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Abstract

Methods for handling missing data depend strongly on the mechanism that generated the missing

values, such as missing completely at random (MCAR) or missing at random (MAR), as well as

other distributional and modeling assumptions at various stages. It is well known that the resulting

estimates and tests may be sensitive to these assumptions as well as to outlying observations. In

this paper, we introduce various perturbations to modeling assumptions and individual

observations, and then develop a formal sensitivity analysis to assess these perturbations in the

Bayesian analysis of statistical models with missing data. We develop a geometric framework,

called the Bayesian perturbation manifold, to characterize the intrinsic structure of these

perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and

quantify the effect of various perturbations to statistical models. We use the proposed sensitivity

analysis procedure to systematically investigate the tenability of the non-ignorable missing at

random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a

dataset is analyzed to illustrate the use of our diagnostic measures.
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1. Introduction

It is common to have missing data in surveys, clinical trials, and longitudinal studies.

Various statistical methods have been developed to handle missing data. These methods

depend on the missing data mechanism that generates the missing values and other modeling

assumptions at various stages, and the resulting estimates and tests can be sensitive to these

assumptions. Sensitivity analyses are commonly performed to perturb the model

assumptions and/or individual observations to check the sensitivity of a specific influence
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measure (e.g., a parameter of interest). There is an extensive literature on sensitivity analysis

for missing data problems in frequentist analysis (Copas and Eguchi (2005), Little and

Rubin (2002), Zhu and Lee (2001), Copas and Li (1997), van Steen et al. (2001), Troxel

(1998), Jansen et al. (2006), Jansen et al. (2003), Verbeke et al. (2001), Troxel et al. (2004),

Shi, Zhu and Ibrahim (2009), Hens et al. (2006), Daniels and Hogan (2008)).

The literature on influence measures include Copas and Eguchi (2005), Zhu and Lee (2001),

Troxel et al. (2004), Copas and Li (1997), van Steen et al. (2001), Troxel (1998), Jansen et

al. (2006), Jansen et al. (2003), Hens et al. (2006), Verbeke et al. (2001), Shi, Zhu and

Ibrahim (2009), and Daniels and Hogan (2008). For instance, in frequentist analysis, Copas

and Eguchi (2005) developed a general formulation for assessing the bias of maximum

likelihood estimates in the presence of small model perturbations for missing data problems.

The local influence method in Cook (1986) was successfully applied to carry out sensitivity

analyses for various statistical models with missing data (van Steen et al. (2001), Troxel

(1998), Jansen et al. (2006), Hens et al. (2006), Jansen et al. (2003), Verbeke et al. (2001)).

Shi, Zhu and Ibrahim (2009) further systematically investigated the local influence methods

proposed in Zhu et al. (2007) for GLMs with missing at random (MAR) covariates as well

as not missing at random (NMAR) covariates, often referred to as nonignorable missing

covariates.

In contrast, in the Bayesian literature, several analogues of Cook (1986) were developed to

carry out model assessment by using either the curvature of some influence measures (Millar

and Stewart (2007), Linde (2007), Lavine (1991)) or the Fréchet derivative of the posterior

with respect to the prior (Dey, Ghosh and Lou (1996), Gustafson (1996a), Gustafson

(1996b), Berger (1994)). Daniels and Hogan (2008) examined several global and local

sensitivity methods in the Bayesian analysis of pattern mixture models (Little (1994),

Andridge and Little (2011)). Recently, Zhu, Ibrahim and Tang (2011) developed a general

framework of Bayesian influence analysis for assessing various perturbation schemes to the

data, the prior and the sampling distribution for a class of statistical models without missing

data.

The aim of this paper is to develop a formal Bayesian sensitivity analysis in statistical

models with missing data. We introduce various perturbations to the modeling of the

missing data mechanism, individual observations, and the prior. We develop a geometric

framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure

of these perturbations. We examine several influence measures for sensitivity analysis and

for quantifying the effect of various perturbations to statistical models with missing data.

In the paper, we develop a Bayesian perturbation manifold for a large class of statistical

models with missing data; examine three Bayesian influence measures including the ϕ-

divergence, the posterior mean distance, and the Bayes factor; focus on assessing missing

data mechanism, while simultaneously perturbing other distributional assumptions, the prior,

and individual observations.

To motivate our methodology, we consider data on 1116 female sex workers in Philippine

cities from a study of the relationship between Acquired Immune Deficiency Syndrome
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(AIDS) and the use of condoms (Morisky et al. (1998)), which is discussed in more detail in

Section 3. The data contains items about knowledge of AIDS, attitude toward AIDS, belief,

and self efficiency of condom use. Nine variables in the original data set (items 33, 32, 31,

43, 72, 74, 27h, 27e, and 27i in the questionnaire) were taken as responses. The primary

interest here was to find how the threat of AIDS is associated with aggressiveness of the sex

worker and the fear of contracting AIDS. The responses and covariates are missing at least

once for 361 workers (32.35%). In Section 3, we carry out a Bayesian analysis of a

structural equations model with both missing covariates and responses to analyze this data

set, and present a formal Bayesian sensitivity analysis.

The rest of this paper is organized as follows. In Section 2, we construct a Bayesian

perturbation manifold to characterize various perturbations to statistical models with missing

data and derive its associated geometric quantities. We propose global and local influence

measures to quantify the effects of perturbing missing data mechanism, while

simultaneously perturbing the data, the prior, and other model assumptions on the posterior

quantities. In Section 3, we present simulation studies and a data analysis to illustrate the

importance of the proposed method in assessing the missing data mechanism and other

potential misspecifications.

