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Abstract
In decision-making on optimal treatment strategies, it is of great importance to identify variables
that are involved in the decision rule, i.e. those interacting with the treatment. Effective variable
selection helps to improve the prediction accuracy and enhance the interpretability of the decision
rule. We propose a new penalized regression framework which can simultaneously estimate the
optimal treatment strategy and identify important variables. The advantages of the new approach
include: (i) it does not require the estimation of the baseline mean function of the response, which
greatly improves the robustness of the estimator; (ii) the convenient loss-based framework makes
it easier to adopt shrinkage methods for variable selection, which greatly facilitates
implementation and statistical inferences for the estimator. The new procedure can be easily
implemented by existing state-of-art software packages like LARS. Theoretical properties of the
new estimator are studied. Its empirical performance is evaluated using simulation studies and
further illustrated with an application to an AIDS clinical trial.
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1 Introduction
An optimal treatment strategy is a set of treatment decision rules tailored for individuals, to
maximize long-term clinical outcomes and reduce the risk of over- or under- treatment for
individual patients. Personalized medicine takes into account individual heterogeneity in
clinical, genetic, social, environmental, behavior characteristics, and so on, and has gained
much attention in many disease studies like cancer. As in the lymphoma study [1], the
patient subtypes identified by tumor gene expression profiles showed different responses to
CHOP and RCHOP treatments and thus individuals’ tumor subtype should be considered for
treatment assignment in addition to other clinical information.

Let Y denote the real-valued response, A ∈  denote the treatment received by the patient,
where  is the set of available treatment methods, and X ∈  ⊂ Rp denote the baseline
covariates such as clinical measurements and medical history, which can be used for
treatment assignment. We focus on a simple two-treatment regime,  = {0, 1}: 0 is for the
control/standard treatment and 1 for the new treatment. A treatment regime is a mapping g:

 → {0, 1}. The optimal treatment regime is a decision rule gopt that assigns the best
treatment to a patient based on the observed covariates X. In practice, we collect data (Yi,
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Ai, Xi), i = 1, · · ·, n from a randomized clinical trial and the goal is to estimate gopt from
data. Estimation of an optimal treatment strategy can be challenging, as the underlying
relationship between the response and relevant prognostic factors may be quite complicated.
For randomized studies, the potential outcome model [2] provides an effective tool for
analyzing the causal effect of time-independent treatment. [3] and [4] extend the potential
outcome model for observational studies. Since then, there are a large number of works on
optimal dynamic treatment regimes using Q- or A-learning algorithms, including [5], [6],
[7], [8], [9], [10] and [11].

With rapid advances in technology and combinations of diverse data sources, a very large
number of prognostic factors such as clinical measurements, tumor pathology, and genetic
information are available for estimating the optimal treatment strategy. However, many of
them might not be related to the disease or the treatment assignment. As such, there is a lot
of redundant information, and variable selection becomes necessary and plays an important
role for making an optimal decision rule that is interpretable and efficient. In this paper, we
focus on variable selection for optimal treatment strategies. In the context of linear
regression models, various methods have been developed for selecting variables that are
important for prediction. These methods often lead to a better predictive model in practice.
Recent developments in variable selection include shrinkage regression methods such as
least absolute shrinkage and selection operator (LASSO) penalty [12], smoothly clipped
absolute deviation (SCAD) penalty ([13], [14]), and adaptive LASSO penalty ([15], [16],
[17]). The SCAD and adaptive LASSO are shown to be oracle when the tuning parameter is
properly chosen.

