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Abstract
Large, family-based imaging studies can provide a better understanding of the interactions of
environmental and genetic influences on brain structure and function. The interpretation of
imaging data from large family studies, however, has been hindered by the paucity of well-
developed statistical tools for that permit the analysis of complex imaging data together with
behavioral and clinical data. In this paper, we propose to use two methods for these analyses. First,
a variance components model along with score statistics is used to test linear hypotheses of
unknown parameters, such as the associations of brain measures (e.g., cortical and subcortical
surfaces) with their potential genetic determinants. Second, we develop a test procedure based on a
resampling method to assess simultaneously the statistical significance of linear hypotheses across
the entire brain. The value of these methods lies in their computational simplicity and in their
applicability to a wide range of imaging data. Simulation studies show that our test procedure can
accurately control the family-wise error rate. We apply our methods to the detection of statistical
significance of gender-by-age interactions and of the effects of genetic variation on the thickness
of the cerebral cortex in a family study of major depressive disorder.
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1 Introduction
Detailed and accurate measures of the morphology of the brain and its subregions are
important for understanding differences in brain structure across subjects(see, for example,
Ashburner and Friston (2000), Chung, Dalton, Evans and Davidson (2007), Chung, Robbins,
Dalton, Davidson, Alexander and Evans (2005), Mechelli, Price, Friston and Ashburner
(2005), Styner, Lieberman, McClure, Weinberger, Jones and Gerig (2005), Thompson and
Toga (2002), Sowell, Peterson, Thompson, Welcome, Henkenius and Toga (2003), Plomin
and Kosslyn (2001)). An appropriate statistical analysis of these morphological measures is
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essential for understanding the joint effects of environmental and genetic factors on normal
and pathological brain structure and function (see, for example, Thompson, Woods, Mega
and Toga (2000)), and therefore considerable effort has been devoted to developing
statistical methods for the analysis of a wide range of imaging measures (Friston, Holmes,
Worsley, Poline, Frith and Frackowiak (1995), Nichols and Hayasaka (2003), Nichols and
Holmes (2002), Zhu, Ibrahim, Tang, Rowe, Hao, Bansal and Peterson (2007)).

The statistical methods for analyzing morphological measures from Magnetic Resonance
Imaging (MRI) data are sequentially executed in two steps. The first step involves fitting a
statistical model to the MRI data from all subjects at each voxel to generate a parametric
map of test statistics (or p–values). The second step is to calculate adjustments to the p-
values that will account for the multiple statistical tests that are performed across multiple
brain regions or across the many voxels of the imaging volume. These calculations in the
past have been performed using a variety of statistical methods, including random field
theory, false discovery rate, or permutation methods (Hayasaka, Phan, Liberzon, Worsley,
and Nichols (2004), Nichols and Hayasaka (2003), Nichols and Holmes (2002), Worsley,
Marrett, Neelin, Vandal, Friston and Evans (1996), Worsley, Taylor, Tomaiuolo and Lerch
(2004)). Most of these statistical procedures have been implemented in existing software
platforms, such as SPM (http://www.fil.ion.ucl.ac.uk), AFNI
(http://www.afni.nimh.nih.gov/afni/), and FSL (http://www.fmrib.ox.ac.uk/fsl), among
others.

These existing methods used to perform each of these statistical procedures, however, have
at least three major limitations. First, the standard linear model that is most commonly
employed in statistical modeling of imaging data was developed primarily for use in cross-
sectional studies, in which one MRI dataset is collected for one subject and the MRI data
from differing subjects are assumed to be statistically independent (see, for example,
Worsley, Marrett, Neelin, Vandal, Friston and Evans (1996), Worsley, Taylor, Tomaiuolo
and Lerch (2004), among many others). In family studies, for example, the effects of
heritability and common environment that are thought to contribute to measures of regional
brain volumes and function and that will produce correlations in imaging data across family
members. Ignoring the correlation structure within the MRI datasets likely will influence the
validity and accuracy of subsequent statistical inferences and therefore will likely increase
the rates of false positive and false negative findings. Second, the methods of random field
theory, which are commonly used to account for multiple statistical comparisons across an
imaging dataset, depend on the three key assumptions of the standard linear model: the
independence of MRI measures acquired from different subjects within each voxel, the
Gaussian distribution of random errors and the homogeneity of variance within each voxel
(Nichols and Hayasaka (2003), Worsley, Taylor, Tomaiuolo and Lerch (2004), Zhu,
Ibrahim, Tang, Rowe, Hao, Bansal and Peterson (2007)). Random field theory also requires
several additional assumptions beyond those of the standard linear model, include that
images are smooth (Hayasaka, Phan, Liberzon, Worsley, and Nichols, (2004), Nichols and
Hayasaka (2003), Nichols and Holmes (2002)). Extending random field theory to statistical
models for the analysis of family-based imaging data requires further research. Third,
permutation methods cannot be extended easily to the analysis of family data because of the
enormous computational difficulties that these extensions would entail. Permutation
methods require refitting ‘complex’ statistical models at each voxel, which number in the
thousands to hundreds of thousands in each permuted dataset (Nichols and Hayasaka (2003),
Nichols and Holmes (2002), Zhu, Ibrahim, Tang, Rowe, Hao, Bansal and Peterson (2007)).