2. Bayesian sensitivity analysis

2.1. Statistical models with missing data

Let zobs = (z1,o, . . . , zn,o) and zmis = (z1,m, . . . , zn,m) be the observed and missing data,

respectively, and zcom = (z1,c, . . . , zn,c) = (zmis, zobs) be the complete data, where zi,c = (zi,o,

zi,m) for i = 1, . . . , n. In applications, the dimensions of zi,c, zi,o and zi,m may be different

across i. For instance, the number of observations may vary across clusters for clustered

data.

For missing data problems, we consider a statistical model p(zcom | θ) for the complete data

such that p(zcom | θ) is the product of a model for the observed data p(zobs | θ) and a model

for the missing data given the observed data p(zmis | zobs, θ). This class of statistical models

for missing data includes generalized linear models with missing covariates and/or

responses, generalized linear mixed models, nonlinear models, parametric survival models,

and many others. To carry out Bayesian inference, we usually use Markov chain Monte

Carlo (MCMC) methods to simulate samples from the posterior distribution of the observed

data

(2.1)

Example 1 (Missing Covariates Data). Consider n independent observations zcom = {zi,c =

(xi, ci, ri, yi), i = 1, . . . , n}, where yi is the response variable, xi is a p1 × 1 vector of

completely observed covariates, and ci = (ci,m, ci,o) is a p2 × 1 vector of partially observed

covariates, where ci,m and ci,o denote the missing and observed components of ci,

respectively. Let ri be a p2 × 1 vector whose jth component, rij, equals 1 if the jth component

of ci, denoted by cij, is observed, and 0 if cij is missing. We assume that p(xi, ci, ri, yi|θ) =
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p(yi|xi, ci, θ)p(xi, ci|θ) p(ri|yi, xi, ci, θ), where θ denotes the vector of unknown parameters.

In this case, zi,m = ci,m and zi,o = (xi, ci,o, ri, yi) for all i.

We assume the generalized linear model (GLM)

(2.2)

for i = 1, . . . , n, where ai(·), b1(·), and b2(·,·) are known functions, ηi = η(μi) and

, in which g(·) is a known link function, β = (β1, . . . , βp)′ and p = p1 + p2.

We assume that

(2.3)

Similarly, we model the missing-data mechanism as

(2.4)

To carry out a full Bayesian analysis, we need to specify a prior for θ. We can take an

independent prior for θ such that p(θ) = p(τ)p(β)p(ξ)p(α). For τ and β, we can take τ ~

gamma(α0/2, λ0/2) and β ~ N(μ0, Σ0), where α0, λ0, μ0(p×1), and Σ0(p × p positive definite

matrix) are pre-specified hyperparameters. If λmin(Σ0) converges to ∞, then N(μ0, Σ0) tends

to an improper prior. In contrast, if λmax(Σ0) is very small, then N(μ0, Σ0) tends to a strongly

informative prior. For α, we can take an independent prior p(α) = p(α1)p(α21) · · · p(α2p2).

To make valid Bayesian inferences about β, requires an appropriate prior p(θ) and the

correct specification of the sampling distributions (2.2)-(2.4), so it is crucial to assess the

robustness of both the prior and the sampling distribution with respect to posterior estimate

of β. Particularly, there is a growing awareness of the need for a formal method for

investigating the sensitivity of inference to the missing-data mechanism (Copas and Eguchi

(2005), Little and Rubin (2002), Zhu and Lee (2001), Troxel et al. (2004), Copas and Li

(1997), van Steen et al. (2001), Troxel (1998), Jansen et al. (2006), Jansen et al. (2003),

Verbeke et al. (2001), Shi, Zhu and Ibrahim (2009), Daniels and Hogan (2008), Ibrahim,

Chen and Lipsitz (2005)).

Example 2 (Missing Response Data). We consider n independent observations zcom = {zi,c =

(xi, ri, yi), i = 1, . . . , n}, where yi = (yi,m, yi,o) is a py × 1 response vector, in which yi,m and

yi,o denote the missing and observed components of yi, respectively, and xi is a px × 1 vector

of completely observed covariates. Moreover, ri is a py × 1 vector, whose jth component, rij,

equals 1 if the jth component of yi, denoted by yij, is observed, and 0 if yij is missing. It is

common to model the joint distribution of (yi, ri) given xi such that

(2.5)

where θI is the vector of parameters of interest and θN includes all parameters in the missing

data mechanism p(ri|yi,m, yi,o, xi, θN). In this case, zi,m = yi,m and zi,o = (xi, yi,o, ri) for all i.
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To carry out a full Bayesian analysis, we need to specify a prior for θ and the missing data

mechanism. For instance, a well-known ignorability condition (Rubin, 1976) is commonly

used to carry out posterior inference on θI without specifying the missing data mechanism.

Specifically, a missing data mechanism is said to be ignorable if it is MAR, (2.5) is true and

p(θ) = p(θI)p(θN). Although it is computationally easier to assume the ignorability

condition, most missing data mechanisms are nonignorable (Daniels and Hogan (2008)). An

alternative method for nonignorable missing data is to use the extrapolation factorization

(2.6)

In this case, p(yi,m|yi,o, ri, xi, θN) is an extrapolation model and cannot be identifiable by the

observed data, while p(yi,o, ri|xi, θI) is an observed data model. Here, the components in θN

are called sensitivity parameters (Daniels and Hogan (2008)).