However, there is scarce research on variable selection for optimal decision making on
treatment strategies. Compared to standard regression problems, the main goal here is to
identify important variables involved in treatment decision rules. Recently, in the framework
of Q-learning, [18] developed a two-step procedure which estimates the conditional means
first and then derived the treatment rule based on estimated conditional means, and l1
penalty was employed for variable selection. The paper [19] proposed a new ranking method
to variable selection in this context, in which they discussed the concepts of predictive
variables and prescriptive variables: the former refers to variables which reduce the
variability and increase the accuracy of the estimator, and the latter refers to variables which
help prescribe the optimal action. In this article, we propose a new loss-based framework to
estimate the optimal treatment strategy. The new method is equipped with a convenient
quadratic loss, which greatly facilitates the variable selection process by incorporating
shrinkage penalties in the estimation. Moreover, the new loss function corresponds to a form
of A-learning, therefore the estimation does not require a correct specification of the
baseline mean function and is robust. The remainder of the paper is organized as follows. In
Section 2 we introduce the new loss function and propose the penalized regression
framework. We also study large-sample properties of the estimator and present a
computational algorithm. We demonstrate simulation results in Section 3 and apply the
method to data from an AIDS study in Section 4. Section 5 contains some discussions. All
the proofs are relegated to the Appendix Section.

2 Method
2.1 New Estimation Framework

We first give a brief review on the potential outcome. Based on [3], the potential outcome
Y*(a) is the outcome value that would result if a patient were assigned to the treatment a ∈

. For a patient with covariates X = x, the goal is to find the optimal treatment regime that
maximizes the expected outcome, i.e. gopt(X) = arg maxg∈  E[Y*(g(X))], where  denote
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the set of all possible treatment regimes. Following [3], two assumptions are typically
required for computing the expectation of the potential outcome:

(C1) The outcome of one patient is not influenced by the treatment allocation of other
subjects. Or equivalently, Y = I(A = 0)Y*(0) + I(A = 1)Y*(1). This is also
known as consistency assumption;

(C2) The treatment assignment for an individual is independent of the potential out-
comes conditional on X. In other words, A ⊥ {Y*(a)}a∈ |X. This essentially
assumes no unmeasured confounders.

Under these two assumptions, it is easy to show that

Therefore gopt can be expressed as

Consider the following general model E(Y |X, A) = h0(X) + Af(X). Here h0(X) presents the
baseline effects of X on Y and f(X) describes the combination of marginal treatment effect
and its interaction effects with covariates. It is easy to show that E(Y|X = x, A = 1) − E(Y|X
= x, A = 0) = f(x). Therefore, for a patient with covariates X = x, the optimal treatment is
gopt(x) = I{f(x) > 0}. Let π(x) denote the propensity score, i.e. π(x) = P(A = 1|X = x). For
consistent estimation of the optimal treatment rule, it is usually assumed

(C3) 0 < π(x) < 1, ∀x ∈  and E[π(X)(1 − π(X))XXT ] is finite and nondegenerate. In
randomized studies, π(x) is actually known and it is the treatment assignment
probability pre-determined by design. Throughout the paper, we assume that
conditions (C1)–(C3) hold.

To simplify the optimal treatment strategy, we consider the linear form for the inter-action
effect, also known as the contrast, i.e.

(2.1)

where X̃ = (1, XT )T and β = (β1, · · ·, βp+1)T. Let β0 = (β10, · · ·, βp+1,0)T denote the true
parameters of β in (2.1). The primary interest is to estimate the contrast or inter-action
function βT X̃, but not the baseline h0(X). Given the observations {Yi, Xi, Ai; i = 1, · · ·, n},
we propose to minimize the following loss function

where φ(x) is an arbitrary function. It is interesting to note that, when taking the derivative
of Ln,φ(β) with respect to β, the resulting estimating equation has a form of A-learning [7].
Therefore Ln,φ(β) provides a loss function in the framework of A-learning. In practice, we
suggest to use a parametric form for φ(·) and minimizes
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(2.2)

Two feasible choices of φ are: the constant model φ(x; γ) = γ and the linear model φ(x; γ) =
γT x̃. Denote the solution to (2.2) as (γ̃T, β̃T )T. Asymptotic properties of β̃ are studied in the
next session. Essentially, if π(x) is known as in randomized studies, we can show that β̃ is a
consistent estimator for β0, regardless of the choice of φ(x; γ). This robustness is a desired
property for both model estimation and variable selection.

