Empirical Likelihood for Estimating Equations with Nonignorably Missing Data

Niansheng Tang,
Department of Statistics, Yunnan University, Kunming 650091, China
Puying Zhao, and
Department of Statistics, Yunnan University, Kunming 650091, China
Hongtu Zhu
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Niansheng Tang: nstang@ynu.edu.cn; Puying Zhao: pyzhao@live.cn; Hongtu Zhu: hzhu@bios.unc.edu

Abstract

We develop an empirical likelihood (EL) inference on parameters in generalized estimating equations with nonignorably missing response data. We consider an exponential tilting model for the nonignorably missing mechanism, and propose modified estimating equations by imputing missing data through a kernel regression method. We establish some asymptotic properties of the EL estimators of the unknown parameters under different scenarios. With the use of auxiliary information, the EL estimators are statistically more efficient. Simulation studies are used to assess the finite sample performance of our proposed EL estimators. We apply our EL estimators to investigate a data set on earnings obtained from the New York Social Indicators Survey.

Key words and phrases

Empirical likelihood; estimating equations; exponential tilting; imputation; kernel regression; nonignorable missing data

1. Introduction

Missing data are encountered in various settings, including surveys, clinical trials and longitudinal studies (Little and Rubin (2002)); Responses and/or covariates may be missing in practice. Statistical models for dealing with the missing data depend on a missing data mechanism such as data not missing at random (NMAR), also referred to as nonignorable missingness. For example, when there are NMAR responses, the complete-case analysis can result in biased and inefficient parameter estimates, whereas to incorporate additional information from incomplete cases, one needs to assume a parametric (or semiparametric) model for the missing data mechanism. However, the assumptions underlying such NMAR models are difficult to verify in practice and the resulting estimates and tests may be

[^0]sensitive to these assumptions. This paper develops an inference procedure for parameters in generalized estimating equations (GEEs) with nonignorably missing data.

Various generalized estimating equations have been developed to handle missing data, that are either missing at random (MAR) or NMAR, primarily due to their being robust against model misspecification. Robins et al. (1994) developed a class of estimators based on inverse probability-weighted estimating equations (EE) when the probability of missingness is modeled parametrically, and Robins, Rotnitzky, and Zhao (1995) proved the semiparametric efficiency bound for parameter estimation. Lipsitz, Ibrahim, and Zhao (1999) presented an EM algorithm to estimate parameters defined by a weighted EE with missing covariate data. It is more challenging to deal with NMAR data due to the unverifiable assumptions introduced by the statistical models for it. Troxel et al. (1997) proposed weighted EEs for data with nonignorable nonresponse to eliminate the biases in the complete-case analysis that ignores missing cases when the weights (the inverse probability of being observed) are estimable. Kim \& Yu (2011) developed an exponential tilting model and proposed a semiparametric estimation method of mean functionals with nonignorably missing data. See Ibrahim et al. (2005) and Ibrahim and Molenberghs (2009) for a detailed overview and comparisons of various paradigms for handling missing data. All these methods are developed on the basis of non-empirical likelihood.

There is considerable interest in the development of EL for GEEs with/without ignorably missing data. Empirical likelihood allows one to employ likelihood methods in a nonparametric or semiparametric setting. It has been shown that EL has various advantages over other competing methods, including generalized method of moments (GMM) (Newey and Smith (2004)). Compared with EE, EL allows the easy incorporation of auxiliary information and the number of estimating equations can be greater than the number of parameters. See, for example, Qin and Lawless (1994); Zhou, Wan and Wang (2008); Zhu et al. (2008); Wang and Chen (2009), and Qin, Zhang and Leung (2009), among many others. Zhou et al. (2008) proposed a kernel-assisted EE imputation scheme and used EL and GMM on parameters in GEEs. Wang and Chen (2009) proposed a nonparametric imputation method to remove the selection bias in the missingness and showed that the maximum EL estimators can be efficient. However, little has been done on the development of the EL method for GEE with nonignorably missing data.

We develop a general EL inference procedure for parameters in the GEEs with nonignorably missing data. We integrate the modeling of nonignorably missing data, the EL method, and the imputation of EEs by using the observed data rather than imputing the missing data. Specifically, we consider the exponential tilting model with known and estimated tilting parameters as the missing mechanism for nonignorably missing data, which leads to a more robust estimator. We extend the estimation of mean functionals with nonignorably missing data to the estimation of parameters in GEEs. We systematically investigate the asymptotic properties of the maximum EL estimators under this new setting.

The rest of this article is organized as follows. In Section 2, we describe the proposed kernel-assisted EE imputation scheme based on the exponential tilting model of nonignorably missing data. As well, we outline the formulations of EL with and without
auxiliary information by utilizing the imputation scheme. In Section 3, we establish the asymptotic properties of the proposed EL estimators. Two simulation studies and a data analysis are used to compare the finite sample performance of the proposed maximum EL estimators with competing methods, in Section 4. Technical details are given in the Appendix.

2. Methods

2.1 Imputation based on the exponential tilting model

Let $\left\{U_{i}=\left(Z_{i}^{T}, Y_{i}^{T}\right)^{T}: i=1, \ldots, n\right\}$ be a set of independent and identically distributed random vectors from a distribution $F(z, y)$, where the Z_{i} 's are d_{x}-dimensional and observable, and the Y_{i} 's are d_{y}-dimensional and subject to missingness. Generally, the missing components may vary across different individuals. For simplicity, we assume that the missing components have the same components for U_{1}, \ldots, U_{n}. Furthermore, a missing variable Y_{i} may represent a response or covariate. Without assuming a specific form for $F(u)$, we are interested in making statistical inference on a $p \times 1$ vector, denoted by θ, based on $q(\geq p)$ functionally independent EEs $\psi\left(Y_{i}, Z_{i} ; \theta\right)=\left(\psi_{1}\left(Y_{i}, Z_{i} ; \theta\right), \ldots, \psi_{q}\left(Y_{i}, Z_{i} ; \theta\right)\right)^{T}$ that satisfy the unconditional moment condition of the form $E_{F}\left\{\psi\left(Y_{i}, Z_{i} ; \theta_{0}\right)\right\}=0$ for $\theta_{0} \in \Theta \subset \mathcal{R}^{p}$, where θ_{0} is the true value and E_{F} denotes the expectation with respect to F. The Y_{i}^{\prime} 's are assumed to be nonignorably missing. Let X_{i} be Z_{i} or a subset of Z_{i}, and let $\delta_{i}=1$ if Y_{i} is observed and $\delta_{i}=0$ if Y_{i} is missing. It is assumed that δ_{i} and δ_{j} are independent for any $i \neq j$ and δ_{i} depends on X_{i} and Y_{i} such that $P\left(\delta_{i}=1 \mid X_{i}, Y_{i}\right) \triangleq \pi\left(X_{i}, Y_{i}\right)$ for $i=1, \ldots, n$. When $\pi\left(X_{i}, Y_{i}\right)$ depends on the value of Y_{i}, it is the NMAR condition of Little and Rubin (2002).

We consider an exponential tilting model for nonignorably missing data Y_{i} 's given by

$$
\begin{equation*}
\pi\left(X_{i}, Y_{i}\right) \triangleq P\left(\delta_{i}=1 \mid X_{i}, Y_{i}\right)=\operatorname{logit}\left(g\left(X_{i}\right)+\phi Y_{i}\right) \tag{2.1}
\end{equation*}
$$

for some unknown function $g(\cdot)$ and ϕ, where logit denotes the logit function. When $\phi=0$, (2.1) becomes an MAR model. Let $f_{1}\left(Y_{i} \mid X_{i}\right)$ be the conditional density of Y_{i} given X_{i} and $\delta_{i}=$ 1 , and let $f_{0}\left(Y_{i} \mid X_{i}\right)$ be the conditional density of Y_{i} given X_{i} and $\delta_{i}=0$. Then, by following the reasoning of Kim and Yu (2011), we have

$$
\begin{equation*}
f_{0}\left(Y_{i} \mid X_{i}\right)=f_{1}\left(Y_{i} \mid X_{i}\right) \times \frac{\exp \left(\gamma Y_{i}\right)}{E\left\{\exp \left(\gamma Y_{i}\right) \mid X_{i}, \delta_{i}=1\right\}} \tag{2.2}
\end{equation*}
$$

where $\gamma=-\phi$ is an unknown tilting parameter that measures the amount of departure from the MAR assumption. When $\gamma=0$, (2.2) reduces to $f_{0}\left(Y_{i} \mid X_{i}\right)=f_{1}\left(Y_{i} \mid X_{i}\right)$.

To incorporate the incomplete cases, we consider a new set of EEs given by

$$
\begin{equation*}
\tilde{\psi}\left(Y_{i}, Z_{i} ; \theta\right)=\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right)+\left(1-\delta_{i}\right) m_{\psi}\left(X_{i} ; \theta\right) \tag{2.3}
\end{equation*}
$$

where $m_{\psi}\left(X_{i} ; \theta\right)=E_{F}\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right) \mid X_{i}\right\}$. Under MAR, the EEs at (2.3) reduce to the estimating equations of Zhou et al. (2008). Since $m_{\psi}\left(X_{i} ; \theta\right)$ defined in (2.3) is unknown, it is necessary to estimate (or 'impute') $m_{\psi}\left(X_{i} ; \theta\right)$ from the observed data set. Under the MAR assumption, a consistent estimator of $m_{\psi}\left(X_{i} ; \theta\right)$ can be obtained from a consistent estimator of $m_{1 \psi}\left(X_{i} ; \theta\right)$ $=E\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right) \mid X_{i}, \delta_{i}=1\right\}$, denoted by $m_{1 \psi}\left(X_{i} ; \theta\right)$. Substituting $m_{1 \psi}\left(X_{i} ; \theta\right)$ in (2.3) leads to $\hat{\psi_{1}}\left(Y_{i}, Z_{i} ; \theta\right)=\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right)+\left(1-\delta_{i}\right) \hat{m_{1}} \hat{\psi}\left(X_{i} ; \theta\right)$, which is biased under NMAR.