2.2. Bayesian Perturbation Manifold

We introduce a perturbation vector ω = ω(zcom, θ) in a set Ω to perturb the complete-data

model p(zcom, θ) = p(θ)p(zcom | θ). To ensure that the perturbation ω is meaningful and

sensible, we require the following. (1) p(zcom, θ | ω) is the probability density of (zcom, θ)

for the perturbed model as ω varies in a set Ω; (2) There is an ω0 ∈ Ω such that p(zcom, θ |

ω0) = p(zcom, θ) and p(zobs, θ | ω0) = ∫ p(zcom, θ | ω0)dzmis = p(zobs, θ) for all (z, θ). The

ω0 can be regarded as the ‘central point’ of Ω representing no perturbation. See Gustafson

(2006) and Daniels and Hogan (2008) for general discussions of model expansion from a

Bayesian viewpoint.

Example 1 (Continued) We are interested in perturbing the missing-data mechanism p(ri|yi,

xi, ci, ξ) in (2.4). For instance, when (2.4) is assumed to be MAR, we can consider a general

perturbation scheme

(2.7)

where ω = (ω1, . . . , ωm)T is an m×1 vector. The perturbation (2.7) is commonly used to

perturb the given GLM with MAR covariates in the direction of NMAR (Shi, Zhu and

Ibrahim (2009), Verbeke et al. (2001)). We can also consider the individual-specific

infinitesimal perturbation (Verbeke et al. (2001), Hens et al. (2006), Jansen et al. (2006),

Jansen et al. (2003))

(2.8)

Large effect of ωi in (2.8) can provide insight into which cases have large influence.

Influence measures developed for the perturbation (2.8) are closely related to Bayesian case

influence measures, such as the conditional predictive ordinate (Geisser (1993), Gelfand et

al. (1992)).

We develop a geometric framework, called a Bayesian perturbation manifold, to delineate

the effect of introducing each perturbation ω in Ω. Under some conditions,

ZHU et al. Page 5

Stat Sin. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



 is a Riemannian Hilbert manifold (Lang (1995)). On , we

consider a smooth curve C(t) given by

(2.9)

in which  is called the tangent (or derivative)

vector. The tangent vectors for all possible curves of the form C(t) form the tangent space of

 at ω, denoted by . The inner product of any two tangent vectors v1(ω) and v2(ω) in

 is given by

(2.10)

It can be shown that the length of the curve C(t) from t1 to t2 is

(2.11)

We consider the concept of a geodesic as a direct extension of the straight line in Euclidean

space on . For a real function f(ω) defined on , we take df[v](ω) = limt→0t–1(f[p(zcom,

θ | ω(t))] – f[p(zcom, θ | ω(0))]) as the directional derivative of f at the perturbation

distribution p(zcom, θ | ω) in the direction of . For any two smooth vector

fields u(ω) and v(ω) in , we define the directional derivative du[v](ω) =

limt→0t–1{u(ω(t)) – u(ω(0))} of a vector field u(ω), called the connection, at the

perturbation distribution in the direction of v(ω). The popular Levi-Civita connection,

denoted by ∇vu(ω), is

(2.12)

A geodesic on the manifold  is a smooth curve τ(t) = p(zcom, θ | ω(t)) on  with

 such that ∇vv(ω(t)) = 0. The geodesic is (locally) the shortest

path between points on . Finally, based on these geometric quantities of , we define

 as the Bayesian perturbation manifold (BPM) with an inner product < u,

v > and the Levi-Civita connection ∇vu.

Compared to the existing sensitivity analysis methods, a key advantage of using the BPM is

that it provides a framework for quantifying simultaneous perturbations to the prior, the

missing data mechanism and other distributional assumptions, and individual observations.

Such simultaneous perturbations can be important, since it can allow one to disentangle the

uncertainty about unverifiable missing data mechanism assumptions from the

misspecification of the prior and other distributional assumptions, as well as the presence of

outliers. According to the best of our knowledge, no methods currently exist for handling the

simultaneous perturbations.

Example 1 (Continued) Consider the simultaneous perturbation model
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(2.13)

where ω includes ωθ and  for all i and all components of ω are assumed

to be independent of zcom and θ. The three terms on the right hand side of (2.13) are

assumed to be probability densities and ωθ, ωiy, ωic, and ωir for all i have no components in

common. In this case, the BPM is given by

(2.14)

where p(xi, ci, ri, yi|θ, ωi) denotes the product of the three terms on the right hand side of

(2.13). Consider ω(t) as a vector of smooth functions of t and vh = dω(0)/dt. It follows from

the arguments in Zhu, Ibrahim and Tang (2011) that  is spanned by the functions ∂ωθ
logp(θ| ωθ), ∂ωiy logp(yi|xi, ci, β, τ, ωiy), ∂ωic logp(xi, ci|α, ωic), and ∂ωir logp(ri|xi, ci, yi, ξ,

ωir), where ∂ω = ∂/∂ω. By using the chain rule, we have

(2.15)

where

(2.16)

is the Bayesian Fisher information matrix with respect to ω (Daniels and Hogan (2008)).

