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Abstract
Multiequation models that contain observed or latent variables are common in the social sciences.
To determine whether unique parameter values exist for such models, one needs to assess model
identification. In practice analysts rely on empirical checks that evaluate the singularity of the
information matrix evaluated at sample estimates of parameters. The discrepancy between
estimates and population values, the limitations of numerical assessments of ranks, and the
difference between local and global identification make this practice less than perfect. In this
paper we outline how to use computer algebra systems (CAS) to determine the local and global
identification of multiequation models with or without latent variables. We demonstrate a
symbolic CAS approach to local identification and develop a CAS approach to obtain explicit
algebraic solutions for each of the model parameters. We illustrate the procedures with several
examples, including a new proof of the identification of a model for handling missing data using
auxiliary variables. We present an identification procedure for Structural Equation Models that
makes use of CAS and that is a useful complement to current methods.

1 INTRODUCTION
Multiequation models with observed and latent variables are common in the social sciences.
Economists routinely estimate simultaneous equation models that track the complex
relations between endogenous and exogenous observed variables (e.g., Greene, 2008).
Factor analysis is a multiequation system relating observed variables to one or more latent
variables. Finally, general structural equation models (SEMs) combine features of
simultaneous equations and factor analysis and are a well-known tool in the social and
behavioral sciences.

Though the parameters might differ, these models have in common the identification
problem. The question of identification is whether it is possible to find unique values of the
model parameters. It is an issue not so much at the sample level as one that is best answered
at the population level.i That is, if we had population moments of the observed variables
(typically the means and covariance matrix), then identification asks whether this would be
enough to uniquely solve for all of the model parameters.

Direct correspondence to: Kenneth A. Bollen, CB 3210 Hamilton, Department of Sociology, University of North Carolina, Chapel
Hill, NC 27599-3210 (bollen@unc.edu).
An earlier version of this paper was presented at the American Sociological Association meeting held in August 2008 in Boston, MA.
iThere is a separate issue of “empirical identification” (Kenny, 1979) that occurs when a model is identified in the population, but the
sample values are close to values that would lead to an underidentified model. We do not focus on empirical identification.
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In special cases rules of identification have solved the problem. For instance, in
simultaneous equation models with no measurement error, the recursive rule holds when the
disturbances of all equations are uncorrelated and there is no feedback in the system (e.g.,
Bollen, 1989, pp.95–98). Or if all simultaneous equation disturbances are correlated without
restrictions, we have the rank and order conditions to which we can refer (e.g., Fisher, 1966;
Bollen, 1989, pp. 98–103). Similarly, there are rules of identification for some factor
analysis models and latent variable SEMs (e.g., Bollen, 1989, pp. 238-47, 326-32; Davis,
1993; O’Brien, 1994; Reilly, 1995; Rigdon, 1995). Unfortunately, many researchers’ models
are not covered by these identification rules. This has sometimes led to underidentified
models being presented and later corrected (Burt, Wiley, Minor, and Murray 1978; Burt,
Fischer, and Christman 1979).

In practice researchers rarely mention rules of identification and instead rely on SEM
software that checks the singularity of the information matrix to determine identification. A
singular information matrix is a symptom of an underidentified model (Rothenberg, 1971).
Sample estimates replace population parameters in the information matrix for the singularity
check in SEM software. Though this works well in most situations, it has limitations. One is
that it is an empirical test based on the sample estimates rather than the population values of
parameters. To the degree that the sample estimates differ from the population ones it is
possible to reach different conclusions on singularity (McDonald and Krane, 1979; Bollen,
1989, pages 249-51) and hence identification. A second related limitation is the uncertainty
in numerically determining the rank of the estimated information matrix (Bentler and
Weeks, 1980). This problem would be most serious when there is near singularity of the
information matrix. The near singularity could be due to a property of the population
information matrix or to estimates that lead to near singularity even if the population
information matrix is not problematic. The near singularity might challenge the limits of the
numerical methods used to determine whether the rank condition of the information matrix
is met. As Schoenberg (1981, page 2) states: “A numerical inverse may exist when the
theoretical inverse does not, and vice versa; in other words, the computer may generate an
inverse from a matrix that is theoretically indefinite, or may fail to compute an inverse when
in fact it is theoretically positive definite.” SEM software that relies on empirical checks of
the singularity of the information matrix provide warning messages about potential
identification problems. LISREL provides an example:

W_A_R_N_I_N_G: [parameter name] may not be identified.

Standard Errors, T-Values, Modification Indices, and Standardized Residuals
cannot be computed.

Given the limitations of the empirical checks described above the use of the word may in
this warning is well-advised. Other SEM software use similar cautionary wording. Though
most times these messages will signify a real problem with identification, this will not
always be true. Having another approach to determining identification status could lessen
the ambiguity in determining whether this is a real problem or a false alarm.

A third limitation of reliance on the information matrix singularity check is that it is a check
of local identification rather than global identification. To illustrate, consider Figure 1. It
contains a model from Bollen and Hoyle (1990) with equal coefficients for the feedback
relations between two latent variables. We analyzed the same data and the two runs differ
only in their starting values. All of the parameters are identical except for the feedback
coefficient and the error variances for the two latent variables. There are no warnings from
the SEM software about model underidentification. Indeed, a researcher probably would not
know that there was a second set of parameter values that were consistent with the data
without having stumbled upon it and might incorrectly interpret the parameters from one
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model rather than the other. In one set of coefficients the feedback loop is “explosive” and
the system is unstable whereas in the other the relation converges to an equilibrium. We
suspect that some readers will be surprised by this example, but it illustrates the difference
between local and global identification. As we will show later, this model is locally, but not
globally identified. As such the information matrix is nonsingular and checking the
information matrix will not detect a problem even with the population parameter values.

Algebraic solutions are perhaps the surest way to establish model identification (e.g., Long,
1983, page 44). The multiequation models each lead to expressions that represent the means
and covariances of the observed variables as functions of the parameters in the model. If we
can show that each model parameter (e.g., coefficient, covariance of disturbances) is
solvable as a unique function of some elements of the means or covariance matrix of the
observed variables, then we can establish model identification.ii Solving for these model
parameters by hand is sometimes possible, but with modestly-sized models such as that in
Figure 1 or larger models, it often is difficult and prone to human errors. Furthermore,
Duncan (1975, pages 84–86) provides an example where the algebraic approach seems to be
misleading in suggesting a unique solution when there is none.