The aim of this paper is to develop and apply new statistical methods to address some of
theses three limitations of currently available statistical tools used for the analysis of
imaging data. Specifically, we propose to develop and apply two statistical methods for the
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analysis of morphological measures acquired in family-based imaging studies: a variance
components model that accounts for correlations within a family and a procedure for
adjusting the associated p-values for multiple comparisons.

Variance components models have been used widely in quantitative genetic trait studies
(Almasy and Blangero, 1998; Amos, 1994; Amos, Zhu and Boerwinkle, 1996; Amos and de
Andrade, 2001; Duncan, 2004). We use a similar technique to model explicitly the
correlations within each family to produce statistics that test linear hypotheses. We construct
a pseudo-likelihood function of the variance components model using the first and second
moments of the imaging measures and thereby avoid assuming that these imaging measures
are multivariate normally distributed (Almasy and Blangero, 1998). This method therefore
permits the analysis of imaging data that conform to the large class of statistical distributions
that are commonly found in real imaging datasets and that often deviate from multivariate
Gaussian (Ashburner and Friston (2000), Nichols and Hayasaka (2003), Nichols and Holmes
(2002), Zhu, Ibrahim, Tang, Rowe, Hao, Bansal and Peterson (2007)). We calculate the
maximum pseudo-likelihood estimate for the associations of brain measures with both
covariates of interest and with the degree of familial relatedness. Then we develop statistics
to test the linear hypotheses of unknown parameters. Although the test statistic does not
have a simple or exact parametric distribution, we use a resampling method to improve its
finite performance (Liu (1988), Efron and Tibshirani (1993)).

We also propose a test procedure to control the family-wise error rate when conducting
multiple statistical tests with intercorrelated imaging data. We perform statistical tests using
the resampling method simultaneously at all voxels of the brain while preserving the
dependence structure among the test statistics (see, for example, Lin (2005), Kosorok
(2003), Zhang, Feng and Zhu (2003), Zhu and Zhang (2004, 2006)). The resampling method
does not involve repeated analyses of simulated datasets, and therefore it is not
computationally demanding. The bootstrap resampling method in particular does not require
complete exchangeability and a Gaussian distribution for the imaging data. The test
procedure is thus broadly applicable to a wide range of imaging modalities that are acquired
in longitudinal or family imaging studies, including anatomical MRI, functional MRI, and
Positron Emission Tomography.

2 Methods
We formally introduce a variance components model for the analysis of imaging data
acquired in a family study, and we construct a statistic that tests linear hypotheses of
unknown parameters. Furthermore, we develop a resampling method to correct for multiple
comparisons across the brain.

2.1 Data Structure
Suppose that we have MRI measures and clinical variables from n families and mi family
members within the ith family for i = 1, ⋯, n. MRI measures may include volumes of
anatomical regions, or signed Euclidean distances of the surfaces of various cortical or
subcortical regions from the surface of a template structure (Ashburner and Friston (2000),
Chung, Dalton, Evans and Davidson (2007), Styner, Lieberman, McClure, Weinberger,
Jones and Gerig (2005), Thompson and Toga (2002), Plomin and Kosslyn (2001),
Thompson, Woods, Mega and Toga (2000), Zhu, Ibrahim, Tang, Rowe, Hao, Bansal and
Peterson (2007)). Clinical variables may include pedigree information, demographic
characteristics (e.g., age, gender, height), and diagnoses, among others. For the jth subject
within the ith family, we assume that we observe an ND × 1 vector of MRI measures,
denoted by Yij = {yij(d): d ∈ , and a k × 1 vector of clinical variables xij, where and d,
respectively, represent a specific brain region and a voxel on  In most cases, ND equals the
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number of points on  For notational simplicity, we assume that yij(d) are univariate MRI
measures.

2.2 Model
For simplicity, we drop voxel d from our notation temporarily. At a voxel d on the brain
subregion, we consider a variance components model as follows:

(1)

for j = 1, ⋯, mi and i = 1, ⋯, n, where β is a k × 1 vector representing unknown parameters,
gi = (gi1, ⋯, gimi)

T is an mi × 1 vector for genetic effects, and εi = (εi1, ⋯, εimi)
T is an mi × 1

vector for environmental effects or/and measurement errors. We assume that gi and εi are
independent, (gi, εi) and (gk, εk) are independent for any i ≠ k, and E(εi) = E(gi) = 0.
Moreover, Cov(εi = σε Imii, where Imi is an mi × mi identity matrix.