Geometrically, ωθ, ωiy, ωic, and ωir are orthogonal to each other with respect to the inner

product defined in (2.10) (Cox and Reid (1987)). Similar to Zhu et al. (2007), one can easily

separate out the influence of the missing data mechanism from that of the data, the prior, and

other distributional assumptions. Example 2 (Continued). The sensitivity parameters in (2.6)

can be either fixed at a range of values, or assigned an appropriate distribution (Daniels and

Hogan (2008)). Here we take the first approach and treat θN or its parametrization as a

perturbation vector. Generally, we consider a simultaneous perturbation model

(2.17)

where ω includes ωθ, ωN, and ωI, which represent the perturbation vectors to the prior, the

extrapolation model, and the observed data model, respectively. For simplicity, we assume

that ωθ, ωN, and ωI do not share any common components and are independent of zcom and

finite dimensional parameters. Moreover, it is assumed that p(θ|ωθ), p(yi,m|yi,o, ri, xi, ωN),

and p(yi,o, ri|xi, θI, ωI) for all i are probability densities. Generally, it is possible that ωN and

ωI may depend on zcom and vary across i.

Consider ω(t) as a vector of smooth functions of t and vh = dω(0)/dt. In this case,  is

spanned by ∂ωθ logp(θ |ω), , and
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. Subsequently, we can calculate the Bayesian Fisher

information matrix G(ω(0)) according to (2.16). Geometrically, ωθ, ωN, and ωI are also

orthogonal to each other with respect to the inner product defined in (2.10) (Cox and Reid

(1987)).

2.3 Intrinsic influence measures

As the purpose of a sensitivity analysis is to assess the uncertainty of the parameter of

interest as ω varies in Ω given the data at hand, we take an IFM to be a functional of p(θ|

zobs, ω) as ω varies in Ω, where p(θ | zobs, ω) is the perturbed posterior distribution of θ
given zobs and ω. Generally, let IF(ω) = IF(p(θ | zobs, ω)) be the intrinsic influence measure.

Three common intrinsic influence measures are the ϕ-divergence function, the posterior

mean, and the Bayes factor (Kass et al (1989), Kass and Raftery (1995)).

For the missing data mechanism, one can fix an ω0 ∈ Ω corresponding to MAR and then

develop a relative intrinsic influence measure (RIFM) as a functional of p(θ | zobs, ω) and

p(θ | zobs, ω0),

(2.18)

For instance, RI(ω, ω0) can be the total variation distance of p(θ | zobs, ω0) and p(θ | zobs, ω)

(Dey, Ghosh and Lou (1996)). One can take RI(ω, ω0) = IF(ω) – IF(ω0) as the difference

between IFMs at ω and ω0. See more examples in Section 2.4.

We also suggest rescaling RI(ω, ω0) by using the minimal geodesic distance between

p(zcom, θ | ω) and p(zcom, θ | ω0), g(ω, ω0), on the BPM . Thus, we define the intrinsic

influence measure for comparing p(θ | zobs, ω) to p(θ | zobs, ω0) as

(2.19)

The proposed IGIRI(ω, ω0) can be interpreted as the ratio of the change of the objective

function relative to the minimal distance p(zcom, θ | ω) and p(zcom, θ | ω0) on . In practice,

one can identify the most influential ω in Ω, denoted by , which maximizes IGIRI(ω, ω0)

for all ω ∈ Ω.

We consider the local behavior of RI(ω(t), ω0) as t approaches zero along all possible

smooth curves p(zcom, θ | ω(t)} passing through ω(0) = ω0. Since RI(ω(t), ω0) is a function

from R to R, it follows from a Taylor's series expansion that

where ∂RI(ω(0)) and ∂2RI(ω(0)) denote the first- and second order derivatives of RI(ω(t),

ω0) with respect to t evaluated at t = 0. We need to distinguish ∂RI(ω(0)) ≠ 0 for some

smooth curves ω(t) and ∂RI(ω(0)) = 0 for all smooth curves ω(t). For the case ∂RI(ω(0)) ≠
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0, ∂RI(ω(0)) = d(RI)[v](ω(0)) is the directional derivative of RI in the direction of

 (Lang (1995)). The first-order local influence measure is defined as

(2.20)

We use the tangent vector vFImax in  that maximizes FIRI[v](ω(0)), to carry out a

sensitivity analysis.

For the case ∂RI(ω(0)) = 0, we use ∂2RI(ω(0)) to assess the second-order local influence of

ω to a statistical model (Zhu et al. (2007)). The second-order influence measure in the

direction  is defined as

(2.21)

Geometrically, SIRI[v](ω(0)) is invariant to scalar transformations and smooth

transformations. To carry out a sensitivity analysis, we use the tangent vector vS,max in

 that maximizes SIRI[v](ω(0)) for all .

2.4. Bayesian Sensitivity Analysis

Our sensitivity analysis consists of four steps.

1. Introduce a Bayesian perturbation manifold based on p(zcom, θ | ω).

2. Calculate the geometric metric < v, v > (ω0) of the perturbation manifold.

3. Choose an intrinsic influence measure IF(ω). If ∂RI(ω(0)) ≠ 0, then we calculate

vFI,max to assess local influence of minor perturbations to the model. If ∂RI(ω(0)) =

0, then we compute vS,max. We inspect vFI,max (or vS,max) in order to detect the

most influential components of ω.

4. For the most influential subcomponents of ω, we calculate IGIRI(ω, ω0) and

.