The purpose of our paper is to recommend a complementary approach to identification that
makes use of computer algebra systems (CASs) and that can avoid some of the limitations
we described. One role of CAS focuses on local identification. As we stated above the most
common identification check relies on the information matrix evaulated at the sample
estimates. The problems with this are traceable to the discrepancy between sample estimates
and population values and the issues of numerical accuracy. CASs address both of these
problems by performing the checks using symbolic algebra rather than sample estimates. In
addition, we use the Wald Rank Rule (Wald, 1950; Bollen, 1989, pages 248-49) to evaluate
rank. This CAS approach to local identification is well worked out in Bekker, Merckens, and
Wansbeek (1994) who developed software to check local identification based on the Wald
Rank Rule (the rank of a Jacobian matrix). This is closely related to the check on the
singularity of the information matrix, except the evaluation occurs on the Jacobian matrix
which involves first order derivatives rather than second order derivatives. More
importantly, the assessment occurs not with empirical estimates but at the symbolic level.
Though their book is out of print, we will discuss how to use CAS software to examine the
Jacobian matrix and to check local identification using symbolic terms rather than empirical
estimates.

A second role for CASs that is less explored is to solve for the model parameters in terms of
the means, variances, and covariances of the observed variables to establish identification.
To the best of our knowledge, no one has provided a general presentation on the use of
computer algebra programs to solve for the model parameters in terms of the means and
covariance matrix elements of the observed variables, though this possibility is known.iii
There are complications with the CAS approach to finding unique solutions that have not
been discussed in the literature that we address as well. In addition, we will look at the
Duncan’s (1975, pages 84–86) example that is sometimes raised as an objection to an
algebraic approach to model identification.

iiWith rare exceptions, the means and covariances of the observed variables are identified and showing that each parameter is a unique
function of one or more of them establishes identification.
iiiOne of the authors attempted this in the early 1980s using Macsyma, a programming language from Bell Labs, but encountered
computing difficulties that prevented successful implementation. A reviewer pointed out that Rigdon (1995, page 371) mentions that
he used computer algebra to establish rules of identification for a class of block-recursive models. The computer algebra program or
results are not provided.
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More specifically, the purposes of our paper are: (1) to review the differences between local
and global identification, (2) to review CAS approaches to local identification, (3) to
develop a procedure for using CASs to assess global identification, and (4) to illustrate our
procedure with four examples.

In the next sections, we present the general SEM and give the implied means and implied
covariance matrix that correspond to the means and covariance matrix of the observed
variables. After this is a section on local and global identification. Then come sections on
CAS methods for local identification and CAS for global identification that finds algebraic
solutions using symbolic manipulations. A concluding section follows with an appendix
containing the programs for the examples in the text.

1.1 MODEL SPECIFICATION
Structural equation models (SEMs) include many models that are typical in the social and
behavioral sciences (e.g., multiple regression, ANOVA, simultaneous equation models,
confirmatory factor analysis, latent growth curve models, etc.). Here we present the general
SEM so that our treatment is inclusive of a wide variety of identification issues that 6 occur
in practice. We use a modified version of Jöreskog and Sörbom’s (1993) LISREL notation
for SEMsiv, the most common notation in the field. It is convenient to distinguish between
the latent variable model and the measurement model. The latent variable model is

(1)

where ηi is a vector of latent endogenous variables for unit i, αη is a vector of intercept
terms for the equations, B is the matrix of coefficients giving the effects of the latent
endogenous variables on each other, ξi is the vector of latent exogenous variables, Γ is the
coefficient matrix giving the effects of the latent exogenous variables on the latent
endogenous variables, and ζi is the vector of disturbances. The i subscript indexes the ith
case in the sample. We assume that E(ζi)=0, , and that (I–B) is invertible.
Exogenous variables are variables that are not explained within the model and that are
uncorrelated with all disturbances in the system. Endogenous variables are ones that are
directly influenced by at least one other variable besides its disturbance. Two covariance
matrices are part of the latent variable model: Φ the covariance matrix of the exogenous
latent variables (ξ) and Ψ the covariance matrix of the equation disturbances (ζ). The mean
of ξ is μξ.

The measurement model shows the relation between the latent to the observed responses
(indicators). It has two equations:

(2)

(3)

where yi and xi are vectors of the observed indicators of ηi and ξi, respectively, αy and αx are
intercept vectors, Λy and Λx are matrices of factor loadings or regression coefficients giving
the impact of the latent ηi and ξi on yi and xi, respectively, and εi and δi are the unique

ivThe intercept notation is a slight modification of the LISREL notation to keep them all as αs.
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factors of yi and xi. We assume that the unique factors (εi and δi) have expected values of
zero, covariance matrices of Θε and Θδ, respectively, and are uncorrelated with each other
and with ζi and ξi.

2 IMPLIED MOMENT MATRICES
Given a model, we can write the population means, variances, and covariances of the
observed variables as a function of the parameters. We write this as

(4)

(5)

where μ is the population mean vector of the observed variables, θ is the vector that contains
the parameters in the model, and μ(θ) is the population implied mean vector that is a
function of the model parameters. Similarly, Σ is the population covariance matrix of the
observed variables and Σ(θ) is the implied covariance structure that is a function of the
parameters. The implied moments and their relation to the model parameters forms the basis
of the algebraic approach to identification.

To derive the implied moments, it is useful to work with the reduced-form of the models,
where each endogenous variable is a function of only exogenous variables, coefficients, and
disturbances. The reduced-form for the latent variable model is

(6)

The measurement model for the xi already is in reduced-form. The reduced-form equation
for yi is

(7)

More specifically, in the model in equations (1), (2), and (3) the population implied mean
vector is

(8)

The top part of the right-hand side vector is the implied mean vector for y and the lower part
is the implied mean vector of x.

The implied covariance matrix is fairly complex, so we partition the matrix to correspond to
the implied covariance matrix of y, of x, and of y and x:
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(9)

These parts of the implied covariance matrix are

(10)

(11)

(12)

These equations show the variance and covariance of the observed variables as functions of
the model parameters. The equations are sufficiently general to capture most SEMs with
continuous variables.v We just substitute the specific matrices for a particular model into
these expressions.

3 LOCAL AND GLOBAL IDENTIFICATION
Global identification of the parameters (θ) in a SEM holds if there are no vectors of values
for the parameters, say θa and θb, such that μ(θa)=μ(θb) or Σ(θa)=Σ(θb) unless θa =θb.vi

This means that once we define the parameter space, we will not be able to find two
different vectors of parameter values that lead to the same values for the implied means or
for the implied covariance matrix. If we were able to find two or more sets of values, then
the model is globally underidentified.