We construct a consistent estimator of $m_{\psi}^{0}\left(X_{i} ; \theta\right)=E\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right) \mid X_{i}, \delta_{i}=0\right\}$. Under the
NMAR assumption, it is difficult to estimate $m_{\psi}^{0}\left(X_{i} ; \theta\right)$ due to the presence of missing data. It follows from (2.2) that

$$
\begin{equation*}
m_{\psi}^{0}\left(X_{i} ; \theta\right)=E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right) \exp \left(\gamma Y_{i}\right) \mid X_{i}\right\} / E\left\{\delta_{i} \exp \left(\gamma Y_{i}\right) \mid X_{i}\right\} \tag{2.4}
\end{equation*}
$$

Then, under the NMAR assumption, we construct a set of EEs for $\psi\left(Y_{i}, Z_{i} ; \theta\right)$ given by

$$
\hat{\psi}\left(Y_{i}, Z_{i} ; \theta\right)=\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right)+\left(1-\delta_{i}\right) m_{\psi}^{0}\left(X_{i} ; \theta\right)
$$

Where $m_{\psi}^{0}\left(X_{i} ; \theta\right)$ is defined in (2.4) based on a tilting parameter γ.
If the response model (2.1) is true, then we have

$$
\begin{gathered}
E\left\{\hat{\psi}\left(Y_{i}, Z_{i} ; \theta\right)\right\}=E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right)+\left(1-\delta_{i}\right) m_{\psi}^{0}\left(X_{i} ; \theta\right)\right\} \\
=E\left\{\operatorname{pr}\left(\delta_{i}=1 \mid X_{i}\right) E\left(\psi\left(Y_{i}, Z_{i} ; \theta\right) \mid \delta_{i}=1, X_{i}\right)+\operatorname{pr}\left(\delta_{i}=0 \mid X_{i}\right) E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right) \exp \left(\gamma Y_{i}\right) \mid X_{i}\right\} / E\left\{\delta_{i} \exp \left(\gamma Y_{i}\right) \mid X_{i}\right\}\right\} \\
=E\left\{\operatorname{pr}\left(\delta_{i}=1 \mid X_{i}\right) E\left(\psi\left(Y_{i}, Z_{i} ; \theta\right) \mid \delta_{i}=1, X_{i}\right)+\operatorname{pr}\left(\delta_{i}=0 \mid X_{i}\right) E\left(\psi\left(Y_{i}, Z_{i} ; \theta\right) \mid \delta_{i}=0, X_{i}\right)\right\} \\
=E\left\{E\left(\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right) \mid X_{i}\right)+\operatorname{pr}\left(\delta_{i}=0 \mid X_{i}\right) E\left\{\left(1-\delta_{i}\right) \psi\left(Y_{i}, Z_{i} ; \theta\right) \mid X_{i}\right\} / E\left\{\left(1-\delta_{i}\right) \mid X_{i}\right\}\right\} \\
=E\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right)\right\}=0 .
\end{gathered}
$$

The second equality holds since

$$
\begin{gathered}
E\{\delta \psi(Y, Z ; \theta) \exp (\gamma Y) \mid X\} / E\{\delta \exp (\gamma y) \mid X\} \\
=E\{\pi(X, Y) \psi(Y, Z ; \theta) \exp (\gamma Y) \mid X\} / E\{\pi(X, Y) \exp (\gamma Y) \mid X\} \\
=E\left\{\psi(Y, Z ; \theta)(1+\exp (g(X)-\gamma Y))^{-1} \mid X\right\} / E\left\{(1+\exp (g(X)-\gamma Y))^{-1} \mid X\right\} \\
=E\{(1-\delta) \psi(Y, Z ; \theta) \mid X\} / E\{(1-\delta) \mid X\}=E(\psi(Y, Z ; \theta) \mid X, \delta=0) .
\end{gathered}
$$

Thus (2.5) is unbiased, which is the key idea of our approach. From (2.1), we have $\pi\left(X_{i}, Y_{i}\right)$ $=\left\{1+\exp \left(-g\left(X_{i}\right)\right) \exp \left(\gamma Y_{i}\right)\right\}^{-1}$ with $\gamma=-\phi$ and $E\left\{\delta \exp \left(\gamma Y_{i}\right) \mid X_{i}\right\}=\exp \left(g\left(X_{i}\right)\right) E\left(1-\delta_{i} \mid X_{i}\right)$, which indicates that

$$
\exp \left(-g\left(X_{i}\right)\right)=\frac{E\left(1-\delta_{i} \mid X_{i}\right)}{E\left\{\delta \exp \left(\gamma Y_{i}\right) \mid X_{i}\right\}}=\frac{\operatorname{pr}\left(\delta_{i}=0 \mid X_{i}\right)}{\operatorname{pr}\left(\delta_{i}=1 \mid X_{i}\right) E\left\{\exp \left(\gamma Y_{i}\right) \mid X_{i}, \delta_{i}=1\right\}}
$$

Then, we also have

$$
\begin{aligned}
& E\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right)\right\}=E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right) / \pi\left(X_{i}, Y_{i}\right)\right\} \\
& =E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right)+\left(1-\delta_{i}\right) m_{\psi}^{0}\left(X_{i} ; \theta\right)\right\}=0 .
\end{aligned}
$$

The equality holds since

$$
\begin{gathered}
E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right) / \pi\left(X_{i}, Y_{i}\right)\right\} \\
=E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right)\left[1+\frac{\operatorname{pr}\left(\delta_{i}=0 \mid X_{i}\right) \exp \left(\gamma Y_{i}\right)}{\operatorname{pr}\left(\delta_{i}=1 \mid X_{i}\right) E\left\{\exp \left(\gamma Y_{i}\right) \mid X_{i}, \delta_{i}=1\right\}}\right]\right\} \\
=E\left\{\operatorname{pr}\left(\delta_{i}=1 \mid X_{i}\right) E\left(\psi\left(Y_{i}, Z_{i} ; \theta\right) \mid \delta_{i}=1, X_{i}\right)+\operatorname{pr}\left(\delta_{i}=0 \mid X_{i}\right) E\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right) \exp \left(\gamma Y_{i}\right) \mid \delta_{i}=1, X_{i}\right\} / E\left\{\exp \left(\gamma Y_{i}\right) \mid \delta_{i}=1, X_{i}\right\}\right\} \\
=E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right)+\left(1-\delta_{i}\right) m_{\psi}^{0}\left(X_{i} ; \theta\right)\right\}=E\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right)\right\}=0 .
\end{gathered}
$$

This equality also holds under the MAR assumption.
Let $K(\cdot)$ be a d_{x}-dimensional kernel function of the m-th order satisfying $\int K\left(u_{1}, \ldots, u_{d_{x}}\right) d u_{1}$
$\ldots d u_{d_{x}}=1, \int u_{s}^{l} K\left(u_{1}, \ldots, u_{d_{x}}\right) d u_{1} \ldots d u_{d_{x}}=0$ for any $s=1, \ldots, d_{x}$ and $1 \leq l<m$, and
$\int u_{s}^{m} K\left(u_{1}, \ldots, u_{d_{x}}\right) d u_{1} \ldots d u_{d_{x}} \neq 0$. Then, a nonparametric regression estimator of $m_{\psi}^{0}(X ; \theta)=E\{\psi(Y, Z ; \theta) \mid X, \delta=0\}$ can be written as

$$
\hat{m}_{\psi}(X ; \theta, \gamma)=\sum_{i=1}^{n} \omega_{i 0}(X ; \gamma) \psi\left(Y_{i}, Z_{i} ; \theta\right)
$$

where $\omega_{i 0}(X ; \gamma)=\delta_{i} \exp \left(\gamma Y_{i}\right) K_{h}\left(X-X_{i}\right) /\left\{\sum_{k=1}^{n} \delta_{k} \exp \left(\gamma Y_{k}\right) K_{h}\left(X-X_{k}\right)\right\}$ represents the point mass assigned to Y_{i}, in which $K_{h}(u)=h^{-1} K(u / h)$ and h is a bandwidth. Therefore, under the exponential tilting model, a set of modified EEs for the i th observation is given by

$$
\begin{equation*}
\hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)=\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right)+\left(1-\delta_{i}\right) \hat{m}_{\psi}\left(X_{i} ; \theta, \gamma\right) . \tag{2.7}
\end{equation*}
$$

It can be shown that $n^{-1} \sum_{i=1}^{n} \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta_{0}\right)$ is a set of asymptotically unbiased EEs of θ.

2.2. Maximum Empirical Likelihood Estimator

We assume that the value of γ is known. Although γ may be unknown in practice, we may either fix γ at a prefixed value or calculate a consistent estimator of γ, denoted by γ. For instance, γ can be computed from an independent survey or a validation sample that is a subsample of the nonrespondents. Then, we can substitute $\gamma \hat{\text { into }}(2.7)$ to get $\hat{\psi_{T}}\left(Y_{i}, Z_{i} ; \theta\right)$. Therefore, we temporarily assume that γ is known.

Let p_{i} be the probability weight allocated to $\psi_{M}\left(Y_{i}, Z_{i} ; \theta\right)$. The empirical likelihood (Owen (1990)) for θ based on $\psi_{M}\left(Y_{i}, Z_{i} ; \theta\right)$ can be taken as

$$
\hat{L}_{n}(\theta)=\sup \left\{\prod_{i=1}^{n} p_{i} \mid p_{i} \geq 0, \sum_{i=1}^{n} p_{i}=1, \sum_{i=1}^{n} p_{i} \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)=0\right\}
$$

The optimal value of p_{i} is $\hat{p}_{i}=n^{-1}\left\{1+\lambda_{n 1}^{T}(\theta) \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)\right\}^{-1}$ where $\lambda_{n 1}(\theta)$ is the Lagrange multiplier and satisfies $Q_{n 1}\left(\theta, \lambda_{n 1}\right)=n^{-1} \sum_{i=1}^{n} \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right) /\left\{1+\lambda_{n 1}^{T}(\theta) \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)\right\}=0$. Therefore, the log empirical likelihood ratio function (LELRF) for θ is given by

$$
\begin{equation*}
\hat{\ell}_{M}(\theta)=-2 \log \left\{\prod_{i=1}^{n}\left(n \hat{p}_{i}\right)\right\}=2 \sum_{i=1}^{n} \log \left\{1+\lambda_{n 1}^{T}(\theta) \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)\right\} . \tag{2.8}
\end{equation*}
$$

Maximizing $-\hat{\ell_{M}}(\theta)$ leads to the maximum EL estimator (MELM) of θ, denoted by $\hat{\theta_{e}}$. Under some smoothness condition, $\hat{\theta_{e}}$ can be obtained by simultaneously solving

$$
Q_{n 1}\left(\theta, \lambda_{n 1}\right)=0 \text { and } Q_{n 2}\left(\theta, \lambda_{n 1}\right)=n^{-1} \sum_{i=1}^{n} \frac{\lambda_{n 1}^{T}(\theta) \partial_{\theta} \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)}{1+\lambda_{n 1}^{T}(\theta) \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)}=0,
$$

where ∂_{θ} denotes partial derivative with respect to θ.
Let X be an auxiliary variable. In practice, some auxiliary information on X may be available, for example, the mean of X is zero or the distribution of X is symmetric. With the auxiliary information, we can improve statistical inference on θ. Specifically, we assume that the auxiliary information of X can be characterized as $E\{A(X)\}=0$, where $A(X)=$ $\left(A_{1}(X), \ldots, A_{r}(X)\right)^{T}$ is a known $r \geq 1$ vector (or scalar) function.

To incorporate the auxiliary information on X, the LELRF for θ is defined as

$$
\ell_{A U}(\theta)=-2 \max \left\{\sum_{i=1}^{n} \log \left(n p_{i}\right) \mid p_{i} \geq 0, \sum_{i=1}^{n} p_{i}=1, \sum_{i=1}^{n} p_{i} \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)=0, \sum_{i=1}^{n} p_{i} A\left(X_{i}\right)=0\right\}
$$

Let $\Lambda_{i}(\theta)=\left(\hat{\psi}_{M}^{T}\left(Y_{i}, Z_{i} ; \theta\right), A^{T}\left(X_{i}\right)\right)^{T}$. The estimated LELRF for θ based on $\Lambda_{i}(\theta)$ can be expressed as

$$
\begin{equation*}
\hat{\ell}_{A U}(\theta)=2 \sum_{i=1}^{n} \log \left\{1+\lambda_{n 2}^{T}(\theta) \Lambda_{i}(\theta)\right\}, \tag{2.9}
\end{equation*}
$$

where $\lambda_{n 2}(\theta)$ is a $(q+r) \times 1$ Lagrange multiplier vector that satisfies $n^{-1} \sum_{i=1}^{n} \Lambda_{i}(\theta) /\left\{1+\lambda_{n 2}^{T}(\theta) \Lambda_{i}(\theta)\right\}=0$. Maximizing $-\hat{\ell_{A U}}(\theta)$ leads to the MELE of θ, denoted by $\hat{\theta_{a e}}$. Therefore, under some smoothness condition, $\widehat{\theta_{a e}}$ can be calculated by simultaneously solving

$$
\begin{aligned}
& M_{n 1}\left(\theta, \lambda_{n 2}\right)=n^{-1} \sum_{i=1}^{n} \frac{\hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)}{1+\lambda_{n 21}^{T}(\theta) \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)+\lambda_{n 22}^{T}(\theta) A\left(X_{i}\right)}=0, \\
& M_{n 2}\left(\theta, \lambda_{n 2}\right)=n^{-1} \sum_{i=1}^{n} \frac{A\left(X_{i}\right)}{1+\lambda_{n 21}^{T}(\theta) \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)+\lambda_{n 22}^{T}(\theta) A\left(X_{i}\right)}=0, \\
& M_{n 3}\left(\theta, \lambda_{n 2}\right)=n^{-1} \sum_{i=1}^{n} \frac{\lambda_{n 21}^{T}(\theta) \partial_{\theta} \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)}{1+\lambda_{n 21}^{T}(\theta) \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)+\lambda_{n 22}^{T}(\theta) A\left(X_{i}\right)}=0,
\end{aligned}
$$

where $\lambda_{n 2}=\left(\lambda_{n 21}^{T}, \lambda_{n 22}^{T}\right)^{T}$.

