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Abstract

We develop an empirical likelihood (EL) inference on parameters in generalized estimating
equations with nonignorably missing response data. We consider an exponential tilting model for
the nonignorably missing mechanism, and propose modified estimating equations by imputing
missing data through a kernel regression method. We establish some asymptotic properties of the
EL estimators of the unknown parameters under different scenarios. With the use of auxiliary
information, the EL estimators are statistically more efficient. Simulation studies are used to
assess the finite sample performance of our proposed EL estimators. We apply our EL estimators
to investigate a data set on earnings obtained from the New York Social Indicators Survey.
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1. Introduction

Missing data are encountered in various settings, including surveys, clinical trials and
longitudinal studies (Little and Rubin (2002)); Responses and/or covariates may be missing
in practice. Statistical models for dealing with the missing data depend on a missing data
mechanism such as data not missing at random (NMAR), also referred to as nonignorable
missingness. For example, when there are NMAR responses, the complete-case analysis can
result in biased and inefficient parameter estimates, whereas to incorporate additional
information from incomplete cases, one needs to assume a parametric (or semiparametric)
model for the missing data mechanism. However, the assumptions underlying such NMAR
models are difficult to verify in practice and the resulting estimates and tests may be

Supplementary material: Supplementary Materials available in the attached file include the proofs of Lemmas 1-7 and Theorems 1-7,
and the algorithms for computing parameter estimates.
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sensitive to these assumptions. This paper develops an inference procedure for parameters in
generalized estimating equations (GEES) with nonignorably missing data.

Various generalized estimating equations have been developed to handle missing data, that
are either missing at random (MAR) or NMAR, primarily due to their being robust against
model misspecification. Robins et al. (1994) developed a class of estimators based on
inverse probability-weighted estimating equations (EE) when the probability of missingness
is modeled parametrically, and Robins, Rotnitzky, and Zhao (1995) proved the
semiparametric efficiency bound for parameter estimation. Lipsitz, Ibrahim, and Zhao
(1999) presented an EM algorithm to estimate parameters defined by a weighted EE with
missing covariate data. It is more challenging to deal with NMAR data due to the
unverifiable assumptions introduced by the statistical models for it. Troxel et al. (1997)
proposed weighted EEs for data with nonignorable nonresponse to eliminate the biases in
the complete-case analysis that ignores missing cases when the weights (the inverse
probability of being observed) are estimable. Kim & Yu (2011) developed an exponential
tilting model and proposed a semiparametric estimation method of mean functionals with
nonignorably missing data. See Ibrahim et al. (2005) and Ibrahim and Molenberghs (2009)
for a detailed overview and comparisons of various paradigms for handling missing data. All
these methods are developed on the basis of non-empirical likelihood.

There is considerable interest in the development of EL for GEEs with/without ignorably
missing data. Empirical likelihood allows one to employ likelihood methods in a
nonparametric or semiparametric setting. It has been shown that EL has various advantages
over other competing methods, including generalized method of moments (GMM) (Newey
and Smith (2004)). Compared with EE, EL allows the easy incorporation of auxiliary
information and the number of estimating equations can be greater than the number of
parameters. See, for example, Qin and Lawless (1994); Zhou, Wan and Wang (2008); Zhu et
al. (2008); Wang and Chen (2009), and Qin, Zhang and Leung (2009), among many others.
Zhou et al. (2008) proposed a kernel-assisted EE imputation scheme and used EL and GMM
on parameters in GEEs. Wang and Chen (2009) proposed a nonparametric imputation
method to remove the selection bias in the missingness and showed that the maximum EL
estimators can be efficient. However, little has been done on the development of the EL
method for GEE with nonignorably missing data.

We develop a general EL inference procedure for parameters in the GEEs with nonignorably
missing data. We integrate the modeling of nonignorably missing data, the EL method, and
the imputation of EEs by using the observed data rather than imputing the missing data.
Specifically, we consider the exponential tilting model with known and estimated tilting
parameters as the missing mechanism for nonignorably missing data, which leads to a more
robust estimator. We extend the estimation of mean functionals with nonignorably missing
data to the estimation of parameters in GEEs. We systematically investigate the asymptotic
properties of the maximum EL estimators under this new setting.

The rest of this article is organized as follows. In Section 2, we describe the proposed
kernel-assisted EE imputation scheme based on the exponential tilting model of
nonignorably missing data. As well, we outline the formulations of EL with and without
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auxiliary information by utilizing the imputation scheme. In Section 3, we establish the
asymptotic properties of the proposed EL estimators. Two simulation studies and a data
analysis are used to compare the finite sample performance of the proposed maximum EL
estimators with competing methods, in Section 4. Technical details are given in the
Appendix.

2. Methods

2.1 Imputation based on the exponential tilting model

Let {U,=(Z7, YiT)T;z'zl, ...,n} be aset of independent and identically distributed random
vectors from a distribution F(z, y), where the Zj's are dy-dimensional and observable, and the
Yi's are dy-dimensional and subject to missingness. Generally, the missing components may
vary across different individuals. For simplicity, we assume that the missing components
have the same components for Uq,..., U,. Furthermore, a missing variable Y; may represent
a response or covariate. Without assuming a specific form for F(u), we are interested in
making statistical inference on a p x 1 vector, denoted by 6, based on q(= p) functionally
independent EEs w(Yj, Zj; &) = (va(Yi, Zi; O),-.., wy(Yi, Zis )T that satisfy the unconditional
moment condition of the form Eg{(Yi, Zj; &)} = 0 for & € © C RP, where & is the true
value and Eg denotes the expectation with respect to F. The Yj's are assumed to be
nonignorably missing. Let X be Z; or a subset of Z;, and let & = 1 if Y; is observed and & =0
if Yj is missing. It is assumed that & and ¢j are independent for any i # j and & depends on X;
and Yj such that P(& = 1|X;, Yi) £ a(X;, Y;) for i =1,...,n. When #(X;, Y;) depends on the
value of Yj, it is the NMAR condition of Little and Rubin (2002).