In contrast, local identification is a weaker concept of uniqueness. The parameter vector θ is
locally identified at a point θa, if in the neighborhood of θa there is no vector θb for which
μ(θa)=μ(θb) or Σ(θa)=Σ(θb) unless θa =θb (Bollen, 1989, p.248). A key difference between
global and local identification is that local identification is examined at a particular set of
values, θa, and it only searches for alternative values (θb) in the neighborhood of θa. Global
identification searches more broadly, not just the neighborhood of one set of values, to
ensure that there are no two sets of different parameter values that lead to the same implied
moment matrices. Global identification implies local identification, but a locally identified
model need not imply a globally identified model.

We can illustrate this difference with a simple factor analysis model with one factor, three
indicators, and uncorrelated unique factors. To simplify the illustration we assume all
variables are deviated from their means so that we can ignore the means and intercepts. The
matrices for this model are:

vIn some special models it can be more convenient to use alternative forms of this model to capture unusual structures. One such
model is called the “all y” model where y contains all observed variables and η has all of the latent variables. See, for example, Bollen
(1989, 395–400).
viFor a more formal statement of the conditions for global and local identification see Bekker et al. (1994, pgs. 16–19) or Davidson
and MacKinnon (1993, pg. 143).
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(13)

We have not yet scaled the latent factor. If we choose to scale the latent variable by setting
its variance to one (Φ11=1), then each factor loading has two possible solutions. For
example, λ11=(σ21σ31/σ32)1/2 means that we can have the positive or negative square root
solution. The same is true for the remaining factor loadings. As is easy to verify, using all
the positive square roots for the factor loadings or all of the negative roots of the factor
loadings will lead to the identical implied covariance matrix. Thus we have two different
values of the factor loadings that result in the same implied covariance matrix and the model
is not globally identified. However, the model is locally identified. Interestingly, if a
researcher scales the latent variable by setting λ11 to one and estimating Φ11, this model is
locally and globally identified. The difference in local and global identification is rather
benign in this case, but it could generate misleading results in more complex models.

This one factor, three indicator example also gives us an opportunity to point out that some
values of a parameter might create an underidentified model. For instance, if any of the
factor loadings or if φ11 were zero, then the model would be underidentified despite having
three indicators. These “degenerate” solutions are a possibility, but a remote one for most
applications. When we describe a model as identified, we are assuming that such degenerate
values are not present.

Sample estimates that do not equal but are close to the problematic values can create what
are called empirical identification issues. A factor loading near zero in the previous example
could create empirical identification problems. The computer algebra methods that we
discuss could be helpful in better understanding the sources of empirical underidentification,
but our focus is on the population values of parameters not on sample estimates.

Two methods to check local identification in SEM are known. The best known method is
checking the singularity of the information matrix evaluated at the sample estimates of the
parameters. Keesling (1972) and Wiley (1973) recommended this local identification check
and it has been implemented in all of the major SEM packages. The information matrix is
minus the expected value of the second-order partial derivatives of the maximum likelihood
estimator with respect to θ. The θ parameter is locally identified at θa, if and only if the
inverse of the information matrix exists (Rothenberg, 1971). The asymptotic covariance
matrix of the parameter estimators is routinely computed from the inverse of the estimated
information matrix in SEM software. Because of this, it is easy to check whether this
condition of local identification holds at the parameter estimates, θ. In fact, this information
matrix check is automatic in SEM software.

A second check on local identification is based on Wald (1950). To explain the Wald Rank
Rule, we define σ(θ) to be a vector of the nonredundant elements of Σ(θ) and μ(θ). The

parameter vector θ is locally identified at a point θa, if and only if the rank of 
evaluated at θa is equal to the number of parameters in θ. None of the SEM software
packages implements this check using θ as a point of evaluation in a way analogous to the
information matrix check. McDonald and Krane (1979) provide some simulation evidence
that favors the accuracy of this approach compared to the information matrix check.

When either the singularity of information matrix or the Wald Rank Rule are applied using
the sample estimates (θ), there are the limitations mentioned in the introduction: singularity

Bollen and Bauldry Page 7

Sociol Methods Res. Author manuscript; available in PMC 2011 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



or rank might differ at sample estimates vs. population parameter, numerical accuracy could
affect the results, and both are local identification checks not global identification. Computer
algebra systems (CASs) can address the first two issues when symbols replace the estimated
values. In fact, Bekker, Merckens, and Wansbeek (1994) propose using a CAS to assess
local identification based on the Wald Rank Rule. They use the Jacobian matrix of the
covariance matrix and the matrix of restrictions on parameters and examine the rank of the
resulting matrix to check for local identification. More specifically, they define σ(θ) to equal
the partitioned column vector of μ(θ) and vech Σ(θ) and ρ(θ) is a vector of constraints on θ
imposed by a model such that ρ(θo)=0. They define the Jacobian matrix as formed by

(14)

and show that if θo is a regular point of J(θ), then a necessary and sufficient condition for a
locally identified θo is that J(θ) has rank equal to the dimension of θ (Bekker, et al., 1994,
pp. 27–28). The advantage of their CAS approach is that the evaluation occurs with the
symbols rather than the estimates so that the potential confounding due to sample estimates
in checking the estimated information matrix is removed.

The Bekker, et al. (1994) approach was the first systematic application to CAS checks on
local identification in SEM and we see it as a valuable supplement to the usual check on the
singularity of the estimated information matrix. Though the Bekker, et al. (1994) book and
software are out-of-print, CAS software are available to write code to provide this check as
we will illustrate.

In the next section we explain another application of CAS to directly examine the
identification of parameters using the implied moment matrices.

4 Algebraic Solution
In principal one can assess the global identification of a model through a manual check by
substituting the parameters into the implied mean and covariance matrices and attempting to
algebraically solve each parameter in terms of observed means, covariances and variances
and establishing that the solutions are unique. In practice, the algebra is often difficult.
Given the advances in CASs, such as Maple and Mathematica, in the ability to solve
nonlinear systems of equations, it is now possible with a minimum of programming to find
explicit algebraic solutions, if they exist, for many SEMs (see Geddes, Czapor, and Labahn
(1992) for a discussion of the algorithms Maple employs to solve nonlinear systems of
equations).