3. Theoretical Results

3.1. Asymptotic properties of MELE for known γ

We first establish the asymptotic properties of MELE and LELRF for known γ. Then, we approximate the asymptotic covariance of MELE. The detailed assumptions and proofs of our results can be found in the Appendix and supplementary materials, respectively. We need some notation. Let $\xrightarrow{\mathscr{L}}$ denote convergence in distribution, and $a^{\otimes 2}=a a^{T}$ for any vector a. We define several matrices as follows:

$$
\begin{gather*}
V_{1}=E\left[\pi(X, Y)^{-1}\left\{\psi\left(Y, Z ; \theta_{0}\right)-m_{\psi}^{0}\left(X ; \theta_{0}\right)\right\}^{\otimes 2}\right]+E\left\{m_{\psi}^{0}\left(X ; \theta_{0}\right)^{\otimes 2}\right\} \\
V_{2}=E\left\{\left[\delta_{i}\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right)-m_{\psi}^{0}\left(X_{i} ; \theta\right)\right\}+m_{\psi}^{0}\left(X_{i} ; \theta\right)\right]^{\otimes 2}\right\} \tag{3.1}\\
\Gamma=E\left\{\partial_{\theta} \psi(Y, Z ; \theta)\right\}
\end{gather*}
$$

Theorem 1—Suppose the conditions given in the Appendix hold. Then

$$
\begin{equation*}
\sqrt{n}\left(\hat{\theta}_{e}-\theta_{0}\right) \xrightarrow{\mathscr{L}} N\left(0, \sum_{e}\right)=N\left(0, \sum_{1} \Gamma^{T} V_{2}^{-1} V_{1} V_{2}^{-1} \Gamma \sum_{1}\right), \tag{3.2}
\end{equation*}
$$

where $\sum_{1}=\left(\Gamma^{T} V_{2}^{-1} \Gamma\right)^{-1}$.
Theorem 1 gives the asymptotic normality of $\hat{\theta_{e}}$ for the kernel-assisted EE imputation scheme. From (2.1), we have $\pi\left(X_{i}, Y_{i}\right)=\left\{1+\exp \left(-g\left(X_{i}\right)\right) \exp \left(\gamma Y_{i}\right)\right\}^{-1}$, with $\gamma=-\phi$. On the other hand, $E\{\delta \exp (\gamma Y) \mid X\}=\exp (g(X)) E(1-\delta \mid X)$. Then, by the kernel regression method and under (2.1) with known parameter $\gamma=-\phi$, a non-parametric estimator of $\pi\left(X_{i}, Y_{i}\right)$ can be obtained as $\pi\left(\hat{X}_{i}, Y_{i}\right)=\pi \hat{i(\gamma)}$, where

$$
\hat{\pi}_{i}(\gamma)=\left\{1+\hat{\alpha}\left(X_{i} ; \gamma\right) \exp \left(\gamma Y_{i}\right)\right\}^{-1}
$$

Let $\eta_{i}=\delta_{i} \pi_{i}(\gamma)^{-1}\left\{\psi\left(Y_{i}, Z_{i} ; \theta_{0}\right)-m_{\psi}\left(X_{i} ; \theta_{0}\right)\right\}+m \hat{\psi}\left(X_{i} ; \theta_{0}\right)$, where $\left.m \hat{\psi}\left(X_{i} ; \theta_{0}\right)=m_{\psi} \hat{(} X_{i} ; \theta_{0}, \gamma\right)$. Then, a consistent estimator of V_{1} is $\hat{V}_{1}=n^{-1} \sum_{i=1}^{n} \hat{\eta}_{i}^{\otimes 2}-\left(n^{-1} \sum_{i=1}^{n} \hat{\eta}_{i}\right)^{\otimes 2}$. Furthermore, the consistent estimators of Γ and V_{2} are $\hat{\Gamma}=n^{-1} \sum_{i=1}^{n} \partial_{\theta} \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta_{0}\right)$ and $\hat{V}_{2}=n^{-1} \sum_{i=1}^{n} \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta_{0}\right)^{\otimes 2}$, respectively. Thus, Σ_{e} can be consistently estimated by $\hat{\sum}_{e}=\hat{\sum}_{1} \hat{\Gamma}^{T} \hat{V}_{2}^{-1} \hat{V}_{1} \hat{V}_{2}^{-1} \hat{\Gamma} \hat{\sum}_{1}$, where $\hat{\sum}_{1}=\left(\hat{\Gamma}^{T} \hat{V}_{2}^{-1} \hat{\Gamma}\right)^{-1}$.

Under the MAR assumption, $\pi\left(X_{i}, Y_{i}\right)$ reduces to $P\left(X_{i}\right)=\exp \left\{g\left(X_{i}\right)\right\} /\left[1+\exp \left\{g\left(X_{i}\right)\right\}\right]$. Since $E\left\{\psi(Y, Z ; \theta)-m_{1 \psi}(X ; \theta) \mid X\right\}=0, V_{1}, V_{2}$, and Γ, respectively, reduce to

$$
\begin{gather*}
V_{1}=E\left\{P(X)^{-1} \sum_{\psi}(X)\right\}+E\left\{m_{\psi}^{0}\left(X ; \theta_{0}\right)^{\otimes 2}\right\} \\
V_{2}=E\left\{P(X) \sum_{\psi}(X)\right\}+E\left\{m_{\psi}^{0}\left(X ; \theta_{0}\right)^{\otimes 2}\right\} \text { and } \Gamma=E\left\{\partial_{\theta} m_{1 \psi}\left(X ; \theta_{0}\right)\right\}, \tag{3.4}
\end{gather*}
$$

where $\Sigma_{\psi}(X)=\operatorname{cov}\left\{\psi\left(Y, Z ; \theta_{0}\right) \mid X\right\}$. Thus, Theorem 1 reduces to Theorem 2 of Zhou et al. (2008) under the MAR assumption. When $\pi(X, Y)=1$, it can be shown that $V_{1}=V_{2}=E$ $\left\{\psi(Y, Z ; \theta)^{\otimes 2}\right\}$, which leads to $\sum_{e}=\left(\Gamma^{T} V_{2}^{-1} \Gamma\right)^{-1}$ with $\Gamma=E\left\{\partial_{\theta} \psi(Y, Z ; \theta)\right\}$, the asymptotic variance of MELE based on the full observations (Qin and Lawless (1994)). Therefore, when $\pi(X, Y)$ is close to 1 , the efficiency of MELE based on our proposed kernel-assisted EE imputation scheme is close to that based on the full observations.

Theorem 2—Suppose the conditions given in the Appendix hold. As $n \rightarrow \infty$, we have

$$
\hat{\ell}_{M}\left(\theta_{0}\right) \xrightarrow{\mathscr{L}} \varrho_{1} \chi_{1}^{2}+\varrho_{2} \chi_{2}^{2}+\ldots+\varrho_{q} \chi_{q}^{2},
$$

where $\chi_{k}^{2} s$ are independent χ^{2} variables with one degree of freedom, and the weights ϱ_{i} are the eigenvalues of $V_{2}^{-1} V_{1}$.

Theorem 2 says the asymptotic distribution of $\hat{\ell_{M}}\left(\theta_{0}\right)$ as a complicated weighted sum of chisquares. We can use the asymptotic result in Theorem 2 to construct the confidence region of θ. Specifically, let c_{a} be the $1-a$ quantile of $\varrho_{1} \chi_{1}^{2}+\varrho_{2} \chi_{2}^{2}+\ldots+\varrho_{q} \chi_{q}^{2}$ for $0<a<1$. An approximate $100(1-a) \%$ empirical-likelihood-based confidence region for θ is given by $C I_{\alpha}^{M}(\theta)=\left\{\theta: \hat{\ell}_{M}(\theta) \leq c_{\alpha}\right\}$.

To obtain a simple asymptotic distribution, we define an adjusted LELRF as
 information loss due to the presence of missing data, Zhou et al. (2008). By replacing θ_{0} by
 respectively. When no data are missing, $r\left(\theta_{0}\right)=1$. Moreover, even though $R \sum_{k=1}^{q} \varrho_{k} \chi_{k}^{2}$ can be well approximated by a $\chi^{2}(q)$ distribution, the accuracy of such approximation, $\hat{\ell}_{M}^{I}\left(\theta_{0}\right)$, also depends on the values of the ϱ_{i} 's.

We develop another adjusted LELRF, denoted by $\hat{\ell}_{M}^{A}\left(\theta_{0}\right)$, whose asymptotic distribution is exactly a χ_{q}^{2} distribution,

$$
\begin{equation*}
\hat{\ell}_{M}^{A}\left(\theta_{0}\right)=\frac{\hat{W}_{1}}{\hat{W}_{2}} \hat{\ell}_{M}\left(\theta_{0}\right) \tag{3.5}
\end{equation*}
$$

Theorem 3-Suppose the conditions given in the Appendix hold. Then, we have

$$
\begin{gathered}
\text { i. } \sqrt{n}\left(\hat{\theta}_{a e}-\theta_{0}\right) \xrightarrow{\mathscr{L}} N\left(0, \sum_{a e}\right)=N\left(0, \mathscr{C}^{-1} \mathscr{B}^{T} \mathscr{A}^{-1} V_{1, \mathrm{AU}} \mathscr{A}^{-1} \mathscr{B} \mathscr{C}^{-1}\right) \text {, where } \mathcal{B}= \\
\left(\Gamma^{T}, 0^{T}\right)^{T}, \mathcal{C}=-\mathcal{B}^{T} \mathcal{A}^{-1} \mathcal{B}, D_{2}=E\left\{A(X)^{\otimes 2}\right\}, D_{1}=E\left\{m_{\psi}^{0}\left(X ; \theta_{0}\right) A^{T}(X)\right\}, \\
\mathscr{A}=\left(\begin{array}{cc}
-V_{2} & -D_{1} \\
-D_{1}^{T} & -D_{2}
\end{array}\right) \text { and } \quad V_{1, \mathrm{AU}}=\left(\begin{array}{cc}
V_{1} & D_{1} \\
D_{1}^{T} & D_{2}
\end{array}\right) ;
\end{gathered}
$$

ii. $\hat{l}_{\mathrm{AU}}\left(\theta_{0}\right) \xrightarrow{\mathscr{L}} \varrho_{1}^{u} \chi_{1}^{2}+\ldots+\varrho_{r+q}^{u} \chi_{r+q}^{2}$, where the weights ϱ_{k}^{u} are the eigenvalues of matrix $V_{2, \mathrm{AU}}^{-1} V_{1, \mathrm{AU}}$, and $V_{2, \mathrm{AU}}=-\mathcal{A}$.