In practice, we iteratively perform the four-step influence analysis as described above. We

start with a simultaneous perturbation to zcom, p(θ) and p(zcom|θ). We decide a set of

parametric perturbation characterized by a finite dimensional ω such that the perturbed

model is large enough to cover a large class of candidate models for the data set. With

parametric perturbations, it is computationally simple to carry out the Bayesian sensitivity

analysis, and a perturbation model with a large number of perturbations can approximate

most interesting perturbation models. we start with a local influence analysis to examine the

sensitivity of all components and then focus on a few influential components using an

intrinsic influence analysis. For instance, if a few influential hyper-parameters to the prior

are identified, one further perturbs their associated prior distribution using the additive ε-

contamination class and then carries out intrinsic influence analysis. After combining the

information learned from our influence analysis, we might choose a new sampling
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distribution and/or a new prior. This procedure can be run iteratively until a certain

satisfaction is reached.

2.5. Examples of Bayesian influence measures

We focus on assessing the influence of a perturbation scheme ω to the posterior distribution

based on ϕ–divergence, the posterior mean distance, and the Bayes factor. The Bayes factor,

the ϕ-diverfence, and the posterior mean quantify the effects of introducing ω on the overall

assumed model, on the overall posterior distribution, and on the posterior mean of θ,

respectively. Since the Bayes factor measures the overall difference between p(zobs|ω) and

p(zobs|ω0), it can be more sensitive to some discrepancies between the assumed model and

the observed data. As the ϕ-diverfence measures the overall difference between p(zmis, θ|

zobs, ω) and p(zmis, θ|zobs, ω0), and such a difference may include mean, median, etc., it can

be more sensitive to some changes of the posterior distributions, but the posterior mean

distance is more sensitive to a subtle change in the posterior mean.

Example 3 (Bayes factor). The logarithm of the Bayes factor for comparing ω with ω0 is

The value of BF(ω, ω0) can be regarded as a statistic for testing hypotheses of ω against ω0

(Kass and Raftery (1995)). Under some smoothness conditions, BF(ω, ω0) is a continuous

map from  to R.

We set RI(ω, ω0) = BF(ω, ω0), where ω(t) is a smooth curve on  with ω(0) = ω0 and

, where dt = d/dt. It can be shown that

where the conditional expectation is taken with respect to p(zmis, θ | zobs, ω(t)). We can use

MCMC methods to draw samples  from p(zmis, θ | zobs) and then

approximate ∂RI(ω(0)) by using .

We consider a simultaneous perturbation to both the prior and the sampling distribution. We

have

For instance, for the perturbation to the prior given by p(θ; t) = p(θ) + t{g(θ) – p(θ)}, it can

be shown that
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where p(zobs) = ∫ p(zcom; θ)p(θ)dzmisdθ and pg(zobs) = ∫ p(zcom; θ)g(θ)dzmisdθ. Since the

ratio of pg(zobs) to p(zobs) is the Bayes factor in favor of g(θ) against p(θ), the first-order

local influence measure is the square of the normalized Bayes factor of g(θ) against p(θ).

Example 4 (ϕ–divergence). The ϕ–divergence between two posterior distributions for ω0 and

ω is

where R(zmis,θ | ω, ω0) = p(zmis, θ | zobs, ω)/p(zmis, θ | zobs, ω0) and ϕ(·) is a convex

function with ϕ(1) = 0, such as the Kullback-Leibler divergence or the χ2-divergence (Kass

et al. (1989)).

We set RI(ω, ω0) = ΦRI(ω, ω0), where ω(t) is a smooth curve on  with ω(0) = ω0 and

. It can be shown that ∂RI(ω(0)) = 0 and

where . We need a computational formula. Note that

In practice, we use MCMC methods to draw samples  from p(θ,

zmis | zobs, ω0) and then approximate ∂2RI(ω(0)) using

For perturbation schemes to the prior distribution, it can be shown that

and , which are, respectively, the Fisher

information matrices of ω(t) based on the prior and posterior distributions, where var(· | zobs,

ω0) denotes the posterior variance. For instance, for p(θ | ω(θ)) = p(θ) + t{g(θ) – p(θ)}, we

can show that
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where varP(·) denotes the prior variance.

Example 5 (Posterior mean distance). We measure the distance between the posterior means

of h(θ) for ω0 and ω (Kass et al. (1989), Gustafson (1996b)). The posterior mean of h(θ)

after introducing ω is

Cook's posterior mean distance for characterizing the influence of ω is then

(2.22)

where Gh is a positive definite matrix. Henceforth, Gh is the inverse of the posterior

covariance matrix of h(θ) for p(θ | zobs, ω0).

We set RI(ω, ω0) = CMh(ω, ω0), where ω(t) is a smooth curve on  with ω(0) = ω0 and

. It can be shown that ∂RI(ω(0)) = 0 and

∂2RI(ω(0)) = M̧h(v)TGhM̧h(v), where

We can use MCMC methods to approximate M̧h(v) and Gh.

2.6. A Simple Theoretical Example

We consider a simple example involving missing responses (Daniels and Hogan (2008)).

Consider a data set zcom = ((y1, r1), · · · , (yn, rn))T, where ri = 1 if yi is observed and 0 if yi is

missing. We focus on perturbing missing-data mechanism.

First, we fit a pattern mixture model for (yi, ri) such that

(2.23)

Model (2.23) assumes that the observed and missing responses differ in their mean but share

the same variance. Since the observed data do not contain any information on μ0, we assume

μ0 = μ1 + ωμ.