The optimal decision rule only depends on the treatment and treatment-covariates interaction
effects βT X̃, and so the important variables are those with nonzero coefficients. The
convenient loss form in (2.2) makes it easy to adopt shrinkage penalties for variable
selection. In order to select important prescriptive variables, we propose to solve

(2.3)

where λn is a tuning parameter and J is a shrinkage penalty. There are plenty of choices for
J, such as SCAD, adaptive LASSO, and minimax concave penalty [20]. In this article, we
employ the adaptive lasso penalty for variable selection and solves

(2.4)

As pointed out in [15], the values of weights wj’s are crucial to effective selection in
practice. In general, large penalties are desired for unimportant covariates and small

penalties for important ones. In this work, we use , j = 1, · · ·, p + 1, where β̃ = (β̃1,
· · ·, β̃p+1)T. Denote the solution to (2.4) as β̂ = (β̂1, · · ·, β̂p+1)T. In the next session, we study
the asymptotic properties of β̃ and β̂.

2.2 Asymptotic properties
We study asymptotic properties of β̃ and β̂. Proofs of theorems are given in the Appendix.
Let  = {j: βj0 ≠ 0, j = 1, · · ·, p + 1} denote the true set of important variables for the

optimal decision. Without loss of generality, write . Let  = {j: β̂j ≠ 0, j =
1, · · ·, p + 1} be the set of selected important variables. We have

Theorem 1—If regularity conditions (A1)–(A4) in the Appendix hold, the linear treatment-
covariates interaction term in model (2.1) is correctly specified and π(x) is known, then we

have  as n → ∞, where V is given in the Appendix.

Theorem 2—Assume that  and nλn → ∞. Then, under the conditions of
Theorem 1, we have: (i) (selection consistency) P(  = ) → 1 as n → ∞; (ii) (asymptotic

normality)  as n → ∞.

Remark—In observational studies, the propensity score π(x) is usually not known in
advance. A parametric model π(x; α), such as logistic regression can be used to estimate
π(x). As long as the parametric model is correctly specified, the parameter α can be
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consistently estimated by the maximum likelihood estimator α̂. By replacing π(Xi) in (2.2)
and (2.4) by π(Xi; α̂), similar results as given in Theorems 1 and 2 can also be established
for the resulting estimators.

2.3 Computation and Tuning
Let  = Yi − φ(Xi; γ̃) and  = X̃i{Ai − π(Xi)}. The loss function

 has a standard quadratic form. The LARS algorithm
[21] can be adapted to compute the entire solution path of (2.4). The following gives the
algorithm:

• Step 1: Minimize (2.2). Denote the minimizers as (β̃, γ̃).

• Step 2: Construct the weights  for j = 1, · · ·, p + 1.

• Step 3: Compute  and , i = 1, · · ·, n. Solve the penalized least squared
estimation in (2.4) using the LARS to obtain the whole solution path of β. For a
fixed λ, denote the solution by β̂(λ).

We use a BIC-type criteria [15] to select the tuning parameter λ. Specifically, we minimize
Ln(β̂(λ), γ̃)/Ln(β̃, γ̃) + d(λ) log(n)/n to obtain an estimator of λ, where d(λ) is the number of
non-zeros in β̂(λ).

3 Simulations
We evaluate the empirical performance of the new method in terms of estimation accuracy
and variable selection under various settings. Assume the randomized trial with π = 0.5. We
consider different function forms for the baseline h0, including a simple linear form, a
complex nonlinear form, and a function containing interactions between the covariates.
Also, we allow important variables in the baseline to be different from those in the contrast
function. Define X̃ = (1, XT )T and 0d for the zero vector of length d.

3.1 Low Dimension Examples
We consider the following three models with p = 10,

• Model I: , X = (X1, · · ·, X10)T are multivariate normal with
mean 0, variance 1, and the correlation Corr(Xj, Xk) = 0.5|j−k|. The error term ε ~
N(0, 0.52). The coefficients γ1 = (1, −1, 08)T and β = (1, 1, 07, −0.9, 0.8).