4.1 General Steps
Before using a CAS the analyst must first determine the number of equations and the
number of parameters given the number of observed variables and the proposed model. Let
p be the number of y observed variables and q the number of x observed variables. In many
models, the means of the observed variables and the intercepts in the latent variable and
measurement models are ignored. Attention focuses on the covariance matrix and other
model parameters. To simplify our discussion, we concentrate on the implied covariance
matrix and the model parameters that are part of it, though it is straightforward to add the
means and intercepts to these procedures.
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The covariance matrix of observed variables, Σ, will have  nonredundant
elements. vii Let t equal the number of unknown parameters in the parameter vector θ. The
three possible cases that can arise are

In case 1 where there are a greater number of unknown parameters in θ than there are
nonredundant elements of Σ, by the t-rule (Bollen, 1989, p.328) one can see immediately
that the proposed model is underidentified and no further work is required. viii In case 2, the
number of unknown parameters in θ is equal to the number of nonredundant elements of Σ,
which leads to an equal number of equations and unknowns in the resulting system of
equations. Finally in case three where the number of unknown parameters in θ is less than
the number of nonredundant elements of Σ the resulting system of equations will have more
equations than unknown parameters (i.e., in mathematical terms it is an overdetermined
system), raising the possibility that more than one way to solve for a parameter exists. Due
to how CASs operate, cases 2 and 3 require somewhat different approaches and will be
discussed separately.

4.1.1 Case 2—The first step in assessing identification with a CAS is to enter the system
of equations implied by the observed covariance matrix and the model under consideration.
We have found this is most easily accomplished by defining partitions of the implied
covariance matrix (equations 12–14) as functions and then substituting in the model
parameters (see Appendix for a sample program). When there are an equal number of
equations and unknowns in the resulting system, the analyst can immediately proceed to
obtaining an algebraic solution, if it exists.

In solving the system it is possible to find three different types of results: (1) a unique
algebraic solution is found for each parameter, (2) an algebraic solution is found that is not
unique for one or more parameters (e.g., the solution for a parameter may involve a square
root, thus admitting a positive and a negative solution), (3) no algebraic solution is found. ix
If the first result is obtained, then the model is globally identified. If the second type of
result is obtained, then the model is locally identified. In this case, one can examine which
parameters admit multiple solutions and potentially assess the significance of this for the
specific model under consideration. Finally, if the third type of result is obtained, then the
model is not identified.

It is important to keep in mind that there are situations where even though a parameter is
equal to a specific function of the variances and covariances of the observed variables, the
variances or covariances might take values resulting in an undefined solution. For instance,
if a covariance is the denominator of a solution and that covariance of observed variables is
zero in the population, then an undefined solution would result and that parameter and hence

viiIf the vector of means is used in addition to the covariance matrix, then there are  nonredundant elements.
viiiIt may be possible to impose inequality constraints on the model such that it can be identified, but this rarely occurs in practice.
ixIt is conceivable that there is a solution, but the CAS program has failed to find it. In all of the examples that we have tried, we never
encountered that problem though it remains a possibility.
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the model would not be identified. The CAS approach makes it easier to see these points of
undefined solutions by giving the explicit functions that a parameter equals.

4.1.2 Case 3—In most situations there will be more equations than parameters (in fact, it is
this difference that allows for tests of model fit). When this is the case, we are not aware of a
direct method to instruct a CAS to solve the system. From a purely mathematical viewpoint,
the system in fact does not have a single solution as it is overdetermined. This means that it
might be possible to have a parameter written as two or more different functions of the
variances or covariances of the observed variables. But if the model is valid, then these
solutions should result in the same numerical value for the parameter when the population
variances or covariances values are substituted in. So being overdetermined does not mean
that different model parameter values result. It just means that it might be possible to arrive
at the same parameter value in multiple ways.

An overdetermined system does raise problems for a CAS. A practical way to approach this
is to try to turn Case 3 into a Case 2 situation. More specifically, the analyst should find a
subset of equations containing all of the unknown parameters and equal to the number of
unknown parameters. Then, Case 3 reduces to Case 2 and the subset of equations can be
solved for an explicit algebraic solution, if it exists. As with Case 2, it is possible to obtain
three different types of results, but one is now faced with the added complication that this is
for a subset of the model equations and it is possible to obtain different types of results with
other subsets of equations. In a companion piece (Bollen and Bauldry, forthcoming), we
provide a proof that if a unique algebraic solution is found with one subset of equations, this
is sufficient to establish global identification. It is not the case, however, that if either a non-
unique algebraic solution is found or no solution is found with a given subset of equations
then the model is respectively locally identified or not identified. In practice, this means that
one needs to solve different subsets of equations until either a unique algebraic solution is
found with a given subset, a multiple solution results in generating the same implied
moment matrices, or all possible subsets of equations are exhausted.

The number of subsets of equations equals the number of unknown parameters taken t at a
time or the binomial expression:

(15)

This potentially could result in a large number of subsets of equations to evaluate. However,
there are factors that reduce this number. Fortunately, we can eliminate any subset of
equations that does not include all model parameters. For many models this substantially
reduces the number of systems of subsets of equations to be solved.

There is one other way in which we can reduce the number of equations. x We know that the
variances of unique factors or errors only appear in the variances of the observed variables
to which they correspond. This means that only if the other parameters in the implied
variance equations are identified will we be able to identified the error variances. This
implies that we can reduce the number of equations that we simultaneously consider by
eliminating all the variances of observed variables and eliminate the variances of the unique
factors as a way of reducing the total number of equations to solve. If we are able to solve
for all the other parameters, we know that we will be able to solve for the unique factor
variance. So if a researcher encounters any difficulty in solving for all parameters, it is

xWe thank a reviewer for suggesting this.

Bollen and Bauldry Page 10

Sociol Methods Res. Author manuscript; available in PMC 2011 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



possible to reduce the size of the problem by eliminating these variances and solving for the
other parameters.

In practice we have found unique algebraic solutions within the first few subsets of
equations we checked for models that are globally identified. Finally, we know of one
additional shortcut. If a given subset of equations returns a non-unique algebraic solution,
then one can check whether the solution violates the definition of identification numerically
and, if so, conclude that the model is only locally identified. We propose the following
algorithm for conducting a numerical check:

1. Choose a set of numerical values for all of the parameters.

2. Calculate the values of the moment matrices implied by the values of the
parameters.

3. Using the same subset of equations that generated a non-unique algebraic solution,
solve for the numeric values of the parameters. Given that the original algebraic
solution was not unique, this will result in at least two sets of values for the
parameters. By definition, one of the sets will match the values chosen in step 1.

4. Substitute any set of parameter values that does not match those chosen in step 1
into Σ=Σ(θ) and μ=μ(θ). Compare the results with step 2.

By the definition of identification, if two sets of parameter values generate the same
covariance matrix, then the model is not globally identified. Therefore, if in step 4 one finds
the same covariance matrix as in step 2, then the model is locally identified. If, however, in
step 4 one does not obtain the same covariance matrix as in step 2, then nothing can be
concluded and additional subsets of equations need to be assessed. We have not encountered
a situation where it was necessary to examine all possible solutions, though this does not
guarantee it will never occur.