Theorem 3 (i) gives the asymptotic normality of $\hat{\theta_{a e}}$ when auxiliary information is available. To estimate $\Sigma_{a e}$, we only need to approximate D_{1} and D_{2}, see the consistent estimators of V_{1} and V_{2} given bellow Theorem 1. Specifically, we estimate D_{1} and D_{2} as
$\hat{D}_{1}=n^{-1} \sum_{i=1}^{n} \hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta_{0}\right) A^{T}\left(X_{i}\right)$ and $\hat{D}_{2}=n^{-1} \sum_{i=1}^{n} A\left(X_{i}\right)^{\otimes 2}$. It can be shown that Σ_{e} $-\Sigma_{a e}$ is non-negative definite, which indicates that $\theta_{a e}$ is asymptotically more efficient than θ_{e}. Moreover, when auxiliary information on X is available, the amount of information reduction of $\hat{\theta_{a i}}$ compared to that of $\hat{\theta_{e}}$ does not depend on $\pi(X, Y)$. This result is consistent with that under a simpler setting in Wang and Rao (2002). Theorem 3 (ii) gives the asymptotic distribution of $\hat{\ell_{\mathrm{AU}}}\left(\theta_{0}\right)$ as a weighted sum of chi-squares; we can propose several adjusted LELRFs based on $\widehat{\ell_{\mathrm{AU}}}\left(\theta_{0}\right)$ and construct the confidence region of θ. We omit them for the sake of space.

3.2. Asymptotic properties for estimated γ

In many cases, γ is unknown and has to be estimated. We consider that an estimator for γ is computed from an independent survey, or that an estimate is obtained from a validation sample, a subsample of the nonrespondents.

In either case, the resulting semi-parametric modified EEs for the i th observation of θ is

$$
\begin{equation*}
\hat{\psi}_{T}\left(Y_{i}, Z_{i} ; \theta\right)=\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right)+\left(1-\delta_{i}\right) \hat{m} \psi\left(X_{i} ; \theta, \hat{\gamma}\right) \tag{3.6}
\end{equation*}
$$

where $m \hat{\psi}(X ; \theta, \gamma)$ is defined in (2.6).

It can be shown that $n^{-1} \sum_{i=1}^{n} \hat{\psi}_{T}\left(Y_{i}, Z_{i} ; \theta_{0}\right)$ is a set of asymptotically unbiased EEs of θ. So, we can define the LELRF for θ based on the semi-parametric modified EEs (3.6). We use $\hat{\theta_{T}}$ and $\hat{\ell_{T}}$ to denote the MELE of θ and LELRF based on $\hat{\gamma}$, respectively. Assume that $E\{A(X)\}=0$, where $A(X)=\left(A_{1}(X), \ldots, A_{r}(X)\right)^{T}$ is a known $r \geq 1$ vector (or scalar) function and let $\tilde{\Lambda}_{i}(\theta)=\left(\hat{\psi}_{T}^{T}\left(Y_{i}, Z_{i} ; \theta\right), A^{T}\left(X_{i}\right)\right) T$. With the auxiliary information on X, we use $\hat{\theta_{A T}}$ and $\hat{\ell_{A T}}$ to denote the MELE of θ and LELRF based on γ.

We first consider that $\gamma \hat{\text { is }}$ estimated from an independent survey.

Theorem 4—Suppose (C1)-(C8) hold, $\sqrt{n}(\hat{\gamma}-\gamma) \xrightarrow{\mathscr{L}} N\left(0, V_{\gamma}\right)$, and $\gamma \hat{\mathrm{i}}$ independent of $\psi_{M}\left(Y_{i}, Z_{i} ; \theta\right)$. Then
i. $\quad \sqrt{n}\left(\hat{\theta}_{T}-\theta_{0}\right) \xrightarrow{\mathscr{L}} N\left(0, \sum_{T}\right)=N\left(0, \sum_{1} \Gamma^{T} V_{2}^{-1} \tilde{V}_{1} V_{2}^{-1} \Gamma \sum_{1}\right)$, where $\tilde{V}_{1}=V_{1}+$ $H \otimes{ }^{2} V_{\gamma}, H=E\left[(1-\delta)\left(Y-m_{0}(X)\right)\left\{\psi\left(Y, Z ; \theta_{0}\right)-m_{\psi}^{0}\left(X ; \theta_{0}\right)\right\}\right]$ and $m_{0}(\mathrm{X})=\mathrm{E}(\mathrm{Y} \mid$ $\mathrm{X}, \delta=0)$;
ii. $\quad \hat{l}_{T}\left(\theta_{0}\right) \xrightarrow{\mathscr{L}} \varrho_{1}^{\gamma} \chi_{1}^{2}+\varrho_{2}^{\gamma} \chi_{2}^{2}+\cdots+\varrho_{q}^{\gamma} \chi_{q}^{2}$, where the weight $\varrho_{i}^{\gamma} s$ are the eigenvalues of $V_{2}^{-1} \tilde{V}_{1}$.

Theorem 4 (i) generalizes Theorem 3 of Kim and Yu (2011) from mean functional to GEEs. To approximate the asymptotic variance of $\hat{\theta_{T}}$, we only need a consistent estimator of \tilde{V}_{1}, $\tilde{V}_{1}, \hat{V}_{1}^{*}\left(\theta_{0}\right)=\hat{V}_{1}+\hat{H}^{\otimes 2} \hat{V}_{r}$, where \tilde{V}_{r} and $H \tilde{\text { are }}$, respectively, consistent estimators of V_{r} and $H, \hat{V}_{1}=n^{-1} \sum_{i=1}^{n} \hat{\eta}_{i}^{\oplus 2}-\left(n^{-1} \sum_{i=1}^{n} \hat{\eta}_{i}\right)^{\otimes 2}$ with $\eta_{i}=\delta_{i} \pi_{i}(\gamma)^{-1}\left\{\psi\left(Y_{i}, Z_{i} ; \theta_{0}\right)-m^{\wedge}{ }_{\psi}\left(X_{i} ; \theta_{0}, \gamma\right)\right\}$ $+m_{\psi}\left(X_{\mathrm{i}} ; \theta_{0}, \gamma^{\wedge}\right)$. A consistent estimate of H is given by $\hat{H}=n^{-1} \sum_{i=1}^{n}(1-\delta) \hat{\sigma}_{0}^{2}\left(x_{i} ; \hat{\gamma}\right)$, where
$\hat{\sigma}_{0}^{2}(X ; \hat{\gamma})=\mathscr{Q}^{-1} \sum_{j=1}^{n} \delta_{j} \exp \left(\hat{\gamma} Y_{j}\right) K_{h}\left(X_{j}-X\right)\left\{Y_{j}-\hat{m}_{0}\left(X_{j} ; \hat{\gamma}\right)\right\}\left\{\hat{\psi}\left(Y_{j}, Z_{j} ; \theta\right)-\hat{m}_{\psi}\left(X_{j} ; \theta\right)\right\}$ in which $\hat{m}_{0}(X ; \hat{\gamma})=\mathscr{Q}^{-1} \sum_{i=1}^{n} \delta_{i} \exp \left(\hat{\gamma} Y_{i}\right) K_{h}\left(X_{i}-X\right) Y_{i}, \mathscr{Q}=\sum_{i=1}^{n} \delta_{i} \exp \left(\hat{\gamma} Y_{i}\right) K_{h}\left(X_{i}-X\right)$, and $\hat{m}_{\psi}\left(X_{i} ; \theta, \hat{\gamma}\right)=\sum_{i=1}^{n} \omega_{i 0}(X ; \hat{\gamma}) \psi\left(Y_{i}, Z_{i} ; \theta\right)$.

Compared with $\hat{\theta_{e},} \hat{\theta_{T}}$ has larger asymptotic variance due to estimating γ. The asymptotic variance of θ_{T} is the same as that of $\hat{\theta_{e}}$ when γ is exactly estimated. Moreover, if γ is exactly estimated, then $V_{\gamma}=0$ and \widetilde{V}_{1} is equal to V_{1}.

Theorem 5-Under the conditions of Theorem 4, we have

$$
\text { i. } \begin{aligned}
\sqrt{n}\left(\hat{\theta}_{A T}-\theta_{0}\right) \mathscr{L} \\
\mathscr{L}
\end{aligned}\left(0, \sum_{A T}\right)=N\left(0, \mathscr{C}^{-1} \mathscr{B}^{T} \mathscr{A}^{-1} \tilde{V}_{1, \mathrm{AU}} \mathscr{A}^{-1} \mathscr{B}_{\mathscr{C}}{ }^{-1}\right) \text {, where }, ~\left(\begin{array}{cc}
\tilde{V}_{1} & D_{1} \\
D_{1}^{T} & D_{2}
\end{array}\right), ~ \tilde{V}_{1, \mathrm{AU}}=\left(\begin{array}{c}
\end{array}\right.
$$

\mathcal{A}, \mathcal{B}, and \mathcal{C} as defined in Theorem 3.
ii. $\quad \hat{l}_{A T}\left(\theta_{0}\right) \xrightarrow{\mathscr{L}} \varrho_{1}^{a} \chi_{1}^{2}+\cdots \varrho_{r+q}^{a} \chi_{1+q}^{2}$, where the weights $\varrho_{i}^{a} s$ are the eigenvalues of matrix $V_{2, \mathrm{AU}}^{-1} \tilde{V}_{1, \mathrm{AU}}$, and $\mathrm{V}_{2}, \mathrm{AU}=-\mathcal{A}$.
It is can be shown that $\Sigma_{A T} \leq \Sigma_{T}$ indicating that $\hat{\theta_{A T}}$ based on $\tilde{\Lambda_{i}}(\theta)$ is asymptotically more efficient than $\hat{\theta_{T}}$. Thus, the auxiliary information can be used to improve the efficiency of MELE. Theorem 5 generalizes the existing results in Kim and Yu (2011) and Wang and Rao (2002).

We now consider that a validation sample is randomly selected from the set of nonrespondents and responses are obtained for all the elements in the validation sample. A consistent estimator γ of γ can be obtained by solving

$$
\begin{equation*}
\sum_{i=1}^{n}\left(1-\delta_{i}\right) r_{i}\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right)-\tilde{m}_{\psi}(X ; \theta, \gamma)\right\}=0 \tag{3.7}
\end{equation*}
$$

for γ, where r_{i} is an indicator of unit i belonging to the follow-up sample, and $m_{\psi} \hat{(}(X ; \theta, \gamma)$ is defined in (2.6).
 (3.6). Further, we can construct MELE θ_{T} and LELRF $\ell{ }^{\wedge} T$.