• Model II: , γ1 = (1, −1, 08)T, γ2 = (1, 02, −1, 05,
1)T, and X and ε are same as Model I.

• Model III: , γ1 and γ2 are same
as in Model II, and other parameters are the same as Model I.

To evaluate the model estimation performance of the estimator, we report its mean squared
error MSE = ||β̂ − β0||2. The average MSE over 500 realizations are reported and so are the
corresponding standard errors (in parentheses). To evaluate variable selection performance,
we summarize the number of correct zero coefficients identified (denoted as “Corr0”), the
number of nonzero effects incorrectly identified as zero (denoted as “Incorr0”), and the
proportion of selecting exactly the correct model (denoted as “Exact”) among 500
replications. We also report the frequency of being selected for each variable. To evaluate
the accuracy of a treatment assignment rule I(βT X ̃ > 0), we calculate the average percentage
of making correct decisions (PCD) over 500 simulation runs, i.e. mean of
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. For comparison, we report the PCDs of both the
unpenalized estimator β̃ (denoted as “Unpen.”) and the penalized estimator β̂ (denoted as
“Penalized”).

We compare two cases which correspond to different working models for φ:

• Case 1: Set φ(X; γ) ≡ γ, a constant model.

• Case 2: Set φ(X; γ) ≡ γT X̃, a linear model.

Table 1 summarizes the estimation, selection, and PCD results for Model I under two cases.
We consider three different sample sizes: n = 100, 200, 400. For each case, both the MSE
and classification error improve as the sample increases, which is expected. The proposed
method gives an overall good performance in variable selection, especially when the sample
size is large. For example, when n = 400, the frequencies of selecting the exact true model
are respectively 70.6% and 91.0% in Case 1 and Case 2. The estimator in Case 2
consistently shows better performance than that in Case 1, in terms of both model estimation
and variable selection. With regard to the PCD, the fit in Case 2 again yields higher
accuracy than Case 1. Furthermore, the penalized estimator overall gives smaller PCD than
the unpenalized estimator, except in Case 1 when the sample size is small. From Table 2, we
observe that the new procedure is very effective in retaining important variables: intercept,
X1, X9, and X10 in the model and removing noise variables from the model, especially when
the sample size is moderately large.

Tables 3 to 6 summarizes the estimation, selection, and PCD results for Models II and III.
Overall, the new procedure performs well for variable selection, and the penalized estimator
produces smaller PCDs than the unpenalized estimator. In both models, the fit in Case 2
gives better performance than Case 1 with regard to model estimation, variable selection and
PCD. These simulation results suggest that a posited model with a rich structure generally
works better than a simple model.

3.2 Large Dimension Examples
We now increase the input dimension to p = 50 and check the performance of the new
procedure under larger dimensional settings. We consider Model IV and Model V,

• Model IV: , X = (X1, · · ·, X50)T are
multivariate normal with mean 0, variance 1, and the correlation Corr(Xj, Xk) =
0.5|j−k|, γ1 = (1, −1, 048)T, γ2 = (1, 02, −1, 045, 1)T and β = (1, 1, 046, −0.9, 0.8)T.
Other settings are the same as in Model I.

• Model V: , all of the parameters
and variable distributions are the same as in Model IV.

with n = 200, 400. Tables 7 and 8 summarize variable selection and estimation results
respectively for each model. In these large dimensional settings, we observe the significant
gain in PCD for the penalized estimator compared with the unpenalized estimator. Also the
new procedure is effective in identifying important variables. The estimator in Case 2
generally works better than in Case 1 when the sample size is reasonably large.