We consider an exponential tilting model for nonignorably missing data Y;'s given by

m(X;,Y;) £ P(6;=1|X;,Y;)=logit(9(Xi)+¢Yi) (2.1

for some unknown function g(-) and ¢, where logit denotes the logit function. When ¢ =0,
(2.1) becomes an MAR model. Let f1(Y;|X;) be the conditional density of Y; given Xj and & =
1, and let fy(Yi|X;) be the conditional density of Y; given X; and & = 0. Then, by following
the reasoning of Kim and Yu (2011), we have

exp(7Y;)

fo(Yi|Xi)=h1(Yi[Xi) x E{exp(vY;)| Xi, 6;=1}

2.2)

where y= —g s an unknown tilting parameter that measures the amount of departure from
the MAR assumption. When y =0, (2.2) reduces to fo(Y;i|X;) = f1(Yi|X;).

To incorporate the incomplete cases, we consider a new set of EEs given by

’(/}(Y’“ Zl,a):&w(}/“ Z“@)—F(l — 51)m1r/)(X1,0), (2.3)
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where m,(Xj; 0) = EF{w(Yj, Zi; OIXi}. Under MAR, the EEs at (2.3) reduce to the estimating
equations of Zhou et al. (2008). Since m(X;; 6) defined in (2.3) is unknown, it is necessary
to estimate (or ‘impute’) m,(X;; &) from the observed data set. Under the MAR assumption,
a consistent estimator of m,(Xj; ¢) can be obtained from a consistent estimator of my,(X;; ¢)
= E{u(Yi, Z;; OIX, & = 1}, denoted by M ,(Xi; 6). Substituting my,(X;; 6€) in (2.3) leads to
(Y Zis 0) = GuYi, Zis O) + (1 = )My, (X, 0), which is biased under NMAR.

We construct a consistent estimator of mg,(Xi;a):E {y(Y;, Z;;0)| X;, 6;=0}. Under the

NMAR assumption, it is difficult to estimate m?p(Xi;e) due to the presence of missing data.
It follows from (2.2) that

m{(Xi;0)=E {89 (i, Zi30)exp(7Y;)|X;} /E {Siexp(7Y7)| Xi} . (2.4)

Then, under the NMAR assumption, we construct a set of EEs for ¢(Y;, Z;j; ) given by
D(Yi, Zi0)=00p(Vi, Zis6)+(1 = 6,)my(Xish),  (29)

Where m?z,(Xi;a) is defined in (2.4) based on a tilting parameter y.

If the response model (2.1) is true, then we have

E{(Y;, Zi50)y=E{6:4(Y;, Zi30)+(1 — 6;)m,(X;;0)}

=E{pr(6;=1|X;) E(Y(Y;, Zi;0)|0;=1, X;)+pr(6;=0|X;) E{6;9(Y;, Z;30)exp(vY:)| X, }/ E{d;exp(7Yi)[ X }}

=L {pr(6;=1|X;) E((Y;, Zi;0)|6;=1, X;)+pr(0;=0|X;) E(y(Ys, Zi30)]6;=0, X;) }
=E{E(6:;9(Y:, Zi;0)| X;)+pr(6;=0|X; ) E{(1 — 6;)0(Yi, Z;;0)| X}/ E{(1 — 6;)| X, } }
=E{y(Y;, Zi;0) }=0.

The second equality holds since

E{oy(Y, Z;0)exp(vY)| X }/ E{dexp(vy)| X }
=E{n(X,Y)(Y, Z;0)exp(vY)|X}/E{m(X,Y )exp(vY)| X }
=E{y(Y, Z;0)(1+exp(g(X) — 1Y) "X }/E{(1+exp(g(X) —7Y)) | X}
=E{(1 - 0)y(Y, Z;0)|X}/E{(1 - 0)|X}=E(W(Y, Z;0)| X, 6=0).

Thus (2.5) is unbiased, which is the key idea of our approach. From (2.1), we have #(X;, Y;)
= {L+exp(-g(X;)) exp(yY)} L with = —p and E{5exp(;¥;)[Xi} = exp(g(X;))E(L - &/X)),
which indicates that

 EQ-§|X) pr(6;=0]X;)
eXp(_g(Xi))_E{éexp(nyi)|Xi}_pr(5i=1|Xi)E{exp(’YYi)‘Xia51':1}‘

Stat Sin. Author manuscript; available in PMC 2014 October 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Tang et al. Page 5

Then, we also have

E{w(Y;aZig} E{6 WY ZZ,Q)/’/T(X“ 1)}
=E{6:9(Yi, Zi;0)+(1 — 8;)my), (Xi30) }=0.

The equality holds since

E{6:(Y3, Z;30) /7 (X3, Ys) }
r(6;=0|X;)exp(vY;
=K {57//1/)(1/17 Zi;g)[1+pr(éi:IiL(Xi)E{‘exlz('prf,)y‘Xil;izl}]}
=E{pr(6;=1|X;) E(Y(Yi, Z;;0)|6;=1, X;)+pr(6;=0|X;) E{)(Yi, Z;;0)exp(7Y;)|6;=1, X; } / E{exp(7Y;)|6;=1, Xi } }
=B{6;(Yi, Z0)+(1 — 6;)m,(Xi30)}=E{¢(Y;, Z;;0) }=0.

This equality also holds under the MAR assumption.

Let K(-) be a dy-dimensional kernel function of the m-th order satisfying /'K(uy, ..., ug,)dus
o Qug, = 1, [ul K (uy, ... ug,)duy ... dug,=0foranys=1,...,dyand 1 <l <m, and
Jum K (uq, ..., ug,)du; . ..dug, # 0. Then, a nonparametric regression estimator of

m,(X;0)=E{¢(Y, Z;6)| X, =0} can be written as

1y (X30,7)=>_wio(X)(Yi, Zi0), (26)
=1

where wio(X;7)=0;exp(7Y;) K (X — Xi)/{ZZ:15kGXP(7Yk)Kh(X — Xi.) } represents the
point mass assigned to Y;, in which Ky(u) = h™1K(u/h) and h is a bandwidth. Therefore,
under the exponential tilting model, a set of modified EEs for the ith observation is given by

by (i, Zis0)=6:0(Yi, Zis0)+(1 — 81)iiny (Xi36,7). (27)

It can be shown that nflz?:l% (Yi, Zis60) is a set of asymptotically unbiased EEs of 6.

2.2. Maximum Empirical Likelihood Estimator

We assume that the value of yis known. Although y may be unknown in practice, we may
either fix yata prefixed value or calculate a consistent estimator of y, denoted by yAFor
instance, y can be computed from an independent survey or a validation sample thatis a
subsample of the nonrespondents. Then, we can substitute j/lntO (2.7) to get 1//‘|'(Y|, Zi; 0).
Therefore, we temporarily assume that y is known.