Theorem 6—Suppose (C 1$)-(\mathrm{C} 8)$ hold, except for the semiparametric response model in (2.1). Assume that the solution γ to (3.7) exists almost everywhere. Let $\hat{\ell_{T}}$ be the LELRF based on the semi-parametric modified EEs (3.6) using $\hat{\gamma}$ obtained by solving (3.7) and the corresponding MELE is $\hat{\theta_{T}}$. Then
i.

$$
\sqrt{n}\left(\hat{\theta}_{T}-\theta_{0}\right) \xrightarrow{\mathscr{L}} N\left(0, \sum_{T}\right)=N\left(0, \sum_{1} \Gamma^{T} V_{2}^{-1} \tilde{V}_{V} V_{2}^{-1} \Gamma \sum_{1}\right),
$$

where $\tilde{V}_{\mathrm{v}}=\operatorname{Var}\left(\eta_{1 i}\right)$,

$$
\eta_{1 i}=m_{\psi}^{0}\left(X_{i} ; \theta, \gamma_{0}\right)+\left\{\frac{r_{i}}{\nu}\left(1-\delta_{i}\right)+\delta_{i}\right\}\left\{\psi Y_{i}, Z_{i} ; \theta-m_{\psi}^{0}\left(X_{i} ; \theta, \gamma_{0}\right)\right\}
$$

$$
m_{\psi}^{0}\left(X_{i} ; \theta, \gamma\right)=\operatorname{pr} \lim _{n \rightarrow \infty} \hat{m}_{\psi}(X ; \theta, \gamma), \nu=\mathrm{E}(\mathrm{r} \mid \delta=0) \text { and } \gamma_{0} \text { is the probability limit of } \hat{\gamma .}
$$

ii.

$$
\hat{l}_{T}\left(\theta_{0}\right) \underset{\longrightarrow}{\mathscr{L}} \varrho_{1}^{\gamma} \chi_{1}^{2}+\varrho_{2}^{\gamma} \chi_{2}^{2}+\cdots \varrho_{q}^{\gamma} \chi_{q}^{2},
$$

where the weights $\varrho_{i}^{\gamma} s$ are the eigenvalues of matrix $V_{2}^{-1} \tilde{V}_{\mathrm{v}}$. A consistent estimator of $\widetilde{V}_{\mathrm{v}}$ is

$$
\hat{\tilde{V}}_{\mathrm{v}}=\frac{1}{n} \sum_{i=1}^{n} \hat{\eta}_{1 i}^{\otimes 2}-\left(\frac{1}{n} \sum_{i=1}^{n} \hat{\eta}_{1 i}\right)^{\otimes 2},
$$

with

$$
\hat{\eta}_{1 i}=\hat{m}_{\psi}\left(X_{i} ; \theta, \hat{\gamma}\right)+\left\{\frac{r_{i}}{\nu}\left(1-\delta_{i}\right)+\delta_{i}\right\}\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right)-\hat{m}_{\psi}\left(X_{i} ; \theta, \hat{\gamma}\right)\right\} .
$$

In Theorem 6, the response model (2.1) is not needed to show (i). The variance \tilde{V}_{v} can be written

$$
\left.\tilde{V}_{\mathrm{v}}=\operatorname{Var}(\psi(Y, Z ; \theta))+\left(\nu^{-1}-1\right) E\left[(1-\delta)\left\{\psi(Y, Z ; \theta)-m_{\psi}^{0}\left(X ; \theta, \gamma_{0}\right)\right)\right\}^{\otimes 2}\right]
$$

Note that

$$
m_{\psi}^{0}(X ; \theta, \gamma)=\operatorname{pr} \lim _{n \rightarrow \infty} \hat{m}_{\psi}(X ; \theta, \gamma)=E\{\delta \psi(Y, Z ; \theta) \exp (\gamma Y) \mid X\} / E\{\delta \exp (\gamma Y) \mid X\},
$$

Thus, if (2.1) is true, then $\gamma_{0}=\gamma$, and by (i),
$m_{\psi}^{0}\left(X ; \theta, \gamma_{0}\right)=\frac{E\{\delta \psi(Y, Z ; \theta) \exp (\gamma Y) \mid X\}}{E\{\delta \exp (\gamma Y) \mid X\}}=\frac{E\{(1-\delta) \psi(Y, Z ; \theta) \mid X\}}{E\{(1-\delta) \mid X\}}=E\{\psi(Y, Z ; \theta) \mid X, \delta=0\}=m_{\psi}^{0}(X ; \theta)$.

Since

$$
\left.\left.E\left[(1-\delta)\left\{\psi(Y, Z ; \theta)-m_{\psi}^{0}\left(X ; \theta, \gamma_{0}\right)\right)\right\}^{\otimes 2}\right] \geq E\left[(1-\delta)\left\{\psi(Y, Z ; \theta)-m_{\psi}^{0}(X ; \theta)\right)\right\}^{\otimes 2}\right]
$$

the variance $\tilde{\Sigma_{T}}$ in (i) is minimized when (2.1) is true. Thus, the validity of the proposed estimator does not depend on the assumed response model and the role of (2.1) is to improve efficiency.

With the auxiliary information on X, we also use $\hat{\theta_{A T}}$ and $\hat{\ell_{A T}}$ to denote the MELE of θ and LELRF based on γ, estimated by the validation sample.

Theorem 7—Under the conditions of Theorem 6, we have
i.

$$
\begin{gathered}
\sqrt{n}\left(\hat{\theta}_{A T}-\theta_{0}\right) \xrightarrow{\mathscr{L}} N\left(0, \sum_{A T}\right)=N\left(0, \mathscr{C}^{-1} \mathscr{B}^{T} \mathscr{A}^{-1} \tilde{V}_{v, \mathrm{AU}} \mathscr{A}^{-1} \mathscr{B} \mathscr{C}^{-1}\right), \text { where } \\
\tilde{V}_{1, \mathrm{AU}}=\left(\begin{array}{cc}
\tilde{V}_{\mathrm{v}} & D_{1} \\
D_{1}^{T} & D_{2}
\end{array}\right),
\end{gathered}
$$

with \mathcal{R}, \mathcal{R} and \mathcal{R} as defined in Theorem 3 and \tilde{V}_{v} as defined in Theorem 6.
ii. $\begin{aligned} & \hat{l}_{A T}\left(\theta_{0}\right) \xrightarrow{\mathscr{L}} \varrho_{1}^{a} \chi_{1}^{2}+\ldots+\varrho_{r+q}^{a} \chi_{1+q}^{2} \text {, where the weights } \varrho_{i}^{a} s \text { are the eigenvalues of } \\ & V_{2, \mathrm{AU}}^{-1} \tilde{V}_{\mathrm{v}, \mathrm{AU}} .\end{aligned}$

3.3 Bandwidth Selection

Let $F_{0}(y, z \mid X=x)=P(Y \leq y, Z \leq z \mid X=x, \delta=0)$ be the conditional distribution of (Z, Y) given $X=x, \delta=0$. Then, based on the exponential model (2.1), a kernel estimator of $F_{0}(y, z \mid X=x)$ based on the sample is

$$
\hat{F}_{0}(y, z \mid X=x):=\hat{F}_{0}(y, z \mid X=x ; \gamma)=\frac{\sum_{j=1}^{n} \delta_{j} \exp \left(\gamma Y_{j}\right) I\left(Y_{j} \leq y\right) I\left(Z_{j} \leq z\right) K_{h}\left(x-X_{j}\right)}{\sum_{j=1}^{n} \delta_{j} \exp \left(\gamma Y_{j}\right) K_{h}\left(x-X_{j}\right)}
$$

Then $m_{\psi}^{0}\left(X_{i} ; \theta\right)=E\{\psi(Y, Z ; \theta) \mid X=x, \delta=0\}$ may be estimated by

$$
\hat{\mathscr{R}}(x)=\int \psi(y, z ; \theta) d \hat{F}_{0}(y, z \mid X=x ; \gamma) .
$$

It is known that in nonparametric or semiparametric inferences, selecting a suitable bandwidth is a critical issue. The classical optimal rate for the bandwidth is $h=n^{-1 / 5}$, see Sepanski, Knickerbocker and Carroll (1994). But as Zhou et al. (2008) point out, the optimal rate $h=n^{-1 / 5}$ is not allowed here since we require $n h^{2 m} \rightarrow 0$ for the m th kernel. Along the lines of Zhou et al. (2008), we suggest the suitable and simple bandwidth $h=\sigma_{X} n^{-1 / 3}$, where $\widehat{\sigma_{X}}$ is the standard deviation of observation X.

3.4 Reduced Dimension of X

In practical applications the dimension of variate X is high and it is difficult to get an accurate estimator of $m_{\psi}^{0}\left(X_{i} ; \theta\right)$ by a kernel-smoothing procedure. Here, we propose a
dimension reduction technique such that our method is still effective for high-dimensional data.

Let \mathcal{S} be a continuous function from $\mathcal{R}^{d x}$ to \mathcal{R}, such that $\mathcal{S}=\mathcal{S}(X)$ is univariate and $\mathcal{S}_{i}=\mathcal{S}$
$\left(X_{i}\right)$. Suppose $\frac{E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right) \exp \left(\gamma Y_{i}\right) \mid \mathscr{S}_{i}\right\}}{E\left\{\delta_{i} \exp \left(\gamma Y_{i}\right) \mid \mathscr{S}_{i}\right\}}=\frac{E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right) \exp \left(\gamma Y_{i}\right) \mid X_{i}\right\}}{E\left\{\delta_{i} \exp \left(\gamma Y_{i}\right) \mid X_{i}\right\}}$ Then, if (2.1) is true,

$$
\begin{gathered}
E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right)+\left(1-\delta_{i}\right) m_{\psi}^{0}\left(\mathscr{S}_{i} ; \theta\right)\right\} \\
=E\left\{\operatorname{pr}\left(\delta_{i}=1 \mid X_{i}\right) E\left(\psi\left(Y_{i}, Z_{i} ; \theta\right) \mid \delta_{i}=1, X_{i}\right)+\operatorname{pr}\left(\delta_{i}=1 \mid X_{i}\right) E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right) \exp \left(\gamma Y_{i}\right) \mid \mathscr{S}\left(X_{i}\right)\right\} / E\left\{\delta_{i} \exp \left(\gamma Y_{i}\right) \mid \mathscr{S}\left(X_{i}\right)\right\}\right\} \\
=E\left\{\operatorname{pr}\left(\delta_{i}=1 \mid X_{i}\right) E\left(\psi\left(Y_{i}, Z_{i} ; \theta\right) \mid \delta_{i}=1, X_{i}\right)+\operatorname{pr}\left(\delta_{i}=0 \mid X_{i}\right) E\left(\psi\left(Y_{i}, Z_{i} ; \theta\right) \mid \delta_{i}=0, X_{i}\right)\right\} \\
=E\left\{E\left(\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right) \mid X_{i}\right)+\operatorname{pr}\left(\delta_{i}=0 \mid X_{i}\right) E\left\{\left(1-\delta_{i}\right) \psi\left(Y_{i}, Z_{i} ; \theta\right) \mid \mathscr{S}\left(X_{i}\right)\right\} / E\left\{\left(1-\delta_{i}\right) \mid X_{i}\right\}\right\} \\
=E\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right)\right\}=0
\end{gathered}
$$

here $m_{\psi}^{0}\left(\mathscr{S}_{i} ; \theta\right)=E\left\{\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right) \exp \left(\gamma Y_{i} \mid \mathscr{S}_{i}\right)\right\} / E\left\{\delta_{i} \exp \left(\gamma Y_{i}\right) \mid \mathscr{S}_{i}\right\}$. Therefore, the resulting EEs can be modified as

$$
\begin{equation*}
\hat{\psi}_{M}\left(Y_{i}, Z_{i} ; \theta\right)=\delta_{i} \psi\left(Y_{i}, Z_{i} ; \theta\right)+\left(1-\delta_{i}\right) \hat{m}_{\psi}\left(\mathscr{S}_{i} ; \theta, \gamma\right), \tag{3.8}
\end{equation*}
$$

where $\left.m_{\psi} \hat{(} \mathcal{S}_{i} ; \theta, \gamma\right)$ is obtained as was $m \hat{\psi}\left(X_{i} ; \theta, \gamma\right)$ in (2.6), except that X is replaced by \mathcal{S}. This allows us to deal with the curse-of-dimensionality problem.

4. Numerical Examples

4.1 Simulation Studies

Simulation studies of a nonlinear regression model and a logistic regression model were conducted to evaluate the finite sample performance of our proposed MELEs and LELRFs.