We assume that the variance of genetic effect gij can be divided into two components: the
additive genetic variance from differences between homozygotes and the dominance genetic
variance from specific effects of various alleles in heterozygotes (Fisher, 1918).
Specifically, we assume

(2)

where σA is the additive genetic variance, Φi is the matrix of kinship coefficients, σD is the
dominance genetic variance and Δi is the matrix of the expected probability of sharing two
alleles IBD (called ”identical by descent”) (Duncan, 2004; p.98). The Cov(gi) in (2) can also
be interpreted as the joint effects of multiple genes (Almasy and Blangero, 1998). The
kinship coefficient is defined to be the probability that a randomly selected allele from each
member of a pair of individuals is IBD. For instance, the kinship coefficients for
monozygotic twins, dizygotic twins, a sib pair, and parent-offspring are, respectively, given
by 0.5, 0.25, 0.25, and 0.25. Let Σi be the covariance of yi = (yi1, ⋯ , yimi)

T. It follows from
(1) and (2) that

(3)

2.3 Estimation Method
Let θ be a (k + 3) × 1 vector of all unknown parameters (βT, σA, σD, σε)T. We consider a
quasi-likelihood function Ln(θ) given by

(4)

Note that in equations (1)–(4), we only assume the first and second moments of the MRI
measures (Andrews, 1999). However, if we assume that both gi and εi are Gaussian-
distributed, then Ln(θ) in (4) is exactly the log-likelihood function of the model (1).

The maximum quasi-likelihood estimate of θ is defined by θ̂ = argmaxθLn(θ). We use the
Newton-Raphson algorithm to calculate θ̂ by iterating
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(5)

where ∇Ln(θ(t)) and ∇2Ln(θ(t)) denote, respectively, the first- and second-order partial
derivatives of the log-likelihood function with respect to θ evaluated at θ(t). The Newton-
Raphson algorithm stops until the absolute difference between consecutive θ(t)s is smaller
than a predefined small number, say 10−4 (Jennrich and Schluchter (1986), Laird, and Ware
(1982), Lindstrom and Bates (1988)). In addition, because −∇2Ln(θ(t)) may not be positive
definitive, we use an approximation of −∇2Ln(θ(t)) to stabilize the Newton-Raphson
algorithm. Detailed information about the Newton-Raphson algorithm is given in Appendix
I.

2.4 Hypotheses and Test Statistics
Our choice of hypotheses to test was motivated by two different types of scientific
questions. The first involves a comparison of brain structure across diagnostic groups or
detecting change in brain structure across time (Wright, Sham, Murray, Weinberger and
Bullmore (2002), Plessen, Bansal, Zhu, Whiteman, Amat, Quack-enbusch, Martin, Durkin,
Blair, Royal, Hugdahl and Peterson (2006), Styner, Lieberman, McClure, Weinberger, Jones
and Gerig (2005)). These questions usually can be formulated as testing the linear
hypotheses of β as follows:

(6)

where μ = Rβ, R is a r × k matrix of full row rank, and b0 is a r × 1 specified vector. We test
the null hypothesis H0,μ : Rβ = b0 using a score test statistic Sμ defined by

(7)

where  and  in which θ͂ denotes the estimate of θ
under H0,μ and the explicit expressions of Ûi,μ(θ ͂) and ∂μLn are given in Appendix II.

Intuitively, Îμμ is an estimator of the covariance matrix of ∂μLn, and  is
approximately a Gaussian random vector having an identity covariance matrix. As shown in

Appendix II, under H0,μ, ∂μLn has zero mean and the statistic  is
asymptotically distributed as χ2(r), a chi-square distribution with r degrees of freedom,
where ‖ · ‖2 denotes the L2 norm of a vector (Lehmann and Romano (2005); p. 511).
However, for relatively small n, the asymptotic χ2 test for Sμ may be highly conservative;
see simulation study in Section 3.1.

The second kind of questions on which we focus is the testing of genetic influences on brain
structure (see, for example, Wright, Sham, Murray, Weinberger and Bullmore (2002),
Thompson, Cannon and Toga (2002), Thompson, Cannon, Narr, van Erp, Poutanen,
Huttunen, Lonnqvist, Standertskjold-Nordenstam, Kaprio, Khaledy, Dail, Zoumalan and
Toga (2001), Narr, Cannon, Woods, Thompson, Kim, Asunction, van Erp, Poutanen,
Huttunen, Lonnqvist, Standerksjold-Nordenstam, Kaprio, Mazziotta and Toga (2002)). We
are interested in testing the following hypotheses of σA

(8)
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Similar to testing H0,μ, we test H0,A using a score statistic

(9)

where  and  in which ∂A = ∂/∂σA, θ ͂A denotes the
restricted estimate of θ under H0,A, and 1(·) is the indicator function. The explicit expression
for Ûi,A (θ ͂A) is given in Appendix II. Under H0,A, ∂ALn has zero mean, ÎAA is an estimator of

the covariance of ∂ALn,  is approximately a standard normal random variable, and
1(∂ALn ≥ 0) is due to the fact that σA ≥ 0 (Zhu and Zhang (2006), Zhang, Feng and Zhu
(2003); Lehmann and Romano (2005)). As shown in Appendix II, the statistic SA is
asymptotically distributed as 0.5χ2(1) + 0.5χ2(0) under the null hypothesis H0,A, where χ2(0)
denotes the constant 0.