Let p; be the probability vyeight allocated to W(Yi, Z;; ). The empirical likelihood (Owen
(1990)) for &based on u(Yi, Zj; 0) can be taken as
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Ly, (6)=sup {Hpilpi >0, pi=1,Y pib,, (Vi Zi;a):()} :

i=1 i=1 i=1

The optimal value of pjis p;=n"{1+AL, ()¢, (V;, Zi;e)}_1 where 1,1() is the Lagrange

multiplier and satisfies @n1 (9, >\n1)=nglz:;1@M (Y, Z3s0) {1+ A5 (003, (Y, Zi360) }=0,
Therefore, the log empirical likelihood ratio function (LELRF) for @is given by

0,,(0)=— 2og{] (n,)} 2zlog{1+A,L1<0>1/3M<m,zi;e>}. 28)
=1

Maximizing —/,\2(6) leads to the maximum EL estimator (MELM) of 6, denoted by Qef
Under some smoothness condition, &, can be obtained by simultaneously solving

el " AT (0) 39%,(3’1,21,0)
—1+AT (0)D,, (Y, Zi30)

in(ea )\nl) 0 and Qn2 0 )\nl

)

where 04 denotes partial derivative with respect to 6.

Let X be an auxiliary variable. In practice, some auxiliary information on X may be
available, for example, the mean of X is zero or the distribution of X is symmetric. With the
auxiliary information, we can improve statistical inference on 6. Specifically, we assume
that the auxiliary information of X can be characterized as E{A(X)} = 0, where A(X) =
(A1(X), ..., Ai(X))T is a known r = 1 vector (or scalar) function.

To incorporate the auxiliary information on X, the LELRF for @is defined as

Ly (#)=—2max {Zlog np; ‘pz >0, sz 1 Zpﬂ/}M Yi, Zi36)=0, Zp’b Xi) 0} .

=1 =1

~ T
Let Ai(a):(qpff (Y;, Zi:0), AT(X;)) . The estimated LELRF for #based on A;j(6) can be
expressed as

=2 log{1+A12(0)A:(6)}, (29)
1=1

where 1n2(8) is a (g+r)x1 Lagrange multiplier vector that satisfies

712 Ai(0)/{14+A]5(6)A:(6)}=0. Maximizing -, (6) leads to the MELE of 6,
denoted by '9ae- Therefore, under some smoothness condition, ;¢ can be calculated by
simultaneously solving
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& (Ea Z’L;a)
11+AL, (9)¢M (Yi, Zi30)+Al50(0) A(X5)

nl 0 )\n2 12

-\

A(X;)
114D, (0 )Q/AJM (Y3, Zi:0)+AT50(0) A(X;)

M2 (6, Ang)=n" 12 =0,

A51(0)d Yi, 230

=0,
1AL (0)8,, (Vi, Zi36)+AL,5(6) A(X)

T
where x,=(AZ, AT

3. Theoretical Results

3.1. Asymptotic properties of MELE for known y

We first establish the asymptotic properties of MELE and LELRF for known y. Then, we
approximate the asymptotic covariance of MELE. The detailed assumptions and proofs of
our results can be found in the Appendix and supplementary materials, respectively. We

need some notation. Let -2, denote convergence in distribution, and a®2 = aa' for any
vector a. We define several matrices as follows:

Vi=E [(X,Y) "y (Y, Z;00) — mY(X:600)} ] + B {m, (X007},

Vo=F { [@{w(Yi, Zi;0) —m, (Xi;ﬁ)}—i—m%(Xi;g)]@Q} ’ (3.1)
T=E{0p(Y, Z;6)}.

Theorem 1—Suppose the conditions given in the Appendix hold. Then
A &£ _ _
V(8 —60) = N(0,> )=N(0,> TV, 'V, Ty ). (32)

_ -1
where Y =(T'"15'T)

Theorem 1 gives the asymptotic normality of QeAfor the kernel-assisted EE imputation
scheme. From (2.1), we have 7(X;, Y;) = {1+exp(-g(X;)) exp(yYi)} 1, with = —¢. On the
other hand, E{dexp(»Y)|X} = exp(g(X))E(1 — §X). Then, by the kernel regression method

and under (2. 1) with known parameter y = —¢, a non-parametric estimator of 7(X;, Y;) can be

obtained as 7z(X., Y;) = m(y) where

Stat Sin. Author manuscript; available in PMC 2014 October 01.
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Fi(y)={1+a(Xiy)exp(7Yi)} !, 33)
with

a(X;5y)= P (1= 6) Kn(X; — X))
i) Z?:léieXp('YY})Kh<Xj _ Xi)

Let 73 = Sm() ™ {uAYi Zis @) — mIXi; )} + miAXi; 6b), where m(Xi; 6b) = m,{Xi; b, ).
A _ no, _ n , Q2

Then, a consistent estimator of Vy is V1=n 1Zi:1mg>2 —(n lzizlm) . Furthermore,

the consistent estimators of T and V, are f=n_12?:139%, (Yi, Zi360) and

szvflzi:l@M (Y:, Zi300)%?, respectively. Thus, e can be consistently estimated by
~ 2 AT A —1a A—1lad A AT A —1n, 1
D= DV ViV Y where ) =T Vo 1)

Under the MAR assumption, 7(X;, Y;) reduces to P(X;) = exp{g(X;)}/[1 + exp{g(X;)}]. Since
E{u(Y, Z; O-m1,(X; OIX} =0, Vq, Vo, and T, respectively, reduce to

Vi=E {P(X)_lz,l/,(X)} +E {mi(X;Ho)@’Q} )

Vo= { PO, (X)) + {m$(X:00)°} and D=E{0pmuy(X:00)}.

where %,(X) = cov{i(Y, Z; t)|X}. Thus, Theorem 1 reduces to Theorem 2 of Zhou et al.
(2008) under the MAR assumption. When 7(X, Y) = 1, it can be shown that V;{ =V, = E

{(Y, Z; §®2}, which leads to Zf(FTVz_lF)fl with T = E{0gi(Y, Z; 6)}, the asymptotic
variance of MELE based on the full observations (Qin and Lawless (1994)). Therefore,
when 7(X, Y) is close to 1, the efficiency of MELE based on our proposed kernel-assisted
EE imputation scheme is close to that based on the full observations.