5 Identification Procedure
In the previous sections we have presented CAS approaches to local and global
identification. This section briefly describes how these alternative methods can be part of an
effective identification strategy in SEM applications. We put this procedure in a flow chart
in Figure 2. As a starting point, we recommend that a researcher apply any of the available
rules of identification. If a model conforms to the conditions of an established sufficient rule
of identification, then the model is identified. If it fails a necessary condition, then the model
is not identified. Unfortunately, a number of models are not covered by existing rules. We
then recommend the CAS approach to Wald’s Rank Rule (or the Jacobian) to provide
information on whether local identification holds. Passing this CAS check is a good
safeguard to check local identification. A rank less than the number of parameters indicates
the failure of identification. Satisfying this CAS check on the rank provides assurance of
local identification. Failing it means the model is underidentified. Finally, a researcher can
apply CAS to find unique solutions for the parameters in terms of the means, variances, and
covariances as we have demonstrated.

We illustrate this procedure with several examples in the next section.

6 Examples of Identification Procedure
In this section we work through the proposed identification procedure for four models. We
strategically chose models that illustrate a variety of situations an analyst might encounter.
Our first example, a model Duncan (1975) explored, demonstrates that our approach to
identification does not fall into the potential pitfalls of algebraically solving models by hand.
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We chose our second example, a model Bollen (1989) originally examined, to illustrate our
approach to overidentified models. For our third example, we examine the identification
status of a recently proposed model, Enders (2008) auxiliary variable model for missing
data. Finally, in our last example we return to Bollen and Hoyle (1990) from the
introduction and illustrate how our approach determines that this model is locally, but not
globally identified.

6.1 Duncan’s (1975) Model
Duncan (1975, pages 84–86) provides a cautionary note on the use of algebraic means to
establish model identification. He presents an underidentified model where algebraic
solutions appear to be available for all parameters (see Figure 3). This is an important
example to examine since it suggests that the CAS approach to algebraic solutions might fail
in that it would suggest that some underidentified models were identified. xi

As a system of equations, we can express this model as:

(16)

This is a simultaneous equation model with a feedback relationship between y1 and y2 as
well as a correlation between the disturbances of y1 and y2. Duncan demonstrates that
through a simple process of substitution one can obtain algebraic solutions for all of the γs
and βs. He notes, however, that a close inspection of the solutions reveals that β21=1/β12 and
γ21=−γ11/β12 and therefore that the model is not in fact identified despite the apparent set of
algebraic solutions. In other words, the solutions are not unique as required for
identification.

Duncan’s result raises the possibility that one might encounter similar problems using a
CAS, so it is instructive to see how our identification procedure fares with this model (see
flow chart in Figure 2). First, Duncan (1975) and Rigdon (1995) note that this is a block-
recursive model (Fisher, 1966) and that it is not identified according to this rule. Thus, the
problem with this model would be caught in the first step of our identification procedure, but
for illustrative purposes we continue with our identification procedure.

The second step of our identification procedure assesses Wald’s Rank Rule with a CAS. We
find that the rank of the Jacobian is 12 whereas we have 14 parameters in the model, and
therefore we see that the model is not locally identified. Having determined that the model is
not locally identified there is no reason to proceed to attempt to find algebraic solutions for
the parameters. Nonetheless, we do so to see if the CAS would find the potentially
misleading algebraic results. It does not. When we examine all 15 subsets of 14 equations
for a solution, the CAS returns a null result (i.e., it correctly determines that there is no
solution). With this example, we see that our procedure for assessing identification catches
the fact that this model is not identified at every step.

6.2 A Model of Subjective Class
For our second example we draw on a model of subjective class that Bollen (1989, pages
172–175) uses to explore the consequences of allowing for measurement error (see Figure
4). The model is nonrecursive with actual income (x1) influencing subjective income (η1)
and actual occupational prestige (x2) impacting subjective occupational prestige (η2). There

xiWe thank a reviewer who suggested this possibility.
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is a feedback relation between subjective income and subjective occupation with both of
these variables affecting subjective overall status (η3). With the variables in deviation form
this model is

None of the published rules of identification cover this model, xii so our next step is to check
whether the model passes Wald’s Rank Rule. We find that the rank of the Jacobian is 14 and
we have 14 unknown parameters (in addition to the coefficients in the system of equations
above, we also have φ11, φ21, φ22, θε1, θε2, ψ11, ψ22, and ψ33). This indicates that the model
is locally identified. We now turn to an assessment of whether the model is globally
identified.

Ignoring the means and intercepts, we have 15 nonredundant elements in Σ and 14 unknown
parameters. With more nonredundant elements in Σ than unknown parameters we have an
example of our third case and need to work with subsets of equations. For this model we
have 1514=15 subsets of equations to consider, though not all of the subsets contain each
parameter in at least one equation. To simplify notation we array the observed variables y1
to y3 followed by x1 and x2. This allows us to reference specific elements of the observed
covariance matrix by subscripts (e.g., COV(x1,y2)=σ42). To select a subset of equations we
first make sure to include all of the variances (σ11, σ22, σ33, σ44, σ55). Second, we include
the covariance between x1 and x2 (σ54) in order to include φ21. Third, we arbitrarily select
eight additional covariances (σ21, σ31, σ41, σ51, σ42, σ52, σ43, σ53). Solving this subset of
equations we obtain a unique algebraic solution for all of the parameters. As we mention
above, the fact that we are able to obtain a unique algebraic solution for all of the parameters
with one subset of equations is sufficient to establish that this model is globally identified.

To illustrate a few of the solutions, we find

These equations provide insight into values of variances or covariances that could
underidentify a parameter or create estimation difficulties. For instance, if σ42σ54=σ44σ52,
then the solution for γ11 is undefined due to a zero in the denominator. Even if this
denominator is not exactly zero in the population, there would likely be estimation problems
if it is near zero. Similar observations hold for the other denominators. Without these
explicit solutions for the parameters, these potential pitfalls would not be obvious.

xiiBollen and Bauldry (forthcoming) provide a new rule of identification that would cover this example. Note also that if we allowed a
disturbance in the y3 equation, we could not separately identify the measurement error variance in y3 and the disturbance variance for
η 3. A more realistic perspective on this model would treat the error variance of ζ 3 consisting of both the equation disturbance (ζ 3)
and the measurement error in y3.