Experiment 1 We simulated $\left\{\left(X_{i}, Y_{i}\right): i=1, \ldots, n\right\}$ from a nonlinear regression model. Each dataset contained n observations. For each i, X_{i} was generated from a uniform distribution $U(0,1)$ and then, given X_{i}, Y_{i} was generated from the normal distribution $N\left(\theta X_{i}+\exp \left(\theta X_{i}\right), 1\right)$ with $\theta=1$. We assumed the X_{i} 's completely observed, but the Y_{i} 's subject to missingness. We generated δ_{i}, the missing indicator for Y_{i}, from a Bernoulli distribution with probability $\pi\left(X_{i}, Y_{i}\right)=P\left(\delta_{i}=1 \mid X_{i}, Y_{i}\right)$. We examined seven missing data mechanisms:
i. $\quad \pi(X, Y)=1$ for all X and Y;
ii. $\quad \pi(X, Y)=\operatorname{logit}\left(a_{0}+a_{1} X\right)$ with $\left(a_{0}, a_{1}\right)=(1.8,0.5)$;
iii. $\pi(X, Y)=\operatorname{logit}\left(a_{0}+a_{1} X+a_{2} Y\right)$ with $\left(a_{0}, a_{1}, a_{2}\right)=(1.8,0.25,0.15)$;
iv. $\pi(X, Y)=\operatorname{logit}\left(a_{0}+a_{1} X^{2}+a_{2} Y\right)$ with $\left(a_{0}, a_{1}, a_{2}\right)=(1.5,0.25,0.5)$;
v. $\pi(X, Y)=\operatorname{logit}\left(a_{0}+a_{1} X+a_{2} Y^{2}\right)$ with $\left(a_{0}, a_{1}, a_{2}\right)=(1.5,0.5,0.25)$;
vi. $\pi(X, Y)=\operatorname{logit}\left(a_{0}+a_{1} X+a_{2} Y+a_{3} X Y\right)$ with $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(1.5,0.15,0.5,0.25)$;

> vii. $\pi(X, Y)=\operatorname{logit}\left(a_{0}+a_{1} X+a_{2} Y+a_{3} X Y\right)$ with $\left(a_{0}, a_{1}, a_{2}\right.$, $\left.a_{3}\right)=(0.0001,0.005,0.05,0.25)$.

Scenario (i) is full observation, while (ii) describes a missing at random scenario. Scenarios (iii)-(vii) describe nonignorable missing mechanisms. Scenarios (ii)- (iv) satisfy (2.1) for missing Y. However, (v), (vi), and (vii), which do not satisfy (2.1) and prescribe selection bias in the missingness, were used to investigate the robustness of our proposed empirical likelihood method with respect to the misspecified $\pi(X, Y)$. We took sample size $n=100$, and simulated 1000 datasets under each scenario. Then, we created the incomplete data sets for each of 1000 complete data sets under the six missing data mechanisms. The average missing proportions corresponding to (ii)-(vii) were $11.63 \%, 9.70 \%, 7.56 \%, 6.30 \%, 6.40 \%$, and 39.45%, respectively.

We considered a set of estimating equations as follows:

$$
\psi(Y, X ; \theta)=\binom{\psi_{1}(Y, X ; \theta)}{\psi_{2}(Y, X ; \theta)}=\binom{Y^{2}-\theta^{2} / 3-2 \theta X \exp (\theta X)-\exp (2 \theta X)-1}{Y-\exp (\theta X)-\theta / 2}
$$

For model (2.1), we considered the two cases including $\phi=0$ for the MAR assumption and unknown ϕ. To estimate ϕ in model (2.1), we used a validation sample randomly selected from the set of nonrespondents, Kim and Yu (2011). We chose the Gaussian kernel $K(u)=$ $\exp \left(-u^{2} / 2\right) /(2 \pi)^{1 / 2}$ and set the bandwidth h for estimating $m_{\psi}^{0}(X ; \theta)$ at $c \hat{\sigma_{x} n^{-1 / 3}}$ where c is a constant chosen to be 1 in this experiment, and $\widehat{\sigma_{x}}$ is the standard deviation of observations $\left\{X_{i}: i=1, \ldots, n\right\}$ (Zhou et al.(2008)). We used auxiliary information on X specified by $E(X-$ $0.5)^{2}=1 / 12$. We applied the EL method based on the EEs $\psi(Y, X ; \theta)$ and model (2.1) to compute the MELEs and 95% confidence intervals of θ.Table 1 presents the results.

Inspecting the results in Table 1 reveals the following. MELEs based on the auxiliary information on X outperformed those without the auxiliary information. When model (2.1) was used and ϕ estimated, even though the missingness mechanism was misspecified under (ii), (v), (vi), and (vii), the MELEs of $\theta \hat{\text { were close to their true values. Moreover, their }}$ empirical coverage levels were relatively close to the pre-specified nominal level 95%. This indicates robustness of the nonignorable missingness model (2.1). Under the MAR assumption, $\phi=0$ in model (2.1), the MELEs and confidence intervals of θ under (iii)-(vii) were inaccurate. Under (2.1), the confidence intervals for known γ were shorter than those for estimated γ. As expected, increasing the mean response rates improves the accuracy of parameter estimate and the empirical coverage of confidence interval.

Experiment 2. We simulated $\left\{\left(Y i, X_{i}\right): i=1, \ldots, n\right\}$ as follows. We generated $X_{i 1} \sim U(0,2)$ and $X_{i 2} \sim N(0,1)$, and then we simulated $Y_{i} \sim \operatorname{Bernoulli}\left(p_{i}\right)$, where $p_{i}=\operatorname{logit}\left(X_{i 1}+0.5 X_{i 2}\right)$. We assumed the X_{i}^{\prime} 's completely observed, but the Y_{i} 's subject to missingness. To create missing responses, we generated δ_{i} for Y_{i} from a Bernoulli distribution with probability $\pi_{i}=$ $\pi\left(X_{i}, Y_{i} ; a\right)$ given by $\pi\left(X_{i}, Y_{i} ; a\right)=\operatorname{logit}\left(a_{0}+a_{1} X_{i 1}+a_{2} X_{i 2}+a_{3} Y_{i}+a_{4} X_{i 1} Y_{i}+a_{5} X_{i 2} Y_{i}\right)$, where $a=\left(a_{0}, \ldots, a_{5}\right)^{T}$. We considered (i) $a=(1.0,0.25,0.20,0.25,0.20,0.20)^{T}$, and (ii) a $=(1.5,0.15,0.20,0.25,0.20,0.20)^{T}$. Their corresponding average missing proportions were
17.81% and 12.73%, respectively. We took sample size $n=100$ and simulated 1000 datasets under each scenario.

We considered the missing mechanism model (2.1) and a set of EEs as follows:

$$
\begin{equation*}
\psi\left(Y_{i}, X_{i} ; \beta\right)=\left(X_{i 1}, X_{i 2}\right)^{T}\left\{Y_{i}-\operatorname{logit}\left(\beta_{1} X_{i 1}+\beta_{2} X_{i 2}\right)\right\} \tag{4.1}
\end{equation*}
$$

where $\beta=\left(\beta_{1}, \beta_{2}\right)^{T}$. For (2.1), we considered $\phi=0$ for the MAR assumption, and unknown ϕ. To estimate ϕ in (2.1), we used a validation sample randomly selected from the set of nonrespondents, Kim and Yu (2011). To estimate $m_{\psi}^{0}(X ; \theta)$ in which $\theta=\beta$, we took the kernel function to be $K\left(x_{1}, x_{2}\right)=K\left(x_{1}\right) K\left(x_{2}\right)$, and the bandwidth h to be $\widehat{\sigma_{x 1} n^{-1 / 3}}$, where $K(x)$ $=\exp \left(-x^{2} / 2\right) /(2 \pi)^{1 / 2}$ and $\widehat{\sigma_{x 1}}$ is the standard deviation of observations $\left\{X_{i 1}: i=1, \ldots, n\right\}$. As auxiliary information, we considered $E\left(X_{1}-1\right)^{2}=1 / 3$ and $E\left(X_{2}\right)^{2}=1$. We applied the EL method based on the EEs $\psi(Y, X ; \theta)$ and (2.1) to computing the MELEs and 95% confidence intervals of θ. We present the results in Table 2.

Inspecting the results in Table 2 reveals the following. Under (2.1) with estimated γ, the MELEs and confidence intervals of θ were relatively accurate. This indicates that (2.1) is robust to some degree of model misspecification, since the true probability function $\pi\left(X_{i}, Y_{i}\right.$; $a)$ is different from (2.1). MELEs with the auxiliary information outperformed those without. For the scenarios without the auxiliary information, the empirical coverage probabilities were not close to the pre-specified nominal confidence level 95% when n was small. As expected, increasing the mean response rates increased the accuracy of the empirical coverage probability and decreased the bias and standard deviation (SD) of MELEs and the confidence interval width of θ. MELEs under scenario (i) had smaller root mean square error (RMS) and SD than those under (ii). Ihis indicates that the misspecified missing data mechanism can influence the accuracy of MELE, but such influence is minor. The values of RMS were relatively close to those of SD, indicating that the estimates of the asymptotic variances of MELEs were reasonably accurate even under a misspecified missing data mechanism.

To compare our proposed method with that of Troxel, Lipsitz and Brennan (1997), we created the missing responses in the 1000 datasets $\left\{\left(Y_{i}, X_{i}\right): i=1, \ldots, 100\right\}$ simulated above. We used the missing data mechanisms
(iii) logit $\left\{P\left(R_{i 1}=1\right)\right\}=a_{0}+a_{1} X_{i 1}+a_{2} X_{i 2}+a_{3} Y_{i}$ and logit $\left\{P\left(R_{i 2}=l \mid R_{i 1}=0\right)\right\}=$ $a_{0}+a_{1} X_{i 1}+a_{2} X_{i 2}+a_{3} Y_{i}+\tau$, with $\left(a_{0}, a_{1}, a_{2}, a_{3}, \tau\right)=(0.05,0.25,0.20,0.25,0.5)$,
(iv) logit $\left\{P\left(R_{i 1}=1\right)\right\}=a_{0}+a_{1} X_{i 1}+a_{2} X_{i 2}+a_{3} Y_{i}+a X_{i 1} Y_{i}+a_{5} X_{i 2} Y_{i}$ and logit $\left\{P\left(R_{i 2}=1 \mid\right.\right.$ $\left.\left.R_{i 1}=0\right)\right\}=a_{0}+a_{1} X_{i 1}+a_{2} X_{i 2}+a_{3} Y_{i}+a_{4} X_{i 1} Y_{i}+a_{5} X_{i 2} Y_{i}+\tau$, with $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \tau\right)=$ ($0.5,0.25,0.20,0.25,0.20,0.20,0.5$).

Here (iii) satisfies (2.1) for missing Y, whilst (iv) does not. The average missing rates corresponding to (iii) and (iv) were, respectively, 38.36% and 26.13%. We computed the estimates of (β_{1}, β_{2}) and the 95% confidence regions of (β_{1}, β_{2}) by using our proposed EL method and the Troxel, Lipsitz and Brennan (TLB) method based on EEs (4.1) and (2.1).

Table 3 and Figure 4.1 present the results. Table 3 shows that, compared with the TLB method, our proposed method not only significantly reduced bias, but also yielded parameter estimates with smaller RMS and SD under (iv), indicating that our proposed method is robust to the misspecified response probability model. Figure 4.1 shows that our proposed method gave smaller confidence regions than the TLB method.

We suggest that
EL method can handle over-identified EEs, whereas the TLB method cannot. Moreover, the EL method produces confidence regions, whose shape and orientation are determined entirely by the data. It also does not require a pivotal quantity for constructing confidence regions and has better finite sample performance (Owen (1990)).