We can test hypotheses (6) and (8) individually at each voxel d of the brain region under
examination. Henceforth, we introduce d in our notation such as {SA(d), Sμ(d)}, as
necessary.

2.5 Test Procedure
To test whether H0,μ (or H0,A) holds in all voxels of the region under study, we consider
maximum statistics, the maxima of the score test statistics, as follows:

(10)

The maximum statistics Sμ,  and SA,  play a crucial role in controlling the family-wise
error rate. However, in order to use Sμ,  and SA,  as test statistics, we need to know their
distributions under the null hypothesis across all voxels of the relevant region. We present a
test procedure that is based on the resampling method to approximate the distribution of
Sμ, , although a similar procedure can be developed for SA,  (Lin (2005), Kosorok (2003),
Zhang, Feng and Zhu (2003), Zhu and Zhang (2004, 2006)). The test procedure is
implemented as follows:

Step 1: At each voxel d of the brain structure, calculate the score test statistic Sμ(d)
given in (7) based on the observed data {(yi(d), xi) : i = 1, ⋯, n}. Compute Sμ,  =
maxd∈  Sμ(d);

Step 2: Generate a random sample  from the distribution F, which is
defined by

(11)

Step 3: At each voxel d of  calculate

(12)
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and then compute , where  and

.

Step 4: Repeat Steps 2–3 S times and calculate . Finally, the p value of
Sμ,  is approximated by

(13)

We reject that the null hypothesis H0 : Rβ = b0 across all voxels of the region when
pμ,  is smaller than a pre-specified value α, say 0.05.

Step 5: Calculate the p–value of Sμ(d) at each voxel d of the region according to

(14)

Step 6: Calculate the corrected p–value of Sμ(d) at each voxel d of the region according
to

(15)

We note several advantages of using the resampling method in the above test procedure. In
Appendix III, we establish that the resampling method is asymptotically valid.
Computationally, the above procedure only requires the computation of Ûi,μ (θ ͂, d) once and
the repeated calculation of Sμ (d)(s). Thus, because it does not involve repeated analyses of
simulated datasets, the proposed test procedure is computationally much more efficient than
the permutation method. Specifically, fitting the variance components models across all
voxels of a brain region can take up to two or three hours for each simulated dataset, and
thus the permutation method can take a week for only 100 simulated datasets. In contrast,
the proposed test procedure takes less than 10 minutes for S = 1000.

The proposed resampling method also performs better than do other resampling methods,
such as parametric bootstrap and traditional bootstrap. For instance, the parametric bootstrap
requires parametric assumptions for both gi and εi as well as the refitting of bootstrapped
datasets. The traditional bootstrap also has both computational and conceptual difficulties.
The traditional bootstrap, for example, requires the refitting of bootstrapped datasets and
how to use the traditional bootstrap method in variance components model to approximate
the finite distribution of Sμ(d) under the null hypothesis H0,μ is unclear.

3 Simulation Studies
We conducted two sets of Monte Carlo simulations. The first examined the finite
performance of Sμ and SA at the level of a single voxel. The second set of simulations was
evaluated the family-wise error rate and power of Sμ,  and SA,  at the level of an entire
brain region.
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3.1 Monte Carlo Simulations at a Single Voxel
For the first set of simulations, we simulated MRI measures from n pairs of siblings
according to the variance components model (1), in which εi = (εi1, εi2)T and gi = (gi1, gi2)T

were independently generated, respectively, from multivariate Gaussian generators with zero
means and covariance matrices that are given in (3). Thus, each family contained only two
siblings. The xij = (x1ij, x2ij, x3ij)T was a 3 × 1 vector of covariates of interest. We set x1ij ≡
1, generated x2ij independently from a Bernoulli generator with 0.5 probability being 1, and
generated x3ij independently from a Gaussian generator with zero mean and unit variance.
The x2ij and x3ij were chosen to represent gender and standardized age, respectively.

To assess the Type I and II error rates for Sμ, we tested the following hypotheses

We set (σA, σD, σε)T = (2, 1, 2) and chose two differing sets of β = (β1, β2, β3)T: (1, 1, 0)T

and (1, 1, 1)T. In all cases, R = (0, 0, 1) and b0 = (0). We set n = 20, 40, and 60 for
examining the finite performance of Sμ.

To assess the Type I and II error rates for SA, we tested the following hypotheses

We set (βT, σD, σε)T = (1, 1, 1, 1, 2)T and chose two differing values of σA: 0.0 and 2.0. We
set n = 20, 40, 60, 80, 100, and 200 for examining the finite performance of SA.