Bollen and Bauldry Page 13

Sociol Methods Res. Author manuscript; available in PMC 2011 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6.3 Auxiliary Variables and Missing Data Model
A direct maximum likelihood approach to missing data is widely available in SEM software
(Arbuckle 1996). In this approach a researcher includes the substantive variables of the
model as well as auxiliary variables that predict the missingness in the data such that the
data are Missing at Random (MAR) when both sets of variables are in the model. Several
authors have discussed the importance of including the auxiliary variables to satisfy MAR.
Enders (2008), for example, presents the model in Figure 5 Panel A to illustrate a SEM with
auxiliary variables for the direct ML approach to missing data. Researchers have not
examined the identification of such models. This model is not covered by rules of
identification so it makes for an interesting and timely case to examine.

In the auxiliary model Enders (2008) proposes, he depicts the auxiliary variable as
correlated with the error terms of all of the observed variables. In order to translate this into
a standard form for the implied moment matrices we make a few adjustments (see Figure 5,
Panel B). First, we treat the auxiliary variable as a latent exogenous variable that is
perferctly measured by the observed auxiliary variable. Second, we treat all of the
disturbances of the observed variables as latent exogenous variables. These two adjustments
allow us to represent the correlations among the auxiliary variable and the disturbances as
covariances among latent exogenous variables. Third, we create three endogenous latent
variables that are perfectly measured by the endogenous observed variables. This allows for
a consistent treatment of the disturbances of the endogenous variables. These adjustments
have no effect on the overall parameterization of the model. With these adjustments, we can
write the system of equations for this model as:

Checking Wald’s Rank Rule we find that the Jacobian has a rank of 27 and we have 27
parameters to estimate in this model (in addition to the parameters in the system above, we
have 14 variances and covariances among the latent exogenous variables, the variance of ζ4,
and the means of ξ1 and ξ8 to identify). This establishes that the model is locally identified,
so we turn to determining whether there is an algebraic solution for all of the parameters.

In this model we have 7 observed variables and therefore 28 nonredundant variances and
covariances and 7 means with which to work. We only have 27 parameters to identify, so we
again have an example of our third case. We adopt the same approach as in our last example
and array the variables y1 to y3 and then x1 to x4. Selecting a subset of equations to solve is
not too difficult for this model because most of the equations involve only a few parameters.
We started by selecting all of the variances and all of the means (σ11, σ22, σ33, σ44, σ55, σ66,
σ77, μy1, μy2, μy3, μx1, μx2, μx3, μx4). Then, by inspection, it is clear we need to include the
covariances between the auxiliary variable and all other variables (σ71, σ72, σ73, σ74, σ75,
σ76). Finally, we choose the final seven equations such that any remaining parameters are
included at least once (σ21, σ41, σ51, σ61, σ42, σ43, σ54). Solving this subset of equations we
find a unique algebraic solution for all of the parameters and thus that the model is globally
identified. For instance, we find that
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(17)

The first two equations show the critical role that σ41 plays in that if it is zero, then these
solutions are not defined; if it is near zero, it is likely to cause estimation difficulties.

This example not only illustrates our procedure but provides the first proof that the auxiliary
variable approach to missing data such as in Figure 4 is identified.

6.4 Bollen and Hoyle (1990) Model
We opened our paper with a model taken from Bollen and Hoyle (1990, p. 499, Figure 2
part (3)) where SEM software revealed no identification problem yet depending on starting
values a researcher could end up with two different sets of values for a subset of the
parameters. The model is repeated in Figure 6 and the equations for the model are below
where the two latent variables are morale and sense of belonging with each of these
measured with three indicators.

(18)

This model is not covered by rules of identification. As we mentioned in the introduction,
this model passes the check on the singularity of the information matrix implemented in
SEM software. As a further test, we check whether this model passes Wald’s Rank Rule. We
find that the Jacobian has rank 13 and there are 13 parameters to estimate (in addition to the
parameters in the system of equations we have ψ11, ψ22, and θε1–θε6), so the model is clearly
locally identified.

In this model we have 6 observed variables and therefore  nonredundant
elements in Σ. For the proposed model we have 13 unknown parameters to identify. Since
we have quite a few more equations than unknown parameters, this corresponds to case 3.
To select a subset of equations we start with all of the variances (σ11, σ22, σ33, σ44, σ55, σ66)
and then select seven additional covariances that includes all of the parameters in at least
one equation (σ21, σ32, σ43, σ54, σ65, σ31, σ64). Solving this subset we obtain an algebraic
solution, but the solution is not unique for β, ψ11, and ψ22. For instance, for β we find

(19)
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The fact that one subset of equations leads to a non-unique algebraic solution is not
sufficient to determine the identification status of the model. In principle, we could continue
to solve other subsets of equations to see if we can find one which leads to a unique
algebraic solution. There are, however, quite a few subsets to consider, so instead we adopt a
numeric check that can demonstrate that a model is not globally identified.

Following the algorithm outlined above, we choose the following numeric values for the
parameters:

(20)

These values generate the following implied covariance matrix (rounded to two digits):

(21)

Using this numeric covariance matrix and solving for all of the parameters we obtain, as
expected, two sets of parameter values. One set corresponds to the parameter values we
chose. In the other set, the λs and θs are identical (again, as we would expect given the
unique algebraic solution for these parameters), but β=2.00, ψ11=8.05, and ψ22=4.02.
Substituting this second set of parameter values into Σ=Σ(θ), we obtain the same numerical
covariance matrix (within rounding error). This demonstrates that this model is not globally
identified. Furthermore the solution for β reveals that σ21, σ43, and σ65 play an important
role in that if any of these covariances are zero, then the denominator would be zero and the
solution undefined.

7 CONCLUSIONS
Identification remains an issue in SEMs. Fortunately, most SEM software has empirical
checks on local identification of a model at the estimated values of the parameters. But as
we explained in this paper, this check works well most of the time, but can fail or create
ambiguous situations due to the use of sample estimates rather than population values, the
limits of numerical assessments of rank, and the fact that it is a check of local rather than
global identification. It is for these reasons that the empirical checks of identification use
warning messages suggesting that a parameter may not be identified. The tentativeness of
these checks and the possibility that a model might be locally but not globally identified
suggests that complementary procedures could help.

In this paper we suggested an identification procedure that makes use of identification rules
when available and local and global CAS approaches to model identification. The starting
and possible ending point are rules of model identification. If a model satisfies the
conditions for a sufficient rule of model identification, then researchers should use it and
need go no further. Similarly, if a model fails a necessary condition, then researchers know
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the model is not identified. In the frequent situation where neither is true, we recommend a
local identification check using CAS implementation of the Wald Rank Rule (Jacobian). An
advantage of this local identification check over the singular information matrix check is
that the CAS approach is done with symbols rather than sample estimates. Bekker, et al.
(1994) systematically explored this CAS approach. Even though their book and software are
out of print, researchers can use contemporary CAS software to carry out this local
identification check using the Wald Rank Rule.