Theorem 2—Suppose the conditions given in the Appendix hold. As n — oo, we have
I <z 2 2 2
£, (00) = o1xT+02Xa+ - - +04Xg

where y 2 s are independent 22 variables with one degree of freedom, and the weights g; are
the eigenvalues of 1,117,

Theorem 2 says the asymptotic distribution of /,\2(90) as a complicated weighted sum of chi-
squares. We can use the asymptotic result in Theorem 2 to construct the confidence region

of 6. Specifically, let c,, be the 1 — @ quantile of g1xi+02x3+ - . - +0gx; for 0< a< 1. An
approximate 100(1 — @)% empirical-likelihood-based confidence region for @is given by

CI(QJ(@):{@:@M (6) < cat

Stat Sin. Author manuscript; available in PMC 2014 October 01.
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To obtain a simple asymptotic distribution, we define an adjusted LELRF as

EI ,(00)= R, (6), where R is a consistent estimator of R— q/tr{V, 117} that measures
mformatlon loss due to the presence of missing data, Zhou et al. (2008). By replacmg th by
€e in V1 and V5, we can get consistent estimators of V41 and V,, denoted by Vl and Vz,

respectively. When no data are missing, r(¢) = 1. Moreover, even though Rzkzlgka can

be well approximated by a 42(q) distribution, the accuracy of such approximation, EL (6o),
also depends on the values of the gj's.

We develop another adjusted LELRF, denoted by ?2 (6o), whose asymptotic distribution is

exactly a x; distribution,

I,A/
fM (6o)= E (60), (35)
W 9

Theorem 3—Suppose the conditions given in the Appendix hold. Then, we have
b a(Bae — 00) L N(O, (0,3 V=N, B 'V, ./ "\ BE ) where 5 =

(CTO0NT, ¢ =-BT 471 B D, =E {A(X)®?}, D1=FE {m%(X 00)AT (X )},
[ -V -Dy Vi Dy,
%—( _pT _D, ) and 'V, ,,= (Dr{ D, >,

7 00) s o3+ +04 X714 Where the weights o2 are the eigenvalues of

matrix V AU‘ Lau and Vo ay =— A

Theorem 3 (i) gives the asymptotic normality of Ha; when auxiliary information is available.
To estimate Y40, we only need to approximate D1 and Do, see the consistent estimators of Vq
and Vs given bellow Theorem 1. Specifically, we estimate D1 and D, as

ﬁ1=n_12?:11% (Y:, Zi;00) A" (X;) and 132:71—12?:1,4(&)@2_ It can be shown that X,
- Yae is non-negative definite, which indicates that Qa; is asymptotically more efficient than
Hef Moreover, when auxiliary information on X is available, the amount of information
reduction of ea; compared to that of QeAdoes not depend on (X, Y). This result is consistent
with that under a simpler setting in Wang and Rao (2002). Theorem 3 (ii) gives the
asymptotic distribution of /AAu(éb) as a weighted sum of chi-squares; we can propose several
adjusted LELRFs based on /AAU(QO) and construct the confidence region of 6. We omit them
for the sake of space.
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3.2. Asymptotic properties for estimated y

In many cases, yis unknown and has to be estimated. We consider that an estimator for yis
computed from an independent survey, or that an estimate is obtained from a validation
sample, a subsample of the nonrespondents.

In either case, the resulting semi-parametric modified EEs for the ith observation of @is

b, (Yi, Zi0)=6:0(Ys, Zi50)+(1 — 6,)ip(Xi30,%).  (3.6)
where my(X;6,y) is defined in (2.6).

It can be shown that nflz?ﬂ% (Yi, Zi;00) is a set of asymptotically unbiased EEs of 6.
So, we can define the LELRF for #based on the semi-parametric modified EEs (3.6). We
use HTAand ﬁrAto denote the MELE of Jand LELRF based on y,Arespectiver. Assume that
E{A(X)} = 0, where A(X) = (A1(X),..., Ai(X))T is a known r > 1 vector (or scalar) function

and let ]\i(e):@f(yi, Z::0), AT(X;))T. With the auxiliary information on X, we use Gat
and 4t to denote the MELE of #and LELRF based on y.

We first consider that yfs estimated from an independent survey.

Theorem 4—Suppose (C1)-(C8) hold, /n(% — v) £, N(0,V), and y]s independent of
wm(Yi, Z;;6). Then

i' Vi, - 60) £ N(o, Z N> TV ViV 'Y ) where V= vy +
H®?V,, H=E [(1 — 8)(Y = mo(X)){(Y, Z;00) — m,(X;00)} and m(X) = E(Y|
X,6=0);

I(00) 5 o]x2+0dx3+- - +0J X2, where the weight o s are the eigenvalues of
VW

Theorem 4 (i) generalizes Theorem 3 of Kim and Yu (2011) from mean functional to GEEs.
To approximate the asymptotic variance of &, we only need a consistent estimator of V7,

Vi, Vi(00)=V1+ f[®2ffr, where V. and H are, respectively, consistent estimators of V, and
1 A®2 71 n Q2 N ~n ~
HVi=n D00 a2 = 7307 00 with o = G ()7 H0Yi Zs @) - m ™ (X G 1)

+m,{Xi;th,y"). A consistent estimate of H is given by ﬁﬂflz:;l(l — 6)85(i;9),
where

53( 12  05exp(AY) K (X =X ) (Y =10 (X;4) H (Y], Z536) — 1 (X360} i
which mo(Xﬂ):a@*Z, Biexp(§Y) Ky (Xi=X)Y;, 2= " Siexp(Yi) Kn(Xi—X),

and T?Lw(XZ, ,’)/) Z ‘UZO 7/5/)1/)(1/“ Z176>
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Compared with 697 HTAhas larger asymptotic variance due to estimating y. The asymptotic
variance of & is the same as that of 4, when yis exactly estimated. Moreover, if yis exactly
estimated, then V,,= 0 and V; is equal to V.

Theorem 5—Under the conditions of Theorem 4, we have

V0, — 00) 2N (0, AT):N(O,%*@T;zflf/lwd*%@%}*l), Where
. Vy Dy
‘/ = 5
LAU ( DT D, >

A, B, and C as defined in Theorem 3.