For each simulation, 20,000 replications were used to estimate the rejection rates, with
significance levels set at α = 5% and 1%. For a fixed significance level α, a test was
conservative if its Type I rejection rate was smaller than α, whereas the test was
anticonservative if the Type I rejection rate was greater than α.

For the test statistic Sμ, the Type I rejection rates for the resampling method were relatively
accurate for all sample sizes (n = 20, 40, 60, and 80), whereas the Type I rejection rates for
the asymptotic χ2 test were a somewhat conservative when n = 20 and the significance level
was α = 1% (Fig. 1 a–d). Consistent with our expectations, the statistical power for rejecting
the null hypothesis increased with the sample size n. Compared with the asymptotic χ2 test,
the resampling method had slightly greater power to reject the null hypothesis H0,μ (Fig. 1 c
& d), because the upper 95th percentile of the sample distribution of Sμ was much lower
than that of the χ2–distribution, when the sample size was relatively small, say 40.

For the test statistic SA, the estimated significance levels of the resampling method and the
asymptotic χ2 test under the null hypothesis were reasonably close to the nominal
significance levels for all sample sizes (n = 20, 40, 60, 100, and 200) (Fig. 2 a–d). Again
consistent with our expectations, the statistical power for rejecting the null hypothesis
increased with the sample size n. The power of the resampling method in rejecting the null
hypothesis is close to that of the asymptotic χ2 test (Fig. 2 c & d).

Comparing with Sμ, a larger sample size was needed to detect genetic influences on brain
measures using SA. For instance, at the significance level α = 5%, a sample size n = 40 had a
power more than 0.8 to detect β3 = 1, whereas a larger sample size at n = 200 had a power of
approximately only 0.8 to detect σA = 2.
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3.2 Monte Carlo Simulations for all Voxels on a Sphere
In this simulation, we used a variance components model (1) to generate data at all m = 2064
points on the surface of a reference sphere for each member of all n families. Every family
contained only a sib pair, that is, j = 1, 2 for i = 1, ⋯, n. For a given voxel d in  β(d) =
(β1(d), β2(d), β3(d))T was a 3 × 1 vector of unknown parameters and xij was the same 3 × 1
vector of covariates generated in the first set of simulations. Moreover, for i = 1, ⋯, n and d
= 1, ⋯, m, gi(d) = (gi1(d), gi2(d))T were independently generated from a 2 × 1 Gaussian
generator with zero mean and covariance matrix given in (2).

To examine the finite performance of Sμ, , we tested the null hypothesis H0 : β3 = 0 at all
points on the surface of the reference sphere. We set n = 20, 40, and 60. We first assumed β
= (β1, β2, β3)T = (1, 1, 0)T at all points on the reference sphere to assess the family-wise
error rate. To assess both the power and family-wise error rate, we selected a region-of-
interest (ROI) with 64 points on the reference sphere and changed β3 from 0 to 2 for any
point d in ROI (Fig. 3 a & b). In both cases, we set (σA, σD, σε) = (1, 0, 1) to test the genetic
influences on the reference sphere. Thus, R = (0, 0, 1) and b0 = (0).

To examine the finite performance of SA, , we tested the null hypothesis H0 : σA = 0 at all
points on the surface of the reference sphere. We set n = 20, 40, 60, 100, 200, and 400. We
assumed β = (β1, β2, β3)T = (1, 1, 1)T and (σD, σε)T = (0,1)T in all points on the reference
sphere. To assess the family-wise error rate, we set σA to zero in all points on the reference
sphere. In addition, to assess both the power and family-wise error rate, we set σA = 2 for all
points within the ROI (Fig. 3 a & b).

We smoothed the simulated data on the reference sphere using heat kernel smoothing with
either 16 or 64 iterations, yielding an effective smoothness of approximately 4mm or 8mm,
respectively (Chung, Robbins, Dalton, Davidson, Alexander and Evans (2005)). We used
the family-wise error rate (FWER=P(V ≥ 1)) as the Type I error rate and estimated it based
on 1000 replications and the significance level at α = 5% (Dudoit, Shaffer and Boldrick
(2003)). We also calculated the average of the probabilities of rejecting each of the 64 points
in the ROI as an estimate of the average power using 1000 replications and the significance
level of α = 5%.

For the test statistic Sμ, , our test procedure worked reasonably well for relatively small
sample sizes (n = 20, 40, and 60) (Fig. 4 a–c). The family-wise error rates for our robust test
procedure were not particularly accurate for small sample sizes, n = 20 and n = 40 (Fig. 4 a);
in contrast, they approximated the 5% significance level at n = 60. Thus, sample size could
influence somewhat the finite performance of our test procedure, particularly when sample
sizes were small. Furthermore, although application of heat kernel smoothing may greatly
increase the average power to detect statistically significant effects at the vertices of an ROI,
it also dramatically increased the family-wise error rates (Fig. 4 b & c).