One contribution of our paper is the development of a CAS approach to find unique
solutions for each parameter as a way of addressing global identification. The most
straightforward situation is when the number of variances, covariances, and means exactly
equals the number of model parameters so that we can use CAS to solve for each parameter
in terms of these moments. In overdetermined system where there are more means,
variances, and covariances than there are parameters in the model, we presented an
algorithm to follow that enables checks on model identification. In the examples that we
tried, we found this algorithm to be successful. Furthermore, having the solutions for
different parameters in terms of the means, variances, and covariances of the observed
variables can provide insight into what determines the magnitude of the parameter estimates
and what might cause problems. Substituting the sample means, variances, and covariances
of the observed variables in for their population counterparts and using different solutions
for the same parameters would reveal similarities or discrepancies in different ways of
estimating the same parameter. In addition, the CAS approach could show which parameters
are underidentified and possibly provide insight into how to identify these parameters.

Despite these advantages, there are limitations to keep in mind. First, if a model is
underidentified, this means that at least one parameter is not identified, not that all
parameters are. Our check on model identification might reveal an underidentified model
even when some parameters are identified. The last example illustrates this where the model
as a whole is not globally identified even though most of the parameters are. A second
limitation is that the user must choose a subset of equations equal to the number of
parameters. In overidentified models there might be many subsets of equations to try.
Fortunately, we can reduce these possibilities in that each subset of equations needs to
contain all of the parameters of a model. However, a search of more than one subset of
equations might still be needed.

A third limitation occurs when the model is large and complex with numerous parameters.
We see two ways to simplify the CAS programming in such cases. In the common situation
when the concerns about identification are concentrated in one part of the model (e.g., a part
with feedback relations), researchers can concentrate their identification efforts on that
sector of the model. This would include a subset of the observed variables and model
parameters, reducing the size of the problem. They could select the parameters of particular
interest and then choose variances, covariances, and means of observed variables that
include these parameters. Researchers might be able to use CAS to establish identification of
this subset of problematic parameters and if successful combine it with knowledge of the
identification of the more straightforward sectors of the model.

A second way to approach large models is to combine the CAS approach with established
rules of identification. The prime example of this is the Two Step Rule of identification
(Bollen, 1989, pages 328–31). This Rule reformulates a latent variable structural equation
model first into a measurement model replacing coefficients linking latent variables with
associations and examines the identification of the measurement model. If the measurement
model is identified, then the second step of the Two Step Rule is to return to the latent
variable model and to treat it as if it were a simultaneous equation model of observed
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variables. If this part of the model is identified, then the whole model is identified. If the
rules of identification apply to the measurement model and the simultaneous equation steps,
then there is no need for CAS, But CAS could play a role in identifying either the first step
of identifying the measurement model or in the second step of identifying the simultaneous
equation model when either is not covered by identification rules. An advantage of this
approach is that a complex model is made simpler when broken into two parts as in the Two
Step Rule.

In conclusion, just as there is no rule of identification that covers all models, the CAS
approach will not solve all identification problems in SEMs. Rather, CAS holds much
promise in advancing the identification of SEMs and is a useful complement to the current
practice of relying solely on the estimated information matrix singularity check. By passing
these CAS checks, a researcher can have greater confidence in the identification of a model.
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9 Appendix: Mathematica Code
In this appendix we provide a brief overview of the code we used for the examples in this
paper. We have examined all of the models using both Mathematica and Maple (the two
most popular CASs) (Wolfram Research, Inc. Mathematica 2007; Maple 2007). We present
the Mathematica code, but all of the commands have quite similar analogues in Maple.
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In all of the examples we begin by writing a function to generate the implied moment
matrices.xiii We accomplish this by defining the following equations for different partitions
of the implied covariance matrix and the implied mean vector corresponding with y and x
observed variables:

YMat[Ly_, Ph_, G_, Id_, B_, Ps_, ThE_]:=
Ly.Inverse[(Id - B)].(G.Ph.Transpose[G] + Ps).
    Transpose[Inverse[(Id - B)]]. Transpose[Ly] +
ThE
XYMat[Lx_, Ph_, G_, Id_, B_, Ly_]:=
Lx.Ph.Transpose[G].Transpose[Inverse[(Id - B)]].
    Transpose[Ly]
XMat[Lx_, Ph_, ThD_]:= Lx.Ph.Transpose[Lx] + ThD
MeanVecY[Ay_, Ly_, Id_, B_, AEta_, G_, MXi_]:= Ay +
Ly.Inverse[(Id - B)].(AEta + G.MXi)
MeanVecX[Ax_, Lx_, MXi_]:= Ax + Lx.MXi

Once these functions are defined, we need to define the various inputs for the functions (i.e.,
the parameters for each model). For the Duncan (1975) model we define the following
parameter matrices:

xLy = IdentityMatrix[3]
xLx = IdentityMatrix[2]
xId = IdentityMatrix[3]
xB = { {0,b12,0}, {b21,0,0}, {b31, b32,0} }
xG = { {g11,0}, {g21,0}, {0, g32} }
xPh = { {ph11, ph21}, {ph21, ph22} }
xPs = { {ps11, ps21,0}, {ps21, ps22,0}, {0,0, ps33}
}
xThE = DiagonalMatrix[{0,0,0}]
xThD = DiagonalMatrix[{0,0}]

For the subjective class model we define the following:

xLy = IdentityMatrix[3]
xLx = IdentityMatrix[2]
xId = IdentityMatrix[3]
xB = { {0, b12,0}, {b21,0,0}, {b31, b32,0} }
xG = { {g11,0}, {0, g22}, {0,0} }
xPh = { {ph11, ph21}, {ph21, ph22} }
xPs = DiagonalMatrix[{ps11, ps22, ps33}]
xThE = DiagonalMatrix[{th11, th22,0}]
xThD = DiagonalMatrix[{0,0}]