U (00) s o83+ 0% X114 Where the weights ¢ are the eigenvalues of

matrix Ynglu Viav and Vo, AU = — 4,

It is can be shown that Xar< X7 indicating that QAAT based on Af(@ is asymptotically more
efficient than &r. Thus, the auxiliary information can be used to improve the efficiency of
MELE. Theorem 5 generalizes the existing results in Kim and Yu (2011) and Wang and Rao
(2002).

We now consider that a validation sample is randomly selected from the set of
nonrespondents and responses are obtained for all the elements in the validation sample. A
consistent estimator y of y can be obtained by solving

Z(l — ;) ri{w(Yi, Zis0) — my(X;0,7)}=0, @37
1=1

for y, where r; is an indicator of unit i belonging to the follow-up sample, and m(X;6,7) is
defined in (2.6).

Using the estimated titling parameter yabtained from (3.7), one can construct wTA(Yi, Zj; O in
(3.6). Further, we can construct MELE & and LELRF ¢ ;.

Theorem 6—Suppose (C1)-(C8) hold, except for the semiparametric response model in
(2.1). Assume that the solution yAto (3.7) exists almost everywhere. Let éfbe the LELRF
based on the semi-parametric modified EEs (3.6) using y})btained by solving (3.7) and the
corresponding MELE is 9{. Then

i

V(6. — 60)ZN(0, ZT):N(O, DI A o U (e

where V,=Var(ny;),
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7;
771i=m3(Xi;97’Yo)+{;(1 = 8)+0: H{YY;, Zi360 — my,(Xi30,70) }

i (Xi36,7)=pr lim 7, (X;6,7), v = E(rfs = 0) and vg is the probability limit of y.

1:(00) L 0] X3 +03x3+ - 0)xas

where the weights o7 s are the eigenvalues of matrix v, 17,

A consistent estimator of V, is

with
A A A T N A

In Theorem 6, the response model (2.1) is not needed to show (i). The variance V can be
written

V=Var( (Y, Z;0))+(v " = D) E[(1 - ){(Y, Z;0) — m%(X;0,%))} ).

Note that

My (X30,7)=pr lim 1y (X0, 7)=E{8¢(Y, Z;0)exp(Y )| X }/ E{dexp (7Y )| X},

Thus, if (2.1) is true, then yy = ¥, and by (i),

E{6p(Y, Z;0)exp(yY)| X} E{(1 = 6)y(Y, Z;0)| X}
E{dexp(7Y)| X} E{(1 -9)|X}

mi,(X30,70)= —E{$(Y, Z;0)| X, 6=0}=m!,(X;0).

Since

E[(1-8){9(Y, Z;0) — m(X;0,70))} ] = E[(1-8){w(Y, Z;0) — m3,(X;0))}77],
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the variance E; in (i) is minimized when (2.1) is true. Thus, the validity of the proposed
estimator does not depend on the assumed response model and the role of (2.1) is to improve
efficiency.

With the auxiliary information on X, we also use HAAT and leAT to denote the MELE of fand
LELRF based on y, estimated by the validation sample.

Theorem 7—Under the conditions of Theorem 6, we have
i. A ~ _ 1 _ _
\/ﬁ(aAT - 00)%]\[(0’ ZAT):N(Oa ¢ 1£Td 1‘/1z,AUM 1%% 1), where

- Ve D
/ =
! 1,AU ( D%‘ D2 > )

with R, R and R as defined in Theorem 3 and V, as defined in Theorem 6.

12 (00) S 083+ .. +0%, X3 14 Where the weights s are the eigenvalues of
—1 5

‘/;AU ‘/V,AU-

3.3 Bandwidth Selection

Let Fo(y, zIX = x) = P(Y <y, Z < z|X = x,6 = 0) be the conditional distribution of (Z, Y) given
X =x, §=0. Then, based on the exponential model (2.1), a kernel estimator of Fy(y, z|X = X)
based on the sample is

i 105exp(WYH) (Y < y)I(Z; < 2) Ky (x — X;)
> i-165exp(VY;) Ky (z — Xj) '

ﬁ’o(y, 2|X:1‘)::F0(y, z| X=xzyy)=

Then m,(X;;0)=E{y(Y, Z;0)| X==,6=0} may be estimated by
R(x)=[V(y, 2:0)dFo(y, 2| X=z).

It is known that in nonparametric or semiparametric inferences, selecting a suitable
bandwidth is a critical issue. The classical optimal rate for the bandwidth is h = n™/3, see
Sepanski, Knickerbocker and Carroll (1994). But as Zhou et al. (2008) point out, the optimal
rate h = n™1/5 is not allowed here since we require nh2™— 0 for the mth kernel. Along the
lines of Zhou et al. (2008), we suggest the suitable and simple bandwidth h = aXAn‘1’3, where
axAis the standard deviation of observation X.

3.4 Reduced Dimension of X
In practical applications the dimension of variate X is high and it is difficult to get an

accurate estimator of mfb(Xi;a) by a kernel-smoothing procedure. Here, we propose a
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dimension reduction technique such that our method is still effective for high-dimensional
data.

Let S be a continuous function from R% to R, such that § = S(X) is univariate and Sj= S

E{6:iy(Ys, Zis0)exp(vYi) |73} E{6iyp(Ys, Zi0)exp(vYi)| X} _
(X;)- Suppose E{6;exp(7Y;)| i} - E{b:exp(7Y;)| X:} Then, if (2.1)
is true,

B{o(Yi, Zi30)+(1 — 6;)my, (330) }
=E{pr(6;=1|X;) E(¢(Y:, Zi30)|0;=1, X;)+pr(6;=1|X;) E{6;¢(Yi, Z;;0 )exp(7Y;) |- (Xi) }/ E{Siexp(7Y7) |- (Xi) } }
=E{pr(6;=1|X;) E(¢(Y3, Z3;0)]0;=1, X;)+pr(8;=0|X;) E(¢ (Y3, Zi36)|6;=0, X;) }
=E{E(6:;¢(Y3, Zi;0)| X;)+pr(6;=0]X; ) E{(1 — 6;)v(Yi, Z3;0)[.7(Xi) }/ E{(1 — 6:)| X }}

here mg(%;e):E{(Siw(}g, Z;:0)exp(7Y;|-S1) }/ E{é;exp(7Y;)|-7; }. Therefore, the resulting
EEs can be modified as

A

Y, (Y, Zi50)=6:0(Yi, Zi30)+(1 — 6;)10y (S350, 7),  (3.8)

where m [ S;; 6,7) is obtained as was my(X;;6,7) in (2.6), except that X is replaced by S.
This allows us to deal with the curse-of-dimensionality problem.