We observed that the TLB method requires correct specification of the missing data mechanisms ($R_{i k} \mid Y_{i}, X_{i}$) and the model for $\left(Y_{i} \mid X_{i}\right)$, which limits its applicability. In contrast, our method does not require a specific form of $F(x, y)$, and the validity of our proposed estimator is robust to the assumed response model $P\left(R_{i 1}=1 \mid Y_{i}, X_{i}\right)$.

However, our method can suffer from computational difficulties, including optimizing LELRFs and searching the lower and upper limits for confidence regions of parameters. Moreover, our method can break down in the high-dimensional case, which is the topic of our future research.

4.2. A Data Example

The New York Social Indicators Survey (NYSIS) was a telephone survey of New York City families conducted every two years by the Columbia University School of Social Work. The core survey was designed to document individual and family well-being across multiple domains: human, financial, and social assets; economic and social living conditions; perceptions of the City and its services. The survey also measured the sources and extent of external support from government, family, and friends, community and religious programs, and employers.

A data set was taken from the 2002 NYSIS to illustrate our proposed methodologies. The 2002 SIS survey was conducted between March and June, 2002, and 1501 adults were interviewed. Interviews lasted an average of 24 minutes for families without children, and 34 minutes for families with children. Let $X_{1 i}$ be the number of people in family, $X_{2 i}$ be the working hours, and Y_{i} be the earning of a resident in the New York City in 2001. Since some people were reluctant to report their earnings, some data on Y were missing, but $X_{1 i}$ and $X_{2 i}$ were fully observed. According to the nature of missing data, we deemed it reasonable to assume the missing data mechanism of Y was non-ignorable. For the 2002 NYSIS data set, the response rate of Y_{i} 's was 89.81%.

Our objective was to use the proposed method to estimate the mean earnings of a resident in the New York City in 2001 and the variance of earnings. The vector of estimating functions is

$$
\psi(Y ; \theta)=\binom{Y-\theta_{1}}{\left(Y-\theta_{1}\right)^{2}-\theta_{2}^{2}}
$$

where θ_{1} and θ_{2}^{2} are the mean and variance of Y_{i}^{\prime} 's, respectively. Clearly, $E \psi(Y ; \theta)=0$, and we let $\varrho=n^{-1 / 2} \theta_{2}$. To obtain the estimator $m_{\psi}^{0}(X ; \theta)$, we chose $K\left(x_{1}, x_{2}\right)=K\left(x_{1}\right) K\left(x_{2}\right)$ and set the bandwidth h to be ${\hat{\sigma_{x}}}^{-1 / 3}$, where $K(x)=\exp \left(-x^{2} / 2\right) /(2 \pi)^{1 / 2}$ and $\hat{\sigma_{x}}$ is the standard deviation of X_{1} in the data set. An estimator γ of the exponential tilting parameter γ was
obtained by solving $\sum_{i=1}^{n}\left(1-\delta_{i}\right) r_{i}\left\{\psi\left(Y_{i} ; \theta\right)-\hat{m}_{\psi}(X ; \theta, \gamma)\right\}=0$, where r_{i} was the indicator of unit i belonging to the follow-up sample, and $m_{\psi}(X ; \theta, \gamma)$ is defined in (2.6). The followup rate was 25%. To stabilize the computational algorithm, we used 10^{-4} to scale the observed values of the Y_{i}^{\prime} 's. Zhou's estimators, which assume the missing data mechanism is MAR, and our proposed estimators were computed. Results of estimates, standard errors, and 95% confidence intervals for θ_{1} and θ_{2} are reported in Table 3(a). Table 3(a) has the estimated standard errors (SE) based on Zhou's estimators larger in magnitude than those of our estimators; our proposed estimators had shorter EL-based and NA-based confidence intervals than Zhou's estimators; the EL-based CIs had shorter interval lengths than NAbased CIs; further, results from Table 3(a) indicate that our proposed estimator $\varrho \hat{\varrho}$ was, in
 the SE of $\hat{\theta_{1}}$ based on Zhou's method.

Also, we addressed the case in which only the variable X_{2} : "number of working hours" is considered as auxiliary. Table 3(b) shows the same conclusions as Table 3(a). Comparing Table 3(b) to Table 3(a), we also find that, based on our proposed method, when only the variable X_{2} : "number of working hours" is considered as auxiliary, standard errors of the estimates of the θ_{1} and θ_{2} were smaller than those from considering both X_{1} and X_{2} as auxiliary and, in this case, the corresponding EL-based and NA-based confidence intervals were shorter. Table 3(b) suggests that we need only consider the variable X_{2} as auxiliary to estimate the mean earning of a resident in the New York City in 2001 and the variance of earning in this Indicators Survey.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The research was partially supported by grants from the National Science Fund for Distinguished Young Scholars of China (11225103), and Research Fund for the Doctoral Program of Higher Education of China (20115301110004), and NIH grants RR025747-01, P01CA142538-01, MH086633, EB005149-01, and AG033387.

Appendix

Let $f(\cdot)$ be the probability density function of X and $G(X)=f(X) \exp \{g(X)\}\{1-\pi(X)\}$, where $g(X)$ is defined in (2.1). Take $\pi(x, y)=P(\delta=1 \mid X=x, Y=y), \pi(x)=P(\delta=1 \mid X=x)$,
$m_{\psi}^{0}(x ; \theta)=E\{\psi(Y, Z ; \theta) \mid X=x, \delta=0\}, m_{0}(X)=E(Y \mid X, \delta=0)$, and $m_{Y \psi}(X)=E\left(Y_{\psi}(Y, Z ; \theta) \mid X, \delta\right.$ $=0)$. The symbol ∂ denotes partial differentiation with respect to parameter θ.

Some regularity conditions are required for the proofs of Theorems 1-7.
(C1) The probability density function $f(x)$ is bounded away from ∞ on the support of X, and the second derivative of $f(x)$ is continuous and bounded.
(C2) The probability function $\pi(X, Y)$ satisfies $\min _{i} \pi\left(X_{i}, Y_{i}\right) \geq c_{0}>0$ a.s. for some positive constant c_{0}, and $\pi(X)=E(\pi(X, Y) \mid X) \neq 1$ a.s.
(C3) $E\left(Y^{2}\right)$ and $E\{\exp (2 \gamma Y)\}$ are finite.
(C4) $\psi(\cdot ; \theta)$ is twice continuously differentiable in the neighborhood of the true value θ_{0}, and $m_{\psi}(x ; \theta)$ is twice continuously differentiable in the neighborhood of x.
(C5) $0<E|\psi(Y, Z ; \theta)|^{2}<\infty$ and $0<E\left|\alpha^{T} \partial_{\theta} \psi(Y, Z ; \theta)\right|^{2}<\infty$ for any constant vector a; $\partial_{\theta} \psi(\cdot ; \theta)$ and $\psi^{3}(\cdot ; \theta)$ are bounded by some integrable function $M(z)$ in the neighborhood of θ.
(C6) Matrices $V_{1}, V_{2}, \tilde{V}_{1}, \tilde{V}_{\mathrm{V}}$, and D_{2} are positive definite, and $E\left\{\partial_{\theta} \psi(Y, Z ; \theta)\right\}$ has full column rank p.
(C7) The kernel function $K(\cdot)$ is a probability density function such that
i. is bounded and has compact support;
ii. is symmetric with $\sigma^{2}=\int \omega^{2} K(\omega) d \omega<\infty$;
iii. $K(\omega)>d_{1}$ for some $d_{1}>0$ in some closed interval centered at zero.
(C8) $n h \rightarrow \infty$ and $n h^{4} \rightarrow 0$ as $n \rightarrow \infty$.
These assumptions are common in the missing data and nonparametric literatures. Conditions (C2) is similar to that used in Kim and Yu (2011); (C3) - (C6) are standard assumptions for empirical likelihood based inference with estimating equations; (C7) and (C8) are common in the nonparametric literature.

Lemma 1 Suppose (C1)-(C8) hold. Then

$$
n^{-1 / 2} \sum_{i=1}^{n} \hat{\psi}_{M}\left(Y_{i}, Z_{i}, \theta\right) \xrightarrow{\mathscr{L}} N\left(0, V_{1}\right), n^{-1} \sum_{i=1}^{n} \hat{\psi}_{M}\left(Y_{i}, Z_{i}, \theta_{0}\right)^{\otimes 2} \xrightarrow{\mathscr{P}} V_{2}, n^{-1} \sum_{i=1}^{n} \partial_{\theta \hat{\psi} M}\left(Y_{i}, Z_{i}, \theta_{0}\right) \xrightarrow{\mathscr{P}} \Gamma .
$$

Lemma 2 Suppose (C1)-(C8) hold. Then, as $n \rightarrow \infty$, with probability tending to $1, \hat{l_{M}}(\theta)$ attains its minimum at some point $\hat{\theta_{e}} \hat{\text { in }}$ the interior of the ball $\left\|\theta-\theta_{0}\right\| \leq n^{-\frac{1}{3}}$ and the solutions $\hat{\theta_{e}}$ and $\hat{\lambda_{n 1}}=\lambda_{n 1}\left(\theta_{e}\right)$ satisfy

$$
Q_{n 1}\left(\hat{\theta}_{e}, \hat{\lambda}_{n 1}\right)=0 \text { and } Q_{n 2}\left(\hat{\theta}_{e}, \hat{\lambda}_{n 1}\right)=0 .
$$

Lemma 3 Suppose (C1)-(C8) hold. Then

$$
n^{-1 / 2} \sum_{i=1}^{n} \Lambda_{i}\left(\theta_{0}\right) \xrightarrow{\mathscr{L}} N\left(0, V_{1, \mathrm{AU}}\right), n^{-1} \sum_{i=1}^{n} \Lambda_{i}\left(\theta_{0}\right) \Lambda_{i}^{T}\left(\theta_{0}\right) \xrightarrow{\mathscr{P}} V_{2, \mathrm{AU}},
$$

where

$$
V_{2, \mathrm{AU}}=\left(\begin{array}{cc}
V_{2} & D_{1} \\
D_{1}^{T} & D_{2}
\end{array}\right)
$$

Lemma 4. Let U be r-vector of random variables that satisfies $U \xrightarrow{\mathscr{L}} N\left(0, I_{r}\right)$, where I_{r} is the $r \times r$ identity matrix. Let P be a $r \times r$ nonnegative definite matrix with eigenvalues l_{1}, \ldots, l_{r}. Then, $U^{T} \mathrm{PU} \xrightarrow{\mathscr{L}} l_{1} \chi_{1}^{2}+\cdots+l_{r} \chi_{r}^{2}$, where $\chi_{i}^{2 ' \mathrm{~s}}(i=1, \ldots, r)$ are χ^{2} random variables each with one degree of freedom.