For Enders’ (2008) auxiliary data model we define the following:

xiiiFor a few models, there are alternative forms for the implied moment matrices. For example, Bollen and Curren (2004) derive a
different expression for the implied moment matrices of ALT models.
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xLy = { {1,0,0,0}, {0,1,0,0}, {0,0,1,0} }
xLx = { {0,1,0,0,0,0,0,1}, {0,0,1,0,0,0,0, l28},
{0,0,0,1,0,0,0, l38},
          {1,0,0,0,0,0,0,0} }
xId = IdentityMatrix[4]
xB = { {0,0,0,1}, {0,0,0, b24}, {0,0,0, b34},
{0,0,0,0} }
xG = { {0,0,0,0,1,0,0,0}, {0,0,0,0,0,1,0,0},
{0,0,0,0,0,0,1,0},
        {0,0,0,0,0,0,0, g48} }
xPh = { {ph11, ph21, ph31, ph41, ph51, ph61, ph71,0},
{ph21, ph22,0,0,0,0,0,0},
          {ph31,0, ph33,0,0,0,0,0},
{ph41,0,0, ph44,0,0,0,0},
         {ph51,0,0,0, ph55,0,0,0},
{ph61,0,0,0,0, ph66,0,0},
         {ph71,0,0,0,0,0, ph77,0},
{0,0,0,0,0,0,0, ph88} }
xPs = DiagonalMatrix[{0,0,0, ps44}]
xThE = DiagonalMatrix[{0,0,0}]
xThD = DiagonalMatrix[{0,0,0,0}]
xAy = { {0}, {0}, {0} }
xAx = { {0}, {ax2}, {ax3}, {0} }
xAEta = { {0}, {aEta2}, {aEta3}, {aEta4} }
xMXi = { {mXi1}, {0}, {0}, {0}, {0}, {0}, {0},
{mXi8} }

Finally, for the Bollen and Hoyle (1990) model we define the following:

xLy = { {1,0}, {l21,0}, {l31,0}, {0,1}, {0, l52},
{0, l62} }
xId = IdentityMatrix[2]
xB = { {0, b21}, {b21,0} }
xG = DiagonalMatrix[{0,0}]
xPh = DiagonalMatrix[{0,0}]
xPs = DiagonalMatrix[{ps11, ps22}]
xThE =
DiagonalMatrix[{th11, th22, th33, th44, th55, th66}]

Once the functions for the implied moment matrices are defined and the parameters are
entered, one can substitute the parameters into the functions to find the specific implied
moment matrices for a given model. The next step of our analysis involves checking local
identification using Wald’s Rank Rule. To do this, we define a vector of equations based on
the nonredundant elements of the implied moment matrices, form the Jacobian, and check
the rank of the Jacobian. In defining the vector of equations we make use of the functions
we already defined and reference specific elements of the matrices using the row and
column locations. The “D” operator in Mathematica takes the derivative of the first
expression (in our case, a vector of equations) with respect to the parameters in the second
expression (in our case, all of the parameters in the model). The procedure for doing this is
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the same for all models. The following commands implement this procedure for the Duncan
(1975) model:

EqVec =
{YMat[xLx, xPh, xG, xId, xB, xPs, xThE][[1,1]],
YMat[xLx, xPh, xG, xId, xB, xPs, xThE][[2,1]],
YMat[xLx, xPh, xG, xId, xB, xPs, xThE][[3,1]],
YMat[xLx, xPh, xG, xId, xB, xPs, xThE][[2,2]],
YMat[xLx, xPh, xG, xId, xB, xPs, xThE][[3,2]],
YMat[xLx, xPh, xG, xId, xB, xPs, xThE][[3,3]],
                  XYMat[xLx, xPh, xG, xId, xB, xLy][[1,1]],
                  XYMat[xLx, xPh, xG, xId, xB, xLy][[2,1]],
                  XYMat[xLx, xPh, xG, xId, xB, xLy][[1,2]],
                  XYMat[xLx, xPh, xG, xId, xB, xLy][[2,2]],
                  XYMat[xLx, xPh, xG, xId, xB, xLy][[1,3]],
                  XYMat[xLx, xPh, xG, xId, xB, xLy][[2,3]],
                  XMat[xLx, xPh, xThD][[1,1]],
                  XMat[xLx, xPh, xThD][[2,1]],
                  XMat[xLx, xPh, xThD][[2,2]] }
Jcb = D[EqVec,{
{b12, b21, b31, b32, g11, g21, g32, ph11, ph21,
            ph22, ps11, ps21, ps22, ps33} }]
MatrixRank[Jcb]

Assuming the model is locally identified, our final step is to attempt to obtain an algebraic
solution. We accomplish this by defining each non-redundant element of the implied
moment matrices as an equation and then requesting a solution for all, or a subset, of the
equations in terms of all of the parameters. This process is also the same for every model, so
we illustrate it with just the subjective class model.

eq1 = sig11 = =
YMat[xLx, xPh, xG, xId, xB, xPs, xThE][[1,1]]
eq2 = sig21 = =
YMat[xLx, xPh, xG, xId, xB, xPs, xThE][[2,1]]
eq3 = sig31 = =
YMat[xLx, xPh, xG, xId, xB, xPs, xThE][[3,1]]
eq4 = sig22 = =
YMat[xLx, xPh, xG, xId, xB, xPs, xThE][[2,2]]
eq5 = sig32 = =
YMat[xLx, xPh, xG, xId, xB, xPs, xThE][[3,2]]
eq6 = sig33 = =
YMat[xLx, xPh, xG, xId, xB, xPs, xThE][[3,3]]
eq7 = sig41 = =
XYMat[xLx, xPh, xG, xId, xB, xLy][[1,1]]
eq8 = sig51 = =
XYMat[xLx, xPh, xG, xId, xB, xLy][[2,1]]
eq9 = sig42 = =
XYMat[xLx, xPh, xG, xId, xB, xLy][[1,2]]
eq10 = sig52 = =
XYMat[xLx, xPh, xG, xId, xB, xLy][[2,2]]
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eq11 = sig43 = =
XYMat[xLx, xPh, xG, xId, xB, xLy][[1,3]]
eq12 = sig53 = =
XYMat[xLx, xPh, xG, xId, xB, xLy][[2,3]]
eq13 = sig44 = = XMat[xLx, xPh, xThD][[1,1]]
eq14 = sig54 = = XMat[xLx, xPh, xThD][[2,1]]
eq15 = sig55 = = XMat[xLx, xPh, xThD][[2,2]]
Solve[
{eq1, eq4, eq6, eq13, eq15, eq14, eq2, eq3, eq7, eq8, eq9, eq10, eq11, eq12},
{b12, b21, b31, b32, g11, g22, ph11, ph21, ph22, ps11, ps 22, ps33, th11, 
th22}]
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Figure 1.
Bollen and Hoyle (1990) Model.
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Figure 2.
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Figure 3.
Duncan Model (1975)
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Figure 4.
Subjective Class Model
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Figure 5.
Panel A: Enders (2008) Model
Panel B: Enders (2008) Model
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Figure 6.
Bollen and Hoyle (1990) Model.
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