4. Numerical Examples

4.1 Simulation Studies

Simulation studies of a nonlinear regression model and a logistic regression model were
conducted to evaluate the finite sample performance of our proposed MELESs and LELRFs.

Experiment 1 We simulated {(X;, Y;): i = 1,..., n} from a nonlinear regression model. Each
dataset contained n observations. For each i, Xj was generated from a uniform distribution
U(0,1) and then, given X;, Yj was generated from the normal distribution N(&X; + exp(6X;),1)
with = 1. We assumed the X; 's completely observed, but the Yj's subject to missingness.
We generated & , the missing indicator for Y;, from a Bernoulli distribution with probability
7(Xi, Yi) = P(& = 1]X;, Y;j). We examined seven missing data mechanisms:

i. 7(X,Y)=1forall Xand;

ii. 7(X,Y)=logit(ag + a1X) with (ag, @) = (1.8,0.5);

iii. 7(X,Y) =logit(ag + ;X + apY) with (ag, a1, @) = (1.8,0.25,0.15);

iv. 7(X,Y) = logit(ag + a1X2 + apY) with (ag, a1, ap) = (1.5, 0.25, 0.5);

v. (X, Y) = logit(ag + a1 X + apY?) with (ag, a1, ap) = (1.5, 0.5,0.25);

vi. (X, Y) = logit(ag+ay X+apY+agXY) with (ag, a1, ap, a3)=(1.5,0.15,0.5,0.25);
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vii. 7(X,Y) = logit(ag+ar X+aY+azXY) with (ag, o, ay,
az)=(0.0001,0.005,0.05,0.25).

Scenario (i) is full observation, while (ii) describes a missing at random scenario. Scenarios
(iii)—(vii) describe nonignorable missing mechanisms. Scenarios (ii)— (iv) satisfy (2.1) for
missing Y. However, (v), (vi), and (vii), which do not satisfy (2.1) and prescribe selection
bias in the missingness, were used to investigate the robustness of our proposed empirical
likelihood method with respect to the misspecified #(X, Y). We took sample size n = 100,
and simulated 1000 datasets under each scenario. Then, we created the incomplete data sets
for each of 1000 complete data sets under the six missing data mechanisms. The average
missing proportions corresponding to (ii)—(vii) were 11.63%, 9.70%, 7.56%, 6.30%, 6.40%,
and 39.45%, respectively.

We considered a set of estimating equations as follows:

0y , X5 [ Y2 —-6%/3 —20Xexp(6X) — exp(20X) — 1
WY, Xi6)= ( (Y, X;;0) ) - ( Y — exp?@X) — 0/2p ) ‘

For model (2.1), we considered the two cases including ¢ = 0 for the MAR assumption and
unknown ¢. To estimate ¢ in model (2.1), we used a validation sample randomly selected
from the set of nonrespondents, Kim and Yu (2011). We chose the Gaussian kernel K(u) =

exp(-u?/2)/(2 112 and set the bandwidth h for estimating m,(X;0) at con Y3 where cis a
constant chosen to be 1 in this experiment, and oy is the standard deviation of observations
{Xi:i1=1,...,n} (Zhou et al.(2008)). We used auxiliary information on X specified by E(X -
0.5)2 = 1/12. We applied the EL method based on the EEs (Y, X; ) and model (2.1) to
compute the MELEs and 95% confidence intervals of & Table 1 presents the results.

Inspecting the results in Table 1 reveals the following. MELESs based on the auxiliary
information on X outperformed those without the auxiliary information. When model (2.1)
was used and ¢ estimated, even though the missingness mechanism was misspecified under
(i), (v), (vi), and (vii), the MELEs of Owere close to their true values. Moreover, their
empirical coverage levels were relatively close to the pre-specified nominal level 95%. This
indicates robustness of the nonignorable missingness model (2.1). Under the MAR
assumption, ¢ =0 in model (2.1), the MELEs and confidence intervals of &under (iii)-(vii)
were inaccurate. Under (2.1), the confidence intervals for known ywere shorter than those
for estimated y. As expected, increasing the mean response rates improves the accuracy of
parameter estimate and the empirical coverage of confidence interval.

Experiment 2. We simulated {(Yi, X;): i = 1,..., n} as follows. We generated Xj; ~ U(0,2)
and Xj» ~ N(0,1), and then we simulated Y; ~ Bernoulli(p;), where p; = logit(Xj; + 0.5X;0).
We assumed the Xj's completely observed, but the Yj's subject to missingness. To create
missing responses, we generated & for Y; from a Bernoulli distribution with probability 7 =
7(Xi, Yi; @) given by 7(X;, Yi; a) = logit(ag + a1Xi1 + apXiz + agYi + agXi1Yi + asXi2Yi),
where a = (ag, ..., as)". We considered (i) @ = (1.0, 0.25, 0.20, 0.25, 0.20,0.20)T, and (ii)
= (1.5, 0.15, 0.20, 0.25, 0.20, 0.20)". Their corresponding average missing proportions were
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17.81% and 12.73%, respectively. We took sample size n = 100 and simulated 1000 datasets
under each scenario.

We considered the missing mechanism model (2.1) and a set of EEs as follows:

W(Vi, Xi58)=(Xi1, Xi2) T {V; — logit (81 Xi1+52Xi2)},  (42)

where = (41,5)". For (2.1), we considered ¢ = 0 for the MAR assumption, and unknown
¢. To estimate ¢ in (2.1), we used a validation sample randomly selected from the set of

nonrespondents, Kim and Yu (2011). To estimate m%(X;G) in which 6= ,q we took the
kernel function to be K(xq, X2) = K(x1)K(x2), and the bandwidth h to be oy;n~1/3, where K(x)
= exp(-x2/2)/(2 )2 and oy is the standard deviation of observations {Xi1: i = 1,..., n}. As
auxiliary information, we considered E(X; — 1)2 = 1/3 and E(X,)2 = 1. We applied the EL
method based on the EEs (Y, X; &) and (2.1) to computing the MELEs and 95% confidence
intervals of 0. We present the results in Table 2.