4 Application to AIDS study (ACTG175)
We apply our method to data from AIDS Clinical Trials Group Protocol 175 (ACTG175),
which contains 2139 HIV-infected subjects. In ACTG175, study subjects were randomized
to four different treatment groups: zidovudine (ZDV) monotherapy, ZDV+didanosine (ddI),
ZDV+zalcitabine, and ddI monotherapy [22]. As in [23] and [24], we chose the CD4 count
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(cells/mm3) at 20 ± 5 weeks post-baseline as the primary continuous response Y. Besides
the treatment indicator, we included the same 12 baseline covariates as considered by [23]
and [24] in our model, which consist of 5 continuous covariates: age (years), weight (kg),
Karnofsky score (scale of 0–100), CD4 count (cells/mm3) at baseline and CD8 count (cells/
mm3) at baseline, and 7 binary covariates: hemophilia (0=no, 1=yes), homosexual activity
(0=no, 1=yes), history of intravenous drug use (0=no, 1=yes), race (0=white, 1=non-white),
gender (0=female, 1=male), antiretroviral history (0=naive, 1=experienced) and
symptomatic status (0=asymptomatic, 1=symptomatic). The goal of our study is to find the
optimal treatment to maximize the expected CD4 count (cells/mm3) at 20±5 weeks post-
baseline. We fit model (2.1) with X being the 12 baseline covariates. For the treatment
indicator A, we considered the following four analyses:

• Analysis 1: A = 0 for zidovudine (ZDV) monotherapy (532 subjects) vs. A = 1 for
the other three treatments combined together (1607 subjects). Here π(Xi) ≡ 0.75.

• Analysis 2: Consider the subset for patients receiving the treatment ZDV
+didanosine (ddI) or ZDV+zalcitabine. A = 0 for ZDV+zalcitabine (524 subjects)
vs. A = 1 for ZDV+didanosine (ddI) (522 subjects). Here π(Xi) ≡ 0.5.

• Analysis 3: Consider the subset for patients receiving the treatment ZDV
+didanosine (ddI) or ddI monotherapy. A = 0 for ddI monotherapy (561 subjects)
vs. A = 1 for ZDV+didanosine (ddI) (522 subjects). Here π(Xi) ≡ 0.5.

• Analysis 4: Consider the subset for patients receiving the treatment ZDV
+zalcitabine or ddI monotherapy. A = 0 for ddI monotherapy (561 subjects) vs. A =
1 for ZDV+zalcitabine (524 subjects). Here π(Xi) ≡ 0.5.

In our analysis, we assumed the linear model for h(x; γ). For analysis 1, the adaptive
LASSO estimator β̂ = (48.46, 0, · · ·, 0)T, implying that the other three treatments are
uniformly better than zidovudine (ZDV) monotherapy and all the patients should be
assigned to the other three treatments. For analysis 2, except for the intercept, the new
estimator also selects two important covariates: age and homosexual activity (homo), and
their corresponding estimates are −44.92, 2.52, and −21.31, respectively. Therefore, the
optimal treatment rule is I(−44.92 + 2.52 * age − 21.31 * homo > 0) for comparing
treatments ZDV+didanosine (ddI) (A = 1) and treatment ZDV+zalcitabine (A = 0), or
equivalently, for a patient with homo = 0, assign to treatment 1 if age > 17.8 and treatment 0
otherwise; while for a patient with homo = 1, assign to treatment 1 if age > 26.3 and
treatment 0 otherwise. Note that the age of study subjects ranges from 12 to 70. According
to the obtained optimal treatment rule, 978 out of 1046 patients (93.5%) in this subset should
be assigned to treatment ZDV+didanosine (ddI). It is also noted that treatment ZDV
+zalcitabine is more favorable to young patients with AIDS. For analysis 3, except for the
intercept, the new estimator also selects three important covariates: age, CD4 count at
baseline (CD40) and homo, and their corresponding estimates are 71.59, 1.07, −0.18, and
−33.57, respectively. This leads to the optimal treatment rule I(71.59 + 1.07 * age − 0.18 *
CD40 − 33.57 * homo > 0) when comparing treatments ZDV+didanosine (ddI) (A = 1) and
ddI monotherapy (A = 0). According to the obtained optimal treatment rule, 878 out of 1083
patients (81.1%) in this subset should be assigned to treatment ZDV+didanosine (ddI). For
analysis 4, the adaptive LASSO selects no covariates including intercept, i.e. β̂ = 0,
suggesting that treatments ZDV+zalcitabine and ddI monotherapy are equally good for all
patients in this subset.