For the test statistic SA, , our test procedure worked reasonably well for all sample sizes (n
= 20 – 400) (Fig. 4 d–f). The family-wise error rates for our procedure were close to the 5%
significance level at sample sizes from n = 20 to 400 (Fig. 4 d). Compared with the sample
size needed to detect H0,μ: β3 ≠ 0, a much larger sample size n ≥ 400 was needed to detect
genetic effects on brain structure. Application of heat kernel smoothing not only decreased
the power to detect statistically significant genetic effects in the ROI, but it also greatly
increased family-wise error rates (Fig. 4 e & f).

We observed the effects of heat kernel smoothing on the detection of covariate and genetic
effects. Genetic effects, however, are mainly associated with the variance components of
MRI measures, and therefore independently smoothing MRI measures from multiple
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subjects within each family may deteriorate their correlation structure in family-based
imaging data. We believe that for MRI measures from longitudinal and family studies, we
may need to develop new registration and smoothing methods that account for the
correlation structure within the MRI datasets (Csapo, Holland, and Guttmann, 2007).

4 Real-World Example
We applied our test procedure to the assessment of statistically significant effects of gender
and genetic influences on the thickness of the cerebral cortex in a family study of Major
Depressive Disorder. All 131 subjects from 49 families were recruited from a prospective
study of individuals at high and low familial risk for depression (Weissman, Wickramaratne,
Nomura, Warner, Verdeli, Pilowsky, Grillon, and Bruder (2005), Weissman,
Wickramaratne, Nomura, Warner, Pilowsky, and Verdeli (2006)). The ages of subjects
ranged from 6 to 55 years (mean 29.08, SD: 13.66 years). The high and low risk groups
were similarly distributed across gender (males: 61; female: 70). Subjects were
predominantly right-handed (91.0%). The families varied in size from 1 to 15 individuals.

We developed a three-step procedure to measure cortical thickness. First, we used a 7-
parameter rigid-body similarity transformation (3 translations, 3 rotations, and global
scaling) to register the brains of all subjects to the cerebrum of a selected reference subject
(Viola and Wells, 1995). Second, we used the method of fluid dynamics to identify
correspondences for points on the surfaces of the cortex of each brain with the points on the
surface of the reference brain (Christensen, Rabbitt and Miller (1994), Bansal, Staib, Wang
and Peterson (2005)). Third, we applied the morphological distance transform to the
segmented cortical gray matter to measure cortical thickness and the value at each point on
the surface of the brain of each subject.

To control for the effects of covariates (diagnosis, age, and gender) on our models of cortical
thickness, we considered the variance components model for the signed-distance yij at each
point on the cortical surface. The xij = (x1ij, ⋯, x5ij)T is a 5 × 1 vector, in which x1ij ≡ 1, x2ij
is log(Age), x3ij is gender, x4ij denotes the risk status (high-risk or low-risk), and x5ij = x2ij
x3ij.

We smoothed the cortical thickness measures of all 131 subjects using heat kernel
smoothing with parameters σ = 1 and 100 iterations, yielding an effective smoothness of
approximately 10mm (Chung, Robbins, Dalton, Davidson, Alexander and Evans (2005)).

We detected and localized the statistical significance of the age-by-gender interaction on the
morphology of the cortical thickness - i.e., H0 : β5 = 0 at all points on the surface. Thus we
have R = (0, 0, 0, 0, 1) and b0 = (0). The p-values p(d) based on the resampling method were
color-coded at each point of the reference brain (Fig. 5). To correct for multiple
comparisons, we applied our test procedure to calculate the corrected p–value pD(d) at each
point on the surface of the reference brain (Fig. 5). Color-coded maps of p-values using
either the uncorrected p(d)-value alone or the corrected pD(d)-value indicated several large-
scale age × gender interactions in our model that were strongest in the inferior prefrontal,
lateral temporal, and visual cortices (Fig. 5).

We detected and localized the effects of genetic influences on cortical thickness (Fig. 6 a–f).
Corrected p-values p(d) at each point on the surface of the reference cortex, however, did
not detect statistically significant genetic effects on the cortical thickness (not presented
here) at a significance level of 10%. The p-value p(d) maps alone indicated several large-
scale genetic influences in the morphology of cortical surface. We also applied the same test
procedure to the unsmoothed image data, but all points failed to reach the corrected p value
of 0.1 (data not shown). The uncorrected p-value maps indicated genetic influences on
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cortical thickness that were sparsely distributed; moreover, smoothing reduces dramatically
the number of voxels at the surface of cerebral cortex (Fig. 6).

5 Conclusions and Discussion
We have developed two methods for the statistical analysis of intercorrelated imaging
measures from family studies, one based on a variance components model and another based
on a resampling method. The variance components model is based on the first and second
moments of imaging measures and therefore it avoids the multivariate Gaussian assumption
of imaging measures within a family. The test procedure based on the resampling method
not only accounts for multiple comparisons across the entire brain region under
investigation, but it also asymptotically preserves the dependence structure among the test
statistics. Our simulation studies have shown that this procedure provides accurate control of
the family-wise error rate from relatively small to large sample sizes. Our results show that a
large sample size is needed to detect genetic effects on brain structure and function, and that
smoothing of MRI measures can decrease the probability of detecting such effects.