Inspecting the results in Table 2 reveals the following. Under (2.1) with estimated y, the
MELEs and confidence intervals of &were relatively accurate. This indicates that (2.1) is
robust to some degree of model misspecification, since the true probability function 7(X;, Y;;
a) is different from (2.1). MELEs with the auxiliary information outperformed those
without. For the scenarios without the auxiliary information, the empirical coverage
probabilities were not close to the pre-specified nominal confidence level 95% when n was
small. As expected, increasing the mean response rates increased the accuracy of the
empirical coverage probability and decreased the bias and standard deviation (SD) of
MELEs and the confidence interval width of 6. MELEs under scenario (i) had smaller root
mean square error (RMS) and SD than those under (ii). Ihis indicates that the misspecified
missing data mechanism can influence the accuracy of MELE, but such influence is minor.
The values of RMS were relatively close to those of SD, indicating that the estimates of the
asymptotic variances of MELES were reasonably accurate even under a misspecified
missing data mechanism.

To compare our proposed method with that of Troxel, Lipsitz and Brennan (1997), we
created the missing responses in the 1000 datasets {(Y;, X;): i = 1,..., 100} simulated above.
We used the missing data mechanisms

(iii) logit {P(Rj1 = 1)} = ap + a1Xj1 + apXj2 + azYjand logit {P(Rj> = 1|Rj1 = 0)} =
ap+ar Xj+apXjp+agYi+t, with (ag, a1, ap, az,7) = (0.05,0.25,0.20,0.25,0.5),

(iV) Iogit {P(Ril = 1)} = qp + a1Xj1 + aXj2 + a3Yj + a Xi1Yi + asXipYi and Iogit {P(Ri2 = ll
Ri1 = 0)} = ap*tarXit+ apXip+azYi+agXiyYi+asXipYi + 7, with (ag, a1, ap, az, as, as, 7) =
(0.5, 0.25, 0.20, 0.25, 0.20, 0.20, 0.5).

Here (iii) satisfies (2.1) for missing Y, whilst (iv) does not. The average missing rates

corresponding to (iii) and (iv) were, respectively, 38.36% and 26.13%. We computed the
estimates of (,,/») and the 95% confidence regions of (f,/%) by using our proposed EL
method and the Troxel, Lipsitz and Brennan (TLB) method based on EEs (4.1) and (2.1).
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Table 3 and Figure 4.1 present the results. Table 3 shows that, compared with the TLB
method, our proposed method not only significantly reduced bias, but also yielded parameter
estimates with smaller RMS and SD under (iv), indicating that our proposed method is
robust to the misspecified response probability model. Figure 4.1 shows that our proposed
method gave smaller confidence regions than the TLB method.

We suggest that

EL method can handle over-identified EEs, whereas the TLB method cannot. Moreover,
the EL method produces confidence regions, whose shape and orientation are
determined entirely by the data. It also does not require a pivotal quantity for
constructing confidence regions and has better finite sample performance (Owen
(1990)).

We observed that the TLB method requires correct specification of the missing data
mechanisms (Rjy|Y;, X;) and the model for (Y;|X;), which limits its applicability. In
contrast, our method does not require a specific form of F(x, y), and the validity of our
proposed estimator is robust to the assumed response model P(R;j; = 1|Yj, X;).

However, our method can suffer from computational difficulties, including optimizing
LELRFs and searching the lower and upper limits for confidence regions of parameters.
Moreover, our method can break down in the high-dimensional case, which is the topic of
our future research.

4.2. A Data Example

The New York Social Indicators Survey (NYSIS) was a telephone survey of New York City
families conducted every two years by the Columbia University School of Social Work. The
core survey was designed to document individual and family well-being across multiple
domains: human, financial, and social assets; economic and social living conditions;
perceptions of the City and its services. The survey also measured the sources and extent of
external support from government, family, and friends, community and religious programs,
and employers.

A data set was taken from the 2002 NY'SIS to illustrate our proposed methodologies. The
2002 SIS survey was conducted between March and June, 2002, and 1501 adults were
interviewed. Interviews lasted an average of 24 minutes for families without children, and
34 minutes for families with children. Let X1; be the number of people in family, X»; be the
working hours, and Y;j be the earning of a resident in the New York City in 2001. Since some
people were reluctant to report their earnings, some data on Y were missing, but X4; and Xy;
were fully observed. According to the nature of missing data, we deemed it reasonable to
assume the missing data mechanism of Y was non-ignorable. For the 2002 NYSIS data set,
the response rate of Yj's was 89.81%.

Our objective was to use the proposed method to estimate the mean earnings of a resident in
the New York City in 2001 and the variance of earnings. The vector of estimating functions
is
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WY 0)= ( v oo ) .

where ¢; and ¢ are the mean and variance of Yj's, respectively. Clearly, E(Y; 6) =0, and

we let o= n"12¢,. To obtain the estimator my, (X;6), we chose K(xy, Xp) = K(x1)K(x2) and
set the bandwidth h to be o,n~1/3, where K(x) = exp(—x2/2)/(27)Y/2 and o is the standard
deviation of X; in the data set. An estimator yaf the exponential tilting parameter y was
obtained by solving ; (1= 8)ri { (¥356) = 1y, (X36,7)} :0, where rj was the indicator
of unit i belonging to the follow-up sample, and m,{X; 6, ) is defined in (2.6). The follow-
up rate was 25%. To stabilize the computational algorithm, we used 1074 to scale the
observed values of the Yj's. Zhou's estimators, which assume the missing data mechanism is
MAR, and our proposed estimators were computed. Results of estimates, standard errors,
and 95% confidence intervals for &, and & are reported in Table 3(a). Table 3(a) has the
estimated standard errors (SE) based on Zhou's estimators larger in magnitude than those of
our estimators; our proposed estimators had shorter EL-based and NA-based confidence
intervals than Zhou's estimators; the EL-based Cls had shorter interval lengths than NA-
based Cls; further, results from Table 3(a) indicate that our proposed estimator Q\7vas, in
fact, very close to the estimated standard error of 91? but there is large bias between pénd
the SE of (91Abased on Zhou's method.