Here ωμ can be regarded as a perturbation and θ = (μ1, σ2, ϕ). The complete-data likelihood

function is
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where p(y|μ, σ2) denotes the normal density function. Regardless of the prior for θ, it can be

shown that , which is independent of ωμ, and thus  is flat and

g(ωμ,1, ωμ,2) = c|ωμ,1 – ωμ,2|, where c is a scalar (Zhu et al. (2007)). Moreover, since the

observed-data likelihood function ∫ p(zcom, θ|ωμ)dzmis does not depend on ωμ, all IFs and

IFMs based on p(θ|zobs, ωμ) are zero. This indicates that varying ωμ does not influence the

posterior inferences on θ given zobs. Instead, if we consider the posterior mean μ1 + (1 –

ϕ)ωμ, the mean of yi, as the influence measure, then we have

where E[·|zobs] denote the expectations taken with respect to p(θ|zobs). In this case, IF(ωμ)

does not belong to any of the three Bayesian influence measures considered in Section 2.4,

but our invariant influence measure is applicable. Moreover, the constant IGIRI(ωμ,1, ωμ,2)

indicates that any inferences about the measure of yi is completely driven by the

assumptions regarding the size of ωμ.

Second, we fit a selection model for (yi, ri) such that

(2.24)

where logit(·) denotes the logit function. In (2.24), ωξ = 0 corresponds to MAR, whereas ωξ
≠ 0 corresponds to NMAR. In this case, ωξ can be regarded as a perturbation and θ = (μ1,

σ2, ξ1). The complete-data likelihood function is

If p(θ) is the prior for θ, it can be shown that

which does not have a simple form. Moreover, since the observed-data likelihood function ∫
p(zcom, θ|ωξ)dzmis does depend on ωξ, all IFs and IFMs based on p(θ|zobs, ωξ) can be

numerically calculated according to the formula given in Sections 2.3-2.4. Generally, in the

selection model, varying ωξ does not influence the posterior inferences about θ given zobs.
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3. Simulation Study

We consider a two-level model. We assume that data are obtained from N individuals nested

within J groups, with group j containing nj individuals, where . The level-1

units are the individuals and the level-2 units are the groups. At level-1, for each group j (j =

1, . . . , J), the within-group model is given by

(3.1)

where yij is the outcome variable, xij is a q-vector with explanatory variables (including a

constant), βj is a q-vector of regression coefficients, and εij is the residual. At level-2, we

further assume βj to be a vector of random regression coefficients,

(3.2)

where Zj is a q × r matrix with explanatory variables (including a constant) obtained at the

group level, γ is a r-vector containing fixed coefficients, and uj is a q-vector of residuals.

Assume that uj is independent of εij, uj ~ Nq(0, Σ), and . We assume that the

covariates xij and Zj are completely observed for i = 1, . . . , nj and j = 1, . . . , J, but the

responses yij may be missing.

We simulated a data set according to (3.1)-(3.2). We set J = 100, q = 2, and r = 3, and then

we chose varying values of nj in order to create a scenario with different cluster sizes.

Specifically, we set n1 = . . . = n10 = 3, n91 = . . . = n100 = 20, and ni ∈ {5, 7, 8, 10, 12, 13,

15, 17} for i = 11, . . . , 90. We independently generated all components (except the

intercept) of xij and Zj as U(0, 1). We assumed that the yij's were missing at random (MAR)

with missing data mechanism

(3.3)

where φ = (φ0, φx), rij = 1 if yij is missing and rij = 0 if yij is observed. We set φ0 = –2.0, φx =

(0.5, 0.5)T , γ = (0.8, 0.8, 0.8)T , , and . The missing fraction of the

responses is about 18.4%. To add some outliers, we modified the simulated data set by

generating new {yij : j = 1, 99, 100; i = 1, . . . , nj} from a 

distribution with uj ~ N(5.612, 1.96I2 + 0.3Σ) (j = 1, 99, 100).

We fit (3.1)-(3.3) to the simulated data set and used MCMC sampling to carry out the

Bayesian influence analysis (Chen, Shao and Ibrahim (2000)). We took

ZHU et al. Page 14

Stat Sin. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where γ0, H0ε, α0ε, β0ε, R0, and ρ0 are hyperparameters whose values are prespecified. We

assumed that , where φ0 and H0φ are the given hyperparameters.

Furthermore, we set γ0 = (0.8, 0.8, 0.8)T, , φ0 = (–2.0, 0.5, 0.5)T, H0φ = I3,

αε0 = 10.0, βε0 = 8.0, ρ0 = 10, and H0ε = diag(0.2, 0.2, 0.2).

We simultaneously perturbed the distributions of uj and the prior distributions of γ, Σ, and

, whose perturbed complete-data joint (unnormalized) log-posterior density is given by

where  is the density of a Gamma (α0ε + 3, β0ε + 1) distribution and ω = (ω1, . . . ,

ωJ, ωγ, ωΣ, ωσ )T. In this case, ω0 = (1, 1, . . . , 1, 0)′ represents no perturbation. By

differentiating  with respect to ω, after some calculations, we have

where varΣ and  denote the variance with respect to the priors of Σ and , respectively.

Then, we chose a new perturbation scheme  and calculated the

associated local influence measures , SIΦIR[ej], and

SICMh[ej], in which ϕ(·) was chosen to be the Kullback-Leibler divergence divergence and

h(θ) = θ. Note that the numbers of observations in groups 1, 99, and 100 were, respectively,

3, 20, and 20. Groups 1, 99 and 100 were detected to be influential by all our local influence

measures. Selected results for SIΦIR[ej] are presented in Fig. 1(a).