5 Discussion
In this article, we propose a new loss-based estimation framework for estimating the optimal
treatment strategy, which naturally leads to a penalized framework for variable selection and
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sparse estimation. One desired property of the new approach is that it does not require the
correct specification of the baseline function in order to produce consistent estimation and
variable selection for the optimal treatment rule, as long as the interaction function form is
correct. Numerical results suggest that the posited baseline model with a richer structure
tends to improve the estimation efficiency.

This work focuses on a two-treatment setup. In practice, the number of treatment options
can be more than two, and the optimal treatment amounts to selecting the treatment which
produces the largest gain in the outcome. It would be interesting to extend this methodology
to multiple-treatment settings. Variable selection is more complicated for multiple
treatments, since the decision rule involves multiple comparisons among candidate
treatments. Moreover, for dynamic treatment regimes, a sequence of decision rules are
needed, one per time interval, throughout an individual’s disease course. We study the
variable selection problem at one decision point in this work, and plan to extend the new
framework to dynamic treatment regimes.
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Appendix
Define Z = (Y, X, A) and denote the observations by Zi = (Yi, Xi, Ai), i = 1, · · ·, n. Let θ =
(βT, γT )T. Define lθ(z) = y − φ(x; γ) − βT x̃(A−π(x)). Before we present the proofs, we first
state regularity conditions.

Regularity Conditions
(A1) The observations Zi, i = 1, · · ·, n are independent and identically distributed.

(A2) φ(X, γ) is continuously differentiable with respect to γ, and γ belongs to a
compact set in Rq with q being finite.

(A3) U exists and is non-singular, where U is defined in the proof of Theorem 1.

(A4) |∂3l(x)/∂iθjθk| < g(x) for all i, j, k and θ in a neighborhood of θ* = (β*, γ*) for
some integrable g, where (β*, γ*) is defined in the proof of Theorem 1.

Proof of Theorem 1
Define

where W(π, A) = A − π(X). Recall that the underlying true model is

. Under regularity conditions which allow differentiation under the
integral sign, we have

Lu et al. Page 9

Stat Methods Med Res. Author manuscript; available in PMC 2013 May 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where we use the double expectation rule and the fact E(ε|A, X) = 0. Assume that the
function G(β, γ) achieves its maximum at (β*, γ*). Under assumptions (C1)–(C3), we can
show that β* = β0 and γ* satisfies the following equation:

(5.1)

Let (β̃, γ̃) be the minimizer of Ln(β, γ) defined in (2.2). By the law of large numbers, Ln(β, γ)
→ G(β, γ) in probability as n → ∞ for any (β, γ). By the argmax continuous mapping
theorem, the minimizer of Ln converges to the minimizer of G in probability. In other words,
(β̃, γ̃) is a consistent estimator of (β*, γ*), or equivalently, (β0, γ*). Define

and

where Wi = W (π(Xi), Ai) for i = 1, · · ·, n. Using the Taylor expansion of Ln around (β0, γ*),
we have

where Rn is the remainder term. Therefore we have

Under regularity conditions (A1) to (A4), we can show that . By the law of large
numbers, we have Qn → U in probability as n → ∞, where
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According to (5.1), we have E{qn(β0, γ*)} = 0. By the central limit theorem, we have

, where . It follows by Slutsky’s
theorem that

where  and Ω11 is the first p × p submatrix of Ω.

Proof of Theorem 2
Note that the objective function (2.4) can be written as a penalized least squared estimation,
and thus the proofs follow [15] and [16].
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