Also, we addressed the case in which only the variable X5: “number of working hours” is
considered as auxiliary. Table 3(b) shows the same conclusions as Table 3(a). Comparing
Table 3(b) to Table 3(a), we also find that, based on our proposed method, when only the
variable Xy: “number of working hours” is considered as auxiliary, standard errors of the
estimates of the &, and & were smaller than those from considering both X; and X, as
auxiliary and, in this case, the corresponding EL-based and NA-based confidence intervals
were shorter. Table 3(b) suggests that we need only consider the variable X, as auxiliary to
estimate the mean earning of a resident in the New York City in 2001 and the variance of
earning in this Indicators Survey.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Appendix

The research was partially supported by grants from the National Science Fund for Distinguished Young Scholars
of China (11225103), and Research Fund for the Doctoral Program of Higher Education of China
(20115301110004), and NIH grants RR025747-01, PO1CA142538-01, MH086633, EB005149-01, and AG033387.

Let f() be the probability density function of X and G(X) = f(X) exp{g(X)}{1-#(X)}, where
g(X) is defined in (2.1). Take (X, y) = P(5=1X =X, Y =), n(x) = P(6= 1|X = x),
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m?/)(m;g):E {W(Y, Z;0)| X =2,5=0}, mp(X) = E(Y|X, §=0), and my,(X) = E(Y (Y, Z; QIX, &
= 0). The symbol 9 denotes partial differentiation with respect to parameter 6.
Some regularity conditions are required for the proofs of Theorems 1-7.

(C1) The probability density function f(x) is bounded away from oo on the support of X,
and the second derivative of f(x) is continuous and bounded.

(C2) The probability function #(X, Y) satisfies min; 7#(X;, Y;) = cg > 0 a.s. for some
positive constant cg, and 7(X) = E(#(X, Y)|X) #1 a.s.

(C3) E(Y?) and E{exp(2yY)} are finite.

(C4) y(:; ) is twice continuously differentiable in the neighborhood of the true value
b, and m,(x; ¢) is twice continuously differentiable in the neighborhood of x.

(C5) 0 < E|iAY, Z; §)? < oo and 0 < E|aT dgi(Y, Z; G)J2 < oo for any constant vector «;
dgu(-; 6 and y3(:; 6) are bounded by some integrable function M(z) in the neighborhood
of 6.

(C6) Matrices V4, Vo, Vi, Vi, and D5, are positive definite, and E{0 (Y, Z; &)} has full
column rank p.

(C7) The kernel function K(:) is a probability density function such that

i. is bounded and has compact support;

ii. is symmetric with 02 = [@?K(@w)dw < co;

iii. K(w) > d; for some d; > 0 in some closed interval centered at zero.
(C8) nh — oo and nh* — 0 as n — oo.

These assumptions are common in the missing data and nonparametric literatures.
Conditions (C2) is similar to that used in Kim and Yu (2011); (C3) — (C6) are standard
assumptions for empirical likelihood based inference with estimating equations; (C7) and
(C8) are common in the nonparametric literature.

Lemma 1 Suppose (C1)-(C8) hold. Then

n n

_ 0 < — P _ 7

n 2N (Y, Z6,60) = N(0,V),n D", (Vi Zi,60)%% 5 Va, IZ in (Yis Zis60) = T
=1 =1

Lemma 2 Suppose (C1)-(C8) hold. Then, as n — oo, with probability tending to 1, I,@(@

attains its minimum at some point Qe in the interior of the ball 16 — 6] < n 3 5 and the
solutions 6, ‘and /1n1 = Anl(ee) satisfy

in( e ) OandQng( o Anl) =0.
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Lemma 3 Suppose (C1)-(C8) hold. Then

12w Z v 7
n 1/22Ai(00) - N(O’ VLAU)’ n 1ZAi (QO)A;‘T(QO) - VQ,AU,
i=1 i=1

where
Vo Dy
174 =
2,AU <D{ D2 )

Lemma 4. Let U be r-vector of random variables that satisfies 7 <, N(0,1,.), where I is
the r x r identity matrix. Let P be a r x r nonnegative definite matrix with eigenvalues Iy, ...

I,. Then, uTpU L Lx3+---+l.x2a where s (i=1,...,1) are 42 random variables each
with one degree of freedom.

Lemma 5. Suppose (C1)-(C8) hold. Then

(i) when the parameter estimate for yis compute from an independent survey,

L

n

ZQ;T(K’ Zlae) ﬁ N(0> ‘71)3

i=1

where 77, =1, + H®2V/.

(i) when the parameter estimate for y is obtained from a validation sample,

1 no o B
%ZwT(Yl? Zia '9) - N(Oa Vvv)a
i=1

where ‘7\/:\/&1‘ (7711')’

Ti
771i=m3(Xi;9770)+{;(1 — 6:)+6: Hu(Yi, Zi36) — mi(Xi:0,70)}

m, (Xi6,7) =pr lim 1y (X36,7), ¥=F (r|6=0) and yy is the probability limit of 7.

Lemma 6. Suppose (C1)—(C8) hold. Then
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p

1 n N AT J 1 n N y
—> 0y (Y, Zibo)iy, (Vi Zisbo) = Vay —> 0t (i, Zisbo) — T,
=1 i=1

where Va=E{[6,{t:(V;, Zi;60) — mi)(X:;0)}+mi),(X::6)] "} and T = E{@gAY, Z; O)}.
Lemma 7. Suppose (C1)-(C8) hold. Then

(i) when the parameter estimate for y is compute from an independent survey,

1 n n

~ 2 ~ 1+ ~T 7
%;Ai(eo) = N(0, Vl,AU)v g;Ai(QO)Ai (60) — Vz,Au

where
- Vi D V, D
Vo= V.o =
1,AU (D’{' D2 )’ 2,AU <DT D2

with D1=F {m%(X;Go)AT(X)}, Dy=FE {A (x) A" (X)}, v, is defined in Theorem 4, and
Vs, is defined in Theorem 2.

(i) when the parameter estimate for y is obtained from a validation sample,

1 - @ - 1A - ~T P
%;Ai(e) = N(0, VV,AU)v E;Ai(QO)Ai (60) — Vz,AU?

where

- Ve, D Vy Dy
\%4 = 7 V, o=
v,AU ( D’{ D2 ) ’ Y 2,AU ( DflT‘ Dg

V, as defined in Theorem 6.
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1.2 T T T T T T

0.4
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Figure 4.1.
Results of Experiment 2: 95% confidence regions for (41, /) based on EL (the dot curve)

and TLB (the solid curve) under the scenario (iii) with a sample size n= 100 for a simulated
dataset.
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