We used the same setup, except that we employed a perturbed prior distribution for

, and then applied the same MCMC method, perturbation scheme,

and local influence measures. Groups 1, 99, and 100 and the perturbed prior distribution of

γ were identified to be influential by all our local influence measures. Selected results for

SIΦD[ej] are presented in Fig. 1 (b).
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Next, we explored the potential deviations of the MAR mechanism in the direction of

NMAR. We simulated a data set using the same setup except that the missing data

mechanism for yij was

(3.4)

with φy = 0.5 to make the missing data fraction approximately equal to 25%.

Similar to sensitivity analysis methods in missing data problems (Molenberghs and Kenward

(2007), Little and Rubin (2002)), we fit model (3.1)-(3.2) and (3.4), with φy fixed at a value

ωy, to the simulated data set. When ωy = 0, the missing data is MAR and hence the missing

data mechanism in (3.4) is ignorable. Thus, by varying ωy in an interval Ω1, we can treat ωy

as a perturbation scheme to the sampling distribution and then calculate the associated local

influence measures. Specifically, we chose ω = (ωy) and obtained a curve C(t) on  at t =

ω.

We used the same prior distributions for γ, φ, , and Σ as before and used MCMC sampling

to carry out the Bayesian influence analysis. We calculated the intrinsic influence measures

IGIf(ω0, Ω1) for ΦD(ω) and Mh(θ), in which we chose ϕ(·) as the Kullback-Leibler

divergence divergence, set h(θ) = γ and treated ω0 = 0 as no perturbation. We set Ω1 = [–

2.0, 2.0] and approximated Ω1 via K0 = 41 grid points ωg,(k) = –2.0 + 0.1k for k = 0, . . . , 40.

For a given ω ∈ Ω1, d(ω0, ω) was calculated via a composite trapezoidal rule.

Figures 2 (a) and 2 (b) present plots of IGIIR(ω0, ω) against ω ∈ Ω1 for ΦIR(ω) and Mh(ω),

respectively. The intrinsic influence measures reach maxima near the true value of φy = 0.5.

This indicates that the nonignorable missing data mechanism is tenable for the simulated

data. We also followed a standard sensitivity analysis to compute the posterior means and

standard deviations of γ for different φy in Table 1. Although we observed that the posterior

distribution of γ varies with φy, it is hard to tell why φy = 0.5 is more meaningful. We also

carried out a local influence analysis under this NMAR setting (not presented here) and

observed that the proposed local influence method can pick up anomalous features of the

data that are not necessarily associated with the missing data mechanism (Jansen et al.

(2006)).

4. Real data example

We consider a small portion of a data set from a study of the relationship between acquired

immune deficiency syndrome (AIDS) and the use of condoms (Morisky et al. (1998)). This

subset contains 11 items on such topics as knowledge about AIDS and beliefs, behaviours

and attitudes towards condoms use collected from 1116 female sex workers. Nine items,

denoted by y = (y1, . . . , y9)T, were taken as responses. Items (y1, y2, y3) are related to a

latent variable, η, which can be roughly interpreted as threat of AIDS, while items (y4, y5,

y6) and (y7, y8, y9) are, respectively, related to latent variables ξ1 and ξ2, that can be

interpreted as aggressiveness of the sex worker and worry of contracting AIDS (Lee and

Tang (2006)). All response variables were treated as continuous. A continuous item x1 on

ZHU et al. Page 16

Stat Sin. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the duration as a sex worker and an ordered categorical item x2 on the knowledge about

AIDS were taken as covariates. The response variables and covariates are missing at least

once for 361 of them (32.35%) (see Table 4 of Lee and Tang (2006)). The covariate x2 is

completely observed.

Let yi = (yi1, . . . , yi9)T and . We considered the measurement and

structural equations given as

where μ = (μ1, . . . , μ9)T and

in which 0.0* and 1.0* are regarded as fixed values to identify the scale of the latent factor.

We took εi distributed as N(0, Ψ), where Ψ = diag(ψ1, . . . , ψ9), and  and εi are

independent. In the structural equation, Γ = (b1, b2, γ1, γ2) is a vector of unknown

parameters, ξi = (ξi1, ξi2)T is distributed as N(0, Φ), δi is distributed as N(0, ψδ), and ξi and

δi are independent.

We took the missing data as NMAR, and hence the missingness mechanism of the response

variables is non-ignorable (Ibrahim and Molenberghs (2009)). Let ryij = 1 if yij is missing

and ryij = 0 if yij is observed. For the missing data mechanism of the response variables, we

took logit{pr(ryij = 1 | yi)} = φ0 + φ1yi1 + . . . + φ9yi9, where φ = (φ0, φ1, . . . , φ9)T. We also

assumed that the covariate xi1 is NMAR. Let rxi1 = 1 if xi1 is missing and rxi1 = 0 if xi1 is

observed. It was assumed that xi1 was  distribution and logit{pr(rxi1 = 1 | φx)} = φx0

+ ωxi1. When ω = 0, the missingness mechanism reduces to MAR.

We fitted the proposed structural equation models to the AIDS data set and used MCMC

sampling to carry out the Bayesian influence analysis. We specified the prior distributions

for μ, Λ, Ψ, Γ, ω, Φ, ψδ, φ, φx0, and τx as those in Lee and Tang (2006). A total of 40, 000

MCMC samples was used to compute the intrinsic and local influence measures.