We also note several advantages and limitations of our procedures. We characterize the
correlations among morphological measures within a family using presumed genetic
associations – specifically, the probability that two members of a pedigree share one or two
alleles from the same source (Duncan, 2004). Whether the genetic relationships fully
characterize the correlations among imaging measures within a family, however, is unclear.
The analytic procedure that is based on the score test statistics and the resampling method
can accurately control the family-wise error rate under the various scenarios examined (Figs
1–2 and 4). However, if the multivariate Gaussian assumptions are indeed valid, then we
may incorporate the Gaussian distribution into our test procedure to increase the statistical
power of rejecting null hypothesis, including hypotheses concerning a genetic effect.
Moreover, for small significance levels on the order of α = 1%, a large S in the test
procedure is needed to estimate pD and pD(d) accurately.

Many aspects of this work warrant further research. Performance of our test procedure
should be assessed, for example, in analyses of data from other imaging modalities, such as
PET and fMRI. Our test procedure should also be extended to include the use of cluster size
in combination with a statistical threshold (e.g., ) to control the Type I error rates
(Hayasaka, Phan, Liberzon, Worsley and Nichols (2004), Friston, Worsley, Frackowiak,
Mazziotta and Evans (1994)). We will report these efforts elsewhere. We will also explore
the use and assumptions of varying correlation structures for the morphological measures
within a family. Finally, we will incorporate genotype information into our analysis of the
morphologic features of the brain.

Appendix I

First and second derivatives of Ln(θ) with respect to θ
For the sake of completeness, we include the first and second derivatives of Ln(θ) with
respect to θ, which have already appeared in the literature (see, for example, Jennrich and
Schluchter (1986), Laird, and Ware (1982), Lindstrom and Bates (1988)). For notational
simplicity, we omit d from all parameters. Let ψ = (ψ1, ψ2, ψ3)T = (σA, σD, σε)T.
Differentiating Ln(θ) with respect to θ = (βT, ψT)T, we can obtain
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where  and ∂θ and , respectively, denote the first- and second-order
derivatives with respect to θ. Furthermore, using the fact that E[ei(β)] = 0 and E[ei(β)ei(β)T]
= Σi at β = β*, in which β* denotes the true value of β, we can obtain the approximation of
the second derivative of Ln(θ) with respect to θ as follows:

where ⊗ denotes the Kronecker product of two matrices and ∂ψΣi, a 3 × mi matrix, equals
(∂ψ1 Σi, ∂ψ2 Σi, ∂ψ3 Σi)T. Thus, we have

(16)

In addition, we have

where Vec(C) denotes (c11, ⋯ , c1mi, ⋯, cmi1, ⋯, cmimi)
T for any mi × mi matrix C = (cij).

Appendix II

Test Statistics
To consider the test statistic Sμ, we need additional notation as follows. Without loss of
generality, we assume that R = (R1, R2), in which R1 is an r × r nonsingular matrix and R2 is

an r × (k – r) matrix. Let , where β(1) is an r × 1 vector corresponding to R1
and β(2) is a (k – r) × 1 vector corresponding to R2. If we define
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(17)

then there exists a one-to-one correspondence between (μ, ν) = f(θ) and θ = f−1(μ, ν). Thus,
we have

Moreover, the first- and second-order derivatives of Ln(θ) with respect to μ are given by

We obtain the asymptotic distributions of the test statistics Sμ and SA as follows. Let θ0 = (0,
ν0) be the true parameter vector of θ under H0μ and θ͂ = f(0, ν ͂) is the maximum quasi-
likelihood estimate of θ under H0μ. Assume that

First, the use of Taylor expansion yields that

Thus, we have

(18)

Second, using Taylor expansion leads to

where . Thus, we have

(19)

where V̂μν = Vμν (0, ν͂) and V̂νν (0, ν ͂). We define . Under the mild

conditions described previously (van der Vaart (1998)),  converges to a
Gaussian distribution with mean 0 and covariance matrix Ir; consequently, Sμ is
asymptotically distributed as χ2(r) distribution under H0,μ.
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For SA, we proceed as follows. First, let δ = (βT, ψ2, ψ3)T, which defines a one-to-one map
between θ and (ψ1, δT)T. Second, assume that

and . Let k(θ ͂A) = (0, δ͂T), where θ͂A is the estimate of θ under
H0,A. Thus, we have

(20)

where V̂ψ1δ = Vψ1δ (0, δ ͂) and V̂δδ = Vδδ (0, δ ͂). Under conditions described previously (Zhu
and Zhang (2006)), SA converges to 0.5χ2(0) + 0.5χ2(1) in distribution, when the null
hypothesis H0,A is true.

