples. 

These values seem to be in good agreement with the empirical standard errors reported in 

parentheses of Column 6. Finally, the last column reports the true (empirical) coverage of a 

nominal 95% large sample confidence interval obtained using the weighted R-estimator and 

the corresponding estimated standard errors. This is the empirical proportion of the 500 

confidence intervals containing the true parameter. The coverage appears to be reasonable 

and generally improves with the number of clusters.

5 Real data example

We illustrate our methodology on a periodontal dataset extracted from the Piedmont 65 + 

Dental Study (Beck et al., 1990). The Piedmont Health Study of the Elderly (Blazer and 

George, 2004), which is the parent study for this Piedmont 65 + Dental Study, is a 

longitudinal study of the health status of people aged 65 and over in five contiguous North 

Carolina counties. The Piedmont 65 + Dental Study takes advantage of the data available 

from the parent study while collecting additional information by means of an interview, oral 

examination, and microbiological and salivary assays.

Our response here is the total attachment loss which is measured at the tooth level. We apply 

our robust regression technique to study the effect of two potentially important covariates, 

tobacco use and socioeconomic status (SEIRSP), on the periodontal condition of a patient as 

measured by the total attachment loss of a typical remaining tooth. Since the sampling 

proportions for the blacks and whites were different for the parent study, the data for the two 

races should be analyzed separately in order to avoid any potential bias. For this reporting, 

we only use the data for the white patients at sixty months from study enrolment.

Here, the teeth belonging to each patient form a cluster and the cluster size is the number of 

remaining teeth at sixty months. It ranged from 1 to 32; 8 was the mode and 14 was the 

median. Since the tooth level data are clustered within each patient and the patients with 

fewer remaining teeth during the study tend to have greater attachment loss (possibly linked 

by health style choice such as tobacco use and possible latent factors such as oral hygiene), 

the cluster size for this data is potentially informative. This is clearly visible from the 

boxplots of patients grouped according to the extent of tooth loss (low = greater than 18 

remaining teeth, between 8 and 18 remaining teeth, high = less than 8 remaining teeth) 

where the median attachment loss tends to be greater for individuals with fewer remaining 

teeth. (Figure 1)

The use of tobacco was measured by a binary variable TOBUSE (=1, if user and = 2, if non 

user) and the socioeconomic status of the participant (in combination with that of his/her 
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spouse) was measured by a continuous variable SEIRSP (with higher SEIRSP value 

indicating better socioeconomic condition). We fit a marginal regression model of the form 

(1.1) with these two covariables. The parameter estimates are reported in Table 2 along with 

95% confidence intervals. In fact, we recompute the standard error and the confidence 

intervals with different bandwidths to ensure that our results are not greatly affected by the 

bandwidth selector. Based on this analysis, we can conclude that tobacco use is a 

statistically significant predictor of attachment loss. The effect of socioeconomic status on 

attachment loss was (borderline) significant as well.

We also report the results of naive (e.g., unweighted) R-estimation for comparison. There 

seems to be substantial differences between the estimated effects of the covariates between 

the two methods which is perhaps a reflection of the informative cluster size. In particular, 

note that the point estimate of the intercept term based on naive R lies outside the 95% 

confidence intervals constructed using the weighted R estimation methodology, suggesting 

that the naive R estimators may be severely biased. We have also reported the weighted least 

squares estimators which also differ substantially from the weighted R-estimators for this 

non-normal data (Figure 2). In particular, the intercept term is estimated to be much higher 

(as compared to the robust weighted R estimator) due to the long right tail of the error 

distribution; this in turn might have affected the estimator of the effect of tobacco use.

Finally we inspect the model residuals computed using the weighted R fit of the marginal 

regression model. In Figure 2, we display the inverse cluster size weighted histogram of the 

residuals. The shape of the histogram suggests a substantially non-normal error distribution. 

Thus, rank based methods may be more appropriate for this data than normal distribution 

based methods.

6 Discussion

Clustered data methods are becoming increasingly popular and useful in applied research. 

Most clustered data approaches incorporate correlations in order to improve efficiency of the 

resulting inference. However, the issue of informative cluster size is less understood and 

often ignored.

As shown here, contrary to popular belief, the classical estimators of a marginal linear 

model may be biased, not just for the intercept term, but also for certain covariate effects 

when the cluster size is informative. A simple inverse cluster size reweighting at the correct 

place is capable of rectifying the problem. Theoretical development, albeit more difficult, is 

possible including asymptotic variance estimation that exploits independence of the clusters. 

However, appropriate methods, when the number of clusters is small, may involve more 

complex joint modelling of the cluster size, covariate and response.

Robust methods are a useful and appropriate choice for many practical applications. 

Examples include nonparametric rank type tests for clustered data problems with 

informative cluster size developed in Datta and Satten (2005, 2008) and Datta et al. (2012). 

Overall, the methodology developed in this article may avoid many pitfalls faced by 

standard analyses (e.g., least squares, mixed effects model, etc.) when the data are non-
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normal, clustered, and the cluster size is correlated with the cluster response, either through 

a latent factor or through one or more measured covariates. In addition, the methodology 

does not require specification of a correlation structure which may be complex and non-

verifiable for certain applications. For the dental data application, the proposed method 

yielded reasonable and statistically significant estimates of various effects.

The estimator proposed here is fairly easy to code in R (R Core Team, 2012). However, 

since it involves numerical optimization, the computation could be somewhat time 

consuming in the case of large sample sizes and several covariates.
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Figure 1. 
Boxplot of attachment loss values grouped by individuals according to their tooth loss 

Source: Authors’ own.
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Figure 2. 
Inverse cluster size weighted histogram of the model residuals.

Source: Authors’ own.
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