By varying ω in an interval [–2, 2], we can treat ω as a perturbation parameter to the

sampling distribution. In this case, ω0 = 0 represents no perturbation. We calculated two

intrinsic influence measures for the Kullback-Leibler divergence and the posterior mean

distance, denoted by CMh(ω). Specifically, CMh(ω, ω0) = {Mh(ω) – Mh(ω0)}T Ch{Mh(ω) –

Mh(ω0)}, where Mh(ω) = ∫ h(θ)p(θ | z, ω)dθ, in which h(θ) = Γ, and Ch is the posterior

covariance matrix of Γ based on p(Γ |z, ω0). We calculated IGIRI(ω0, ω) at 41 evenly spaced

grid points in [–2, 2] (Fig. 3). An inspection of Figure 3 shows that the largest IGIRI(ω0, ω)

values are close to 0.1 for both the Kullback-Leibler divergence and Mh(ω). This indicates

that the nonignorable missing data mechanism may be tenable for the AIDS data. We also
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carried out a standard sensitivity analysis and computed posterior means and standard

deviations of at different values of ω, as shown in Figure 4. Although we observe that the

posterior means and standard deviations of Γ vary with ω, it is difficult to make any

meaningful inference here.

We also calculated the local influence measures of the Kullback-Leibler divergence under a

simultaneous perturbation scheme. The simultaneous perturbation scheme ω includes

variance perturbations ωc for individual observations, perturbations ωs to coefficients in the

structural equations model, perturbations ωξ to the sampling distribution of ξi, perturbations

ωμ to the prior distribution of μ, perturbations ωΓ to the prior distribution of Γ, perturbations

ωφ to the prior distribution of φ, and perturbations ωx to the missing data mechanism. The

corresponding kernel of the joint log-posterior density of (z, θ) based on the complete data is

given by

(4.1)

where

In this case,  represents no perturbation, in which

, ,  and .

We calculated  and then obtained its metric tensor as

where , , ,

, ,

,

and .

The diagonal elements of the metric tensor G(ω0) reveal that ωγ1, ωγ2, ωγ3, ωξ, and ωx

ZHU et al. Page 18

Stat Sin. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



have larger effects compared to other perturbations (see Fig. 5(a)). Then, we chose a new

perturbation scheme  and calculated the associated local

influence measures SIΦIR[ej] for the Kullback-Leibler divergence divergence. The local

influence measures based on the ϕ-divergence are able to detect cases {14, 25, 28, 137, 175,

408, 985} as influential observations (see Fig. 5(b)), while ωγ1 and ωγ3 indicate that it may

be important to include  and ξi1ξi2 in the structural model (see Fig. 5(b)).

5. Discussion

We have developed a Bayesian sensitivity analysis methods for assessing various

perturbations to statistical methods with missing data. We have developed a Bayesian

perturbation manifold to characterize the intrinsic structure of the perturbation model and

quantifying the degree of each perturbation in the perturbation model. We have developed

global and local influence measures for selecting the most influential perturbation based on

various objective functions and their statistical properties. Finally, we have also examined a

number of examples to highlight the broad spectrum of applications of this method for

Bayesian influence analysis in missing data problems.

Many issues merit further research. Our Bayesian sensitivity analysis method can be

extended to more complex data structures (e.g., survival data) and other parametric and

semiparametric models with nonparametric priors. In further research, we will generalize

our methodology to the setting of estimating equations and empirical likelihood of

generalized estimating equations for missing data problems. We will develop Bayesian

sensitivity analysis methods to deal with the well-known masking and swamping effects in

the diagnostic literature.
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Figure 1.
Simulation Study: group index plots of local influence measures for simultaneous

perturbation: (a) SIΦIR[ej] can detect the three influential groups (1, 99, and 100); (b)

SIΦIR[ej] can simultaneously detect the three influential groups (1, 99, and 100) and the

perturbed prior distribution p(γ).
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Figure 2.
Simulation Study: plots of IGIIR(ω0, ω) against ω ∈ Ω1 for (a) ΦIR(ω) and (b) Mh(ω), in

which h(θ) = γ.
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Figure 3.
AIDS data analysis results: plots of IGIRI(ω0, ω) against ω ∈[–2, 2] for (a) ΦRI(ω) and (b)

Mh(ω), in which h(θ) = Γ.
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Figure 4.
AIDS data analysis results: plots of (posterior means-posterior mean at ω = 0)/(posterior

standard deviation at ω = 0) ((a),(c),(e),(g)) and the ratio of posterior standard deviations

over posterior standard deviation at ω = 0 ((b),(d),(f),(h)) of b1, b2, γ1, γ2 as a function of ω
∈ [–2, 2].
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Figure 5.
AIDS data analysis results: index plots of (a) metric tensor gjj(ω0) and (b) local influence

measures SIΦIR[ej] for simultaneous perturbation.
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Table 1

Posterior means (PMs) and standard errors (SDs) of γ at different values of φy

True γ0 = (0.8, 0.8, 0.8)T

γ 1 γ 2 γ 3

PM SD PM SD PM SD

φy = 0.5 0.831 0.174 0.721 0.251 0.809 0.255

φy = 0.3 0.777 0.170 0.697 0.249 0.786 0.247

φy = 0.15 0.738 0.167 0.661 0.243 0.776 0.249

φy = 0.0 0.697 0.177 0.622 0.247 0.749 0.250
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