Appendix III

Theoretical Justification
We study the asymptotic properties of {Sμ(d), Sμ(d)(r)} under the null hypothesis H0,μ. First,
we need to distinguish and 𝒟 ̅ where denotes the set of the centers of all voxels in a
specific brain region and 𝒟 ̅ denotes the collection of all points in the same brain region. In
practice, because we only observe data at all points of  we can only calculate {Sμ(d),
Sμ(d)(r)} for all d ∈  Furthermore, we can always embed {Sμ(d), Sμ(d)(r)} :d ∈  into
{Sμ(d), Sμ(d)(r)} : d∈ 𝒟 ̅}.

We regard {Sμ(d) : d ∈ 𝒟 ̅} and {Sμ(d)(r) : d ∈ D ̅} as two stochastic processes indexed by d ∈
𝒟 ̅. To validate the test procedure in Section 2.5, we need to establish three main results as
follows:

(a) Sμ(·) converges weakly to a χ2 process, denoted by Xμ(·);

(b) Sμ(·)(r) converges weakly toXμ(·);

(c) Sμ(·)(r) converges conditionally to Xμ(·).

Sufficient conditions for ensuring (a)–(c) and the detailed proof have been discussed in the
literature (Kosorok (2003), van der Vaart and Wellner (1996), Zhu and Zhang (2006)). After
establishing (a)–(c), we can use the continuous mapping theorem to prove the desirable
results as follows.

(d) Sμ,  = maxd∈D Sμ(d) converges weakly to maxd∈D Xμ (d).

(f)
 converges conditionally to maxd∈D Xμ (d).

Thus, we have proved that the resampling method presented in Section 2.5 is asymptotically
valid.
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Figure 1.
Simulation Study for Sμ: Type I and Type II Error Rates. Rejection rates of our resampling
method (”Boot”) and the asymptotic χ2 test (“Chi2”) for Sμ are calculated for sample sizes of
20, 40, and 60 at the 1% and 5% significance levels. Panels (a) and (c), respectively, show
the estimated Type I error rates and Type II error rates at the 1% significance level. Panels
(b) and (d), respectively, show the estimated Type I and Type II error rates at the 5%
significance level.
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Figure 2.
Simulation Study for SA: Type I and Type II Error Rates. Rejection rates of the resampling
method (”Boot”) and the asymptotic χ2 test (“Chi2”) for SA are calculated for sample sizes of
20, 40, 60, 100, and 200 at the 1% and 5% significance levels. Panels (a) and (c),
respectively, show the estimated Type I and Type II error rates at the 1% significance level.
Panels (b) and (d), respectively, show the estimated Type I and Type II error rates at the 5%
significance level.
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Figure 3.
Simulation Study of a Region of Interest Analysis. The region of interest is highlighted in
red on the surface of a reference sphere: (a) anterior and (b) right lateral views.

Zhu et al. Page 20

Stat Sin. Author manuscript; available in PMC 2011 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Simulation Study: Family-wise Error Rates and Average Powers of the Resampling Method.
We consider test statistic Sμ, , sample sizes of 20, 40, and 60, and three different degrees of
smoothness at significance level 0.05 (Panels (a)–(c)). We consider test statistic Sμ, ,
sample sizes 20, 40, 60, 100, 200, and 400 and three different degrees of smoothness at
significance level 0.05 (Panels (d)–(f)). In Panels (a) and (d), the null hypotheses are true in
all voxels of the reference sphere; in Panels (b), (e), (c), and (f), the alternative hypotheses
are true in all voxels within the ROI, whereas the null hypotheses are true in all voxels
outside the ROI. We calculate the family-wise error rates in Panels (a), (c), (d), and (f) and
the average powers in Panels (b) and (e).
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Figure 5.
Age × Gender Interactions for Cortical Thickness in Real-World Data. Color-coded maps of
sign(β5) × [−log10(p)]-values, where p denotes the p–value of the score-type statistics for
testing age-by-gender interaction and β5 is the coefficient of x5ij. Row 1: Smoothed data and
uncorrected p–values. Row 2: Smoothed data and corrected p–values. Row 3: Unsmoothed
data and uncorrected p–values. Row 4: Unsmoothed data and corrected p–values. Column
(a): dorsal surface. Column (b): ventral surface. Column (c): posterior surface. Column (d):
anterior surface. Column (e): right lateral surface. Column (f): left lateral surface. After
correction for multiple comparisons, statistically significant interactions of Age × Gender
remain in the occipital lobe at the significance level 10% (Row 2 and Column (c)).
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Figure 6.
Genetic Effects in Real-World Data. Color-coded maps of −log10(p)–values for the score-
type statistics. Row 1: Unsmoothed data and uncorrected p-values. Row 2: Smoothed data
and uncorrected p-values. Column (a): dorsal surface. Column (b): ventral surface. Column
(c): posterior surface. Column (d): anterior surface. Column (e): right lateral surface.
Column (f): left lateral surface. Smoothing reduces substantially the number of significant
voxels on the surface of the cerebral cortex.
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