Lemma 5. Suppose (C1)-(C8) hold. Then
(i) when the parameter estimate for γ is compute from an independent survey,

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{\psi}_{T}\left(Y_{i}, Z_{i}, \theta\right) \xrightarrow{\mathscr{L}} N\left(0, \tilde{V}_{1}\right),
$$

where $\tilde{V}_{1}=V_{1}+H^{\otimes 2} V_{r}$.
(ii) when the parameter estimate for γ is obtained from a validation sample,

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{\psi}_{T}\left(Y_{i}, Z_{i}, \theta\right) \xrightarrow{\mathscr{L}} N\left(0, \tilde{V}_{\mathrm{v}}\right),
$$

where $\tilde{V}_{\mathrm{v}}=\operatorname{Var}\left(\eta_{1 i}\right)$,

$$
\eta_{1 i}=m_{\psi}^{0}\left(X_{i} ; \theta, \gamma_{0}\right)+\left\{\frac{r_{i}}{v}\left(1-\delta_{i}\right)+\delta_{i}\right\}\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right)-m_{\psi}^{0}\left(X_{i} ; \theta, \gamma_{0}\right)\right\}
$$

$m_{\psi}^{0}\left(X_{i} ; \theta, \gamma\right)=\operatorname{pr} \lim _{n \rightarrow \infty} \hat{m}_{\psi}(X ; \theta, \gamma), \nu=E(r \mid \delta=0)$, and γ_{0} is the probability limit of γ.
Lemma 6. Suppose (C1)-(C8) hold. Then

$$
\frac{1}{n} \sum_{i=1}^{n} \hat{\psi}_{T}\left(Y_{i}, Z_{i} ; \theta_{0}\right) \hat{\psi}_{T}^{T}\left(Y_{i}, Z_{i} ; \theta_{0}\right) \xrightarrow{\mathscr{P}} V_{2}, \frac{1}{n} \sum_{i=1}^{n} \partial_{\theta} \hat{\psi}_{T}\left(Y_{i}, Z_{i} ; \theta_{0}\right) \xrightarrow{\mathscr{P}} \Gamma,
$$

where $V_{2}=E\left\{\left[\delta_{i}\left\{\psi\left(Y_{i}, Z_{i} ; \theta\right)-m_{\psi}^{0}\left(X_{i} ; \theta\right)\right\}+m_{\psi}^{0}\left(X_{i} ; \theta\right)\right]^{\otimes 2}\right\}$ and $\Gamma=E\left\{\partial_{\theta} \psi(Y, Z ; \theta)\right\}$.
Lemma 7. Suppose (C1)-(C8) hold. Then
(i) when the parameter estimate for γ is compute from an independent survey,

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \tilde{\Lambda}_{i}\left(\theta_{0}\right) \xrightarrow{\mathscr{L}} N\left(0, \tilde{V}_{1, \mathrm{AU}}\right), \frac{1}{n} \sum_{i=1}^{n} \tilde{\Lambda}_{i}\left(\theta_{0}\right) \tilde{\Lambda}_{i}^{T}\left(\theta_{0}\right) \xrightarrow{\mathscr{P}} V_{2, \mathrm{AU}},
$$

where

$$
\tilde{V}_{1, \mathrm{AU}}=\left(\begin{array}{cc}
\tilde{V}_{1} & D_{1} \\
D_{1}^{T} & D_{2}
\end{array}\right), V_{2, \mathrm{AU}}=\left(\begin{array}{cc}
V_{2} & D_{1} \\
D_{1}^{T} & D_{2}
\end{array}\right)
$$

with $D_{1}=E\left\{m_{\psi}^{0}\left(X ; \theta_{0}\right) A^{T}(X)\right\}, D_{2}=E\left\{A(X) A^{T}(X)\right\}, \tilde{V}_{1}$ is defined in Theorem 4, and V_{2} is defined in Theorem 2.
(ii) when the parameter estimate for γ is obtained from a validation sample,

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \tilde{\Lambda}_{i}(\theta) \xrightarrow{\mathscr{L}} N\left(0, \tilde{V}_{\mathrm{v}, \mathrm{AU}}\right), \frac{1}{n} \sum_{i=1}^{n} \tilde{\Lambda}_{i}\left(\theta_{0}\right) \tilde{\Lambda}_{i}^{T}\left(\theta_{0}\right) \xrightarrow{\mathscr{P}} V_{2, \mathrm{AU}},
$$

where

$$
\tilde{V}_{\mathrm{v}, \mathrm{AU}}=\left(\begin{array}{cc}
\tilde{V}_{\mathrm{v}} & D_{1} \\
D_{1}^{T} & D_{2}
\end{array}\right), V_{2, \mathrm{AU}}=\left(\begin{array}{cc}
V_{2} & D_{1} \\
D_{1}^{T} & D_{2}
\end{array}\right)
$$

\tilde{V}_{v} as defined in Theorem 6.

References

Owen AB. Empirical likelihood confidence regions. The Annals of Statistics. 1990; 18:90-120.
Ibrahim JG, Chen MH, Lipsitz SR, Herring AH. Missing data methods for generalized linear models: a comparative review. Journal of the American Statistical Association. 2005; 100:332-346.
Ibrahim JG, Molenberghs G. Missing data methods in longitudinal studies: a review. Test. 2009; 18:143. [PubMed: 21218187]

Kim JK, Yu CL. A semiparametric estimation of mean functionals with nonignorable missing data. Journal of the American Statistical Association. 2011; 106:157-165.

Lee, AJ.; Scott, AJ. Ultrasound in ante-natal diagnosis. In: Brook, RJ.; Arnold, GC.; Hassard, TH.; Pringle, RM., editors. The Fascination of Statistics. Marcel Dekker; New York: 1986. p. 277-293.
Lipsitz SR, Ibrahim JG, Zhao LP. A new weighted estimating equation for missing covariate data with properties similar to maximum likelihood. Journal of the American Statistical Association. 1999; 94:1147-1160.
Little, RJA.; Rubin, DB. Statistical Analysis With Missing Data. 2nd. Wiley; 2002.
Newey WK, Smith RJ. Higher order properties of gmm and generalized empirical likelihood estimations. Econometrica. 2004; 72:219-255.
Qin J, Lawless J. Empirical likelihood and general estimating equations. The Annals of Statistics. 1994; 22:300-325.
Qin J, Zhang B, Leung D. Empirical likelihood in missing data problems. Journal of the American Statistical Association. 2009; 104:1492-1503.
Robins J, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association. 1994; 89:846-866.
Robins J, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association. 1995; 90:106121.

Seber, GAF.; Wild, CJ. Nonlinear Regression. Wiley; New York: 1989.
Sepanski JH, Knickerbocker R, Carroll RJ. A Semiparametric Correction for Attenuation. Journal of the American Statistical Association. 1994; 89:1366-1373.
Troxel AB, Lipsitz SR, Brennan TA. Weighted estimating equations with nonignorably missing response data. Biometrics. 1997; 53:857-869. [PubMed: 9290219]
Wang D, Chen SX. Empirical likelihood for estimating equations with missing values. The Annals of Statistics. 2009; 37:490-517.
Wang QH, Rao JNK. Empirical likelihood-based inference under imputation for missing response data. The Annals of Statistics. 2002; 30:896-924.
Zhou Y, Wan ATK, Wang XJ. Estimating equations inference with missing data. Journal of the American Statistical Association. 2008; 103:1187-1199.
Zhu HT, Ibrahim JG, Tang NS, Zhang HP. Diagnostic measures for empirical likelihood of general estimating equations. Biometrika. 2008; 95:489-507.

Figure 4.1.
Results of Experiment 2: 95\% confidence regions for (β_{1}, β_{2}) based on EL (the dot curve) and TLB (the solid curve) under the scenario (iii) with a sample size $n=100$ for a simulated dataset.

$\pi(\boldsymbol{X}, \boldsymbol{Y})$	Est.	Bias	RMS	SD	CP	WD
	$\hat{\theta_{Z}}$	0.017	0.065	0.063	0.933	0.246
	$\hat{\theta_{A Z}}$	0.016	0.060	0.057	0.911	0.243
Scenario (vii)	$\hat{\theta_{T}}$	0.020	0.094	0.096	0.936	0.407
	$\hat{\theta_{A T}}$	0.023	0.089	0.092	0.935	0.430
	$\hat{\theta_{Z}}$	0.042	0.063	0.076	0.964	0.375
	$\hat{\theta_{A Z}}$	0.035	0.061	0.070	0.965	0.388

$\theta \hat{F}$ and $\theta \hat{F A}$ denote MELEs of θ without and with the auxiliary information on X based on the complete data, respectively, whilst $\theta \hat{Z}$ and $\hat{A Z Z}$ denote Zhou's estimators in (2.7) with $\gamma=0$, with and without
auxiliary information, $\theta \hat{Z}$ and $\hat{\theta A Z}$ assume that the missing data from the response mechanism are ignorable, 'Bias' denotes the difference between the true value and the mean of the estimates based on
1000 replications, 'RMS' is the root mean square between the true value and the estimates based on 1000 replications, 'SD' is the standard deviation of the estimates based on 1000 replications, ' CP ' is the
coverage probability and 'WD' is the average interval width.
Table 2
Performance of the MELEs and 95\% empirical-likelihood-based confidence intervals for θ in Experiment 2

$\pi(X, Y)$	β	Est.	Bias	RMS	SD	CP	WD
Full Obs.	β_{1}	$\beta_{1 F}$	0.001	0.176	0.176	0.955	0.800
		$\beta_{1 F A}$	0.001	0.176	0.176	0.962	0.909
	β_{2}	$\beta_{2 F}$	0.012	0.195	0.195	0.955	0.800
		$\hat{\beta} \hat{2 F A}$	0.014	0.199	0.198	0.962	0.909
Scenario 1	β_{1}	$\hat{\beta} \hat{1 T}$	0.019	0.253	0.253	0.941	0.803
		$\hat{\beta} \hat{1 A T}$	0.043	0.211	0.207	0.948	0.782
		$\beta_{1 Z}$	0.053	0.728	0.727	0.921	0.792
		$\hat{\beta} \hat{1 A Z}$	0.003	0.789	0.789	0.911	0.778
	β_{2}	$\hat{\beta_{2 T}}$	0.021	0.268	0.267	0.941	0.803
		$\hat{\beta} \hat{2 A T}$	0.012	0.251	0.251	0.945	0.782
		$\beta_{2 Z}$	0.066	0.846	0.844	0.921	0.792
		$\hat{\beta_{2 A Z}}$	0.029	0.481	0.480	0.915	0.778
Scenario 2	β_{1}	$\hat{\beta} \hat{1 T}$	0.032	0.239	0.237	0.951	0.816
		$\hat{\beta-\hat{1 A T}}$	0.031	0.196	0.194	0.942	0.791
		$\beta_{1 Z}$	0.078	0.266	0.254	0.934	0.807
		$\hat{\beta} \hat{1 A Z}$	0.046	0.263	0.259	0.916	0.792
	β_{2}	$\beta_{2 T}$	0.032	0.251	0.250	0.951	0.816
		$\hat{\beta-\hat{A T}}$	0.005	0.234	0.234	0.950	0.791
		$\beta_{2 Z}$	0.046	0.275	0.272	0.934	0.807
		$\hat{\beta} \hat{2 A Z}$	0.011	0.698	0.699	0.920	0.792

Estimates of β_{1} and β_{2} for the EL and TLB methods in Experiment 2

Methods	NMAR			MAR		
	$\theta_{1}{ }^{\wedge}$	$\theta_{2}{ }^{\text {a }}$	ϱ^{\wedge}	$\theta_{1}{ }^{\wedge}$	$\theta_{2}{ }^{\text {- }}$	ϱ^{\wedge}
Est	6.204	22.122	0.571	6.132	21.720	0.561
SE	0.560	4.681	-	0.765	6.215	-
NACI	(5.106,7.302)	(12.948,31.296)	-	(4.634,7.631)	(9.539,33.902)	-
NAAW	2.196	18.348	-	2.997	24.363	-
ELCI	(5.354,7.454)	(17.612,26.872)	-	(5.132,7.582)	(17.120,26.590)	-
ELAW	2.100	9.260	-	2.450	9.470	-

[^1]
[^0]: Supplementary material: Supplementary Materials available in the attached file include the proofs of Lemmas 1-7 and Theorems 1-7, and the algorithms for computing parameter estimates.

[^1]:

