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Abstract

While the concept of transnationalism has gained widespread popularity among scholars as a way 

to describe immigrants’ long-term maintenance of cross-border ties to their origin communities, 

critics have argued that the overall proportion of immigrants who engage in transnational behavior 

is low and that, as a result, transnationalism has little sustained effect on the process of immigrant 

adaptation and assimilation. In this paper, we argue that a key shortcoming in the current empirical 

debate on transnationalism is the lack of data on the social networks that connect migrants to each 

other and to non-migrants in communities of origin. To address this shortcoming, our analysis 

uses unique bi-national data on the social network connecting an immigrant sending community in 

Guanajuato, Mexico, to two destination areas in the United States. We test for the effect of 

respondents’ positions in cross-border networks on their migration intentions and attitudes towards 

the United States using data on the opinions of their peers, their participation in cross border and 

local communication networks, and their structural position in the network. The results indicate 

qualified empirical support for a network-based model of transnationalism; in the U.S. sample we 

find evidence of network clustering consistent with peer effects, while in the Mexican sample we 

find evidence of the importance of cross-border communication with friends.
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Introduction

Recently, the concept of transnationalism has attracted considerable attention as a way to 

describe immigrants who maintain long-term social and psychological ties to their 

communities of origin. A search using the Social Science Citation index, for example, 

indicates a 489% increase in the number of published papers on transnationalism over the 

decade from 1999–2001 to 2009–2011 (Thomson Reuters 2012; also see Cano 2005). 

According to its proponents, the rising academic interest in transnationalism reflects 

fundamental changes in the process of immigrant adaptation and incorporation driven, at 
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least partly, by dramatic changes in global telecommunication technology (Vertovec 2004a). 

According to a prominent review of the literature, the impact of transnationalism means that, 

for immigrants, “social life increasingly takes place across borders” (Levitt and Jaworsky 

2007:129).

Despite—or perhaps because of—its recent popularity in the academic literature, there has 

been considerable debate regarding the significance of transnationalism for understanding 

current migration processes (Lucassen 2003; Guanizo, Portes and Haller 2003; Portes, 

Guarnizo, and Landolt 1999; Waldinger and Fitzgerald 2004; Waldinger 2008, 2010). On a 

theoretical level, a number of authors have argued that the definition of transnationalism is 

too ambiguous to describe the practices of migrants and needs to be clarified conceptually 

(Vertovec 2001; Guarnizo and Smith 1998; Boccagni 2011; Pries 2007; Guarnizo, Portes, 

and Haller 2003; Portes, Guanizo, and Landolt 1999; Lee 2008; Waldinger 2010; Waldinger 

and Fitzgerald 2004; Kyle 2001). Alejandro Portes, Luis E. Guarnizo and Patricia Landolt 

(1999:219), for example, argue that the definition of transnationalism in terms of the 

maintenance of social ties per se is too broad and that attention should focus on forms of 

social activity that “require regular and sustained [cross-border] contact over time”. In 

addition, researchers have argued that the so-called transnational practices themselves are 

not new but simply a new way to describe things that happened just as frequently in past 

migration streams (Lucasssen 2003; Waldinger 2004; Alba and Nee 1997:145–6).

In addition to calls for greater conceptual clarity, a number of researchers have argued—

based on the analysis of survey data—that immigrants’ actual level of engagement in 

transnational activities is low, suggesting that transnationalism will have little impact on the 

way that immigrants adapt to life in receiving countries. For example, in a study of Albanian 

immigrants in Switzerland, Janine Dahinden (2005) argues that the immigrants in her 

sample are not “transmigrants” because only a small percentage maintained social contacts 

outside of Switzerland (also see Waldinger 2011:7). Similarly, using data from the 2002 

Pew Hispanic Survey, Roger Waldinger (2008) looks at a number of different measures of 

transnational activity, and finds that although most Latino immigrants in the sample still 

identify with their home country, the majority have a stronger attachment to the U.S.: 65% 

plan on staying in the U.S. permanently, including almost 80% of Mexican immigrant 

respondents. Overall, a striking consensus from much of the recent empirical literature on 

the prevalence of cross-border transnational practices is that the overall prevalence of 

transnational activities is low (e.g., Boccagni 2012:2). Waldinger (2008:26) argues that that 

“few of the Latin American newcomers to the United States end up as ‘transmigrants’ “, and 

wonders “why the professional students of immigration refuse to see it this way.”

In this paper, we contend that it is premature to conclude that transnationalism has only a 

limited impact on the process of immigrant incorporation. We argue that a central problem 

with the existing empirical research is that without data on the cross-border social networks 

that span both origin and destination communities--and the communication flows through 

those networks--it is difficult to truly measure the impact of transnationalism. We base our 

reconsideration of the empirical literature on the concept of a “transnational social field” 

(Levitt and Schiller 2004) which consists of the overlapping social networks of migrants that 
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span origin and destination communities, where possible influences on behavior, practices, 

and identity move in both directions and affect people who are connected to the network.

A key component to our reconsideration of the literature on transnationalism is the idea that 

social influence can affect change for members of a cross-border network even if they move 

infrequently across the border themselves. In other words, the cross-border flow of 

information and ideas through a transnational network may affect the identity and social 

practices of individuals in both sending and receiving communities—even if they have never 

migrated (for those in the origin community) or if they return home infrequently (for those 

in the destination community). Scholars talk about “social remittances” to describe how 

migrants export cultural influences back to their origin communities (Levitt 1998; Levitt and 

Lamba 2011). The idea of a social remittance—i.e., the diffusion of new cultural practices, 

opinions, and information—in in a transnational network is analogous to the topic of peer 

influence and contagion effects in social networks more generally (e.g., Bramoulle 2008; 

Friedkin 1998, 2001).

In this paper, we use social network data from a bi-national survey (the 2010 Network 

Survey of Immigrant Transnationalism) linking an origin community in the state of 

Guanajuato, Mexico to migrants in two destination areas in the United States. We use this 

data to test for the effect of respondents’ locations in the transnational network on their 

attitudes towards permanent migration, the relative effect of location on subjective well-

being, and their opinion of U.S. culture. The survey consisted of 410 respondents in the 

origin city in Guanajuato and 197 migrants from the same origin city currently living in 

either the Research Triangle area of North Carolina or Houston, Texas. Respondents were 

asked a set of network questions concerning their friend and family ties within and between 

the origin and destination communities. For each network member, respondents were asked 

to list partial name information and basic demographic variables, which allowed us to 

reconstruct the underlying social network by identifying individuals who were nominated by 

other respondents (a similar approach was employed in Dombrowski et al. 2011). The 

resulting network consisted of 8,538 nominations and 5,086 uniquely identified network 

members. We use the data to estimate individual-level models of peer effects and cross-

border communication on our outcome variables, and, in addition, to test network-level 

models of the clustering of respondents in the network, controlling for structural features of 

network formation. To the best of our knowledge, our study represents the first attempt to 

test a network-based model of immigrant transnationalism with data from both origin and 

destination communities.

Literature Review

A key focus in recent research on immigration in the United States has been whether 

post-1965 immigrant groups would experience the same process of assimilation that earlier 

waves of European immigrants are thought to have experienced in the past. While 

assimilation theory argues that immigrant groups gradually converge towards complete 

incorporation into U.S. society (Gordon 1964, Alba and Nee 1997), critics argue that the 

loss of middle-class blue collar jobs combined with a context of persistent racial 

discrimination results in multiple, nonlinear trajectories of assimilation, including downward 
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assimilation towards poverty for some non-white immigrant groups (Portes and Rumbaut 

2001). An important twist in this debate on immigration is the idea that adapting to 

mainstream U.S. society while retaining aspects of one’s cultural values, language, and 

homeland ties can promote upward mobility (Gibson 1988; Zhou and Bankston 1998; Portes 

and Rumbaut 2001; Portes and Zhou 1993). Proponents of this process of “accommodation 

without assimilation” suggest that successful migrants may selectively assimilate (Brown 

and Bean 2005) and that retaining a “bicultural” outlook—i.e., living between two worlds—

may promote overall well-being for recent immigrants (e.g., Zhou and Bankston 1994; 

Feliciano 2001; Bacallao and Smokowski 2005). For instance, a considerable amount of 

research has focused on the so-called “Latino health paradox” where the acculturation of 

Latino immigrants in the United States appears to be negatively associated with certain 

health outcomes and behaviors such as diet, birth outcomes, and substance abuse (see Lara 

et al 2005 for a review).

An alternative perspective on the process of immigrant incorporation is offered by the recent 

literature on “transnationalism”—which may be loosely defined as the tendency of 

immigrants to maintain long-term ties and contacts with friends and family members in their 

origin community whether through visits, phone conversations, homeland politics, economic 

activities, or remittances. Although the intellectual history of the ideas behind 

transnationalism extends back to the early 20th century (Waldinger 2011), the term gained 

popularity through the work of ethnographic accounts of migrant communities in the 1990s 

(Glick-Schiller, Basch and Blanc 1995; Glick-Shiller et. al. 1992; Basch et. al. 1994). The 

concept of immigrant transnationalism is related to the literature on selective or bicultural 

assimilation described above (i.e., Zhou and Bankston 1998), where the long-term 

maintenance of certain origin-specific cultural traits is seen as increasingly frequent and 

desirable for certain groups, except that the unit of analysis now extends beyond the 

migrant’s receiving country to include both the sending and receiving countries.

The basic idea of transnationalism is that migration streams, set in motion by global 

economic forces (Glick Schiller, Basch, and Blanc 1992), generate cross-border social ties 

between migrants and the societies they left behind—and that the ease of maintaining those 

ties is facilitated by modern telecommunication technologies (Vertovec 2004a) that make it 

easier to maintain communication by calling, texting, and emailing friends and family on the 

other side of an international border. According to proponents of transnationalism, the 

compression of space with modern technology combined with the resulting increase in the 

density and durability of cross-border ties makes it is possible for contemporary migrants to 

“live simultaneously” in both their origin and destination communities (Levitt and Schiller 

2004). If the prevalence and durability of transnational ties is increasing among immigrant 

groups then it is conceivable that it might not only challenge conventional theories of 

assimilation (Faist 2000:218) but also result in fundamental transformations in national 

identity and the structure of the state (Vertovec 2004b; Landolt 2001) and the relationship 

between the migrant and the sending-state’s government (Fitzgerald 2009).

On the other hand, despite the increasing popularity of transnationalism in the academic 

literature, a number of critical voices have emerged arguing that: (1) it is ambiguous and 

poorly defined, and (2) the overall prevalence of transnational practices is low, suggesting 
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that the real impact on host societies is limited. While there are now several useful reviews 

of the literature on transnationalism that discuss these issues in detail (e.g., Levitt and 

Jaworsky 2007; Waldinger 2010, 2011; Boccagni 2012), we briefly recap the outlines of this 

debate to provide motivation for our current study.

We begin by focusing on the criticism that transnationalism has not been clearly defined and 

is too abstract or ambiguous (Vertovec 2001; Guanizo and Smith 1998; Boccagni 2012; 

Pries 2007; Guarnizo, Portes, and Haller 2003; Portes, Guanizo, and Landolt1999; Lee 

2008; Waldinger 2010, 2004). Luis E. Guarnizo and Michael P. Smith (1998) argue that the 

increasing ambiguity of the term means that it “risks becoming an empty vessel” and Portes, 

Guanizo, and Landolt (1999:219) argue that “if everything is called transnationalism, it 

means nothing” and call for a clearer, more precise definition. Richard Alba and Victor Nee 

(1997:6) call the term “somewhat faddish”, while Ludger Pries (2007) claims that 

transnationalism risks becoming a “trendy catch-all like globalization”, and Helen Lee 

(2008:14) argues that there is considerable conceptual confusion regarding what 

transnationalism means. Leo Lucassen (2003) and Roger Waldinger (2010:26) contend that 

what is called transnationalism is, in most cases, really just the maintenance of ties between 

two local communities, and they both argue that it should be referred to as “bi-localism” to 

emphasize the fact that it is not really referring to behavior at the national level.

Two definitions: Individual and Group Based

For the purposes of this paper, it is useful to differentiate between individual and group 

based definitions of transnationalism in order to help mitigate the concern about conceptual 

ambiguity and to highlight how our operationalization of transnationalism differs from the 

approach used in the majority of the existing literature. Waldinger (2011:3) draws a useful 

distinction between definitions of transnationalism that try to measure it at the individual 

level--by looking at which migrants are engaged in specific transnational practices (what 

Waldinger calls the “hard” definition of transnationalism)--and group-based definitions that 

attempt to describe the existence of a “transnational social space” at a level of aggregation 

larger than the individual.

Portes, Guarnizo, and Landolt (1999:219) provide a good example of the individual level 

definition, arguing that transnationalism should be defined as “occupations and activities 

that require regular and sustained social contacts over time across national borders.” As an 

example of this approach, Portes (2003) measures transnationalism by enumerating 

participation in specific transnational activities such as transnational entrepreneurship, 

membership in an origin country political party, and membership in an origin town civic, 

charitable, or sports association. In contrast, the “group-based” definition of 

transnationalism looks at a higher level of aggregation than the individual to try to describe a 

transnational social space based on the cross-border connections and ties of multiple 

individuals and institutions. For example, Carmen Voigt-Graf (2004, 2005) utilizes a group-

based analysis of transnationalism in a study of the cross-border connections among Punjabi, 

South Indian, and Indo-Fijian migrants that stretch across multiple countries. Thomas Faist 

(2000) provides a broad typology of several different types of transnational social spaces 
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based on kinship groups, circuits of trade and information, and communities or institutional 

organizations such as the Catholic Church.

Transnational Social Fields

In this paper we focus on a specific type of the group-based, transnational social spaces 

described by Faist (2000) by analyzing a transnational community that can be defined on the 

basis of a set of explicit interpersonal network connections. As mentioned above in the 

introduction, a useful network-based definition of a transnational community is provided by 

the idea of a transnational “social field” (e.g., Glick-Schiller, Basch, and Blanc 1992; Levitt 

and Schiler 2004; Dahinden 2009; Bourdieu 1985), which Peggy Levitt and Glick Schiller 

(2004) define as “a set of multiple interlocking networks through which ideas and practices 

are…exchanged.” In the recent literature on transnationalism, the social field approach 

emphasizes the importance of incorporating the broader social world surrounding individual 

migrants in both origin and destination communities; Levitt and Schiller (2004:1009) 

describe the social field stretching from origin to destination as the “network of networks” 

that reveals the need for a level of analysis beyond the individual1. In the context of our 

study of immigrant transnationalism, a social field perspective highlights the importance of 

collecting bi-national data on the social networks of both migrants from the origin 

community living in the U.S. and their non-migrant friends and relatives back in Mexico. 

Moreover, as we argue below, an evaluation of the importance of the social field perspective 

involves not just collecting data on cross-border networks, but testing “how much” the 

network matters for understanding individual level outcomes.

Despite the increasing use of the social field terminology in the literature, a number of 

authors have expressed their dissatisfaction with the use of the term. Pries (2007), for 

example, claims that the definition of a transnational social field it is too imprecise to be 

useful. Guanizo and Smith (1998:28) argue that the term is misleading because it conflates 

social structure with its effect on outcomes, and Thomas Soehl and Roger Waldinger 

(2010:1491) claim that the term “leaves those [transnational] activities and the migrants who 

sustain them undifferentiated.” This criticism is constructive, and we argue that in order to 

clarify what is meant by a transnational social field it is useful to think of it as consisting of 

two components: the structure of the field itself, composed of the intertwined social 

networks of the members of the transnational community, and what flows through or is 

expressed in the field—the ideas, cultural practices, social norms, and economic remittances. 

This is similar to the way that Levitt and Schiler (2004) differentiate between “ways of 

being” (the structure) and “ways of belonging” (signals of individual identity).2 In our 

analysis, below, we distinguish between an individual’s location in the transnational social 

field (based on our sample of social network data), and the impact that this has on their 

migration intentions and attitudes towards assimilation. This approach also provides insight 

1As noted by a reviewer, some in the literature use the terms “transnational social field” and “transnational social space” 
interchangeably. While we do use both in this paper, we make a weak distinction between transnational social space – encompassing 
all the activities associated with transnationalism – and transnational social field, consisting of explicit social network linking migrants 
to their origin communities.
2Heemskerk (2011) provides an empirical example of an attempt to measure a transnational social field using network data. Using 
network information on interlocking directorates from the European Union, he tests for the existence of a multi-national social field 
among the European corporate elite by analyzing the transnational connectedness of board membership overlaps.
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on how social structure shapes practices at both the individual and group level within a 

transnational social field.

Empirical evidence on transnationalism

(a) The individual level definition of transnationalism—The distinction between 

individual and group-based definitions of transnationalism is useful because it helps us 

interpret the empirical evidence on the existence and prevalence of transnationalism. 

Because most empirical studies rely on survey data with no—or highly abstracted—network 

information, they end up testing a version of the individual-level definition of 

transnationalism. Soehl and Waldinger (2010) use data from the 2006 National Survey of 

Latinos to calculate three measures of cross-border activities: travel to the home country in 

the past year, sending remittances in the past year, and telephone communication in the past 

week. They define transmigrants as respondents who engaged in all three of these activities. 

Overall, only 10% of their sample of Latino immigrants was classified as transmigrants 

based on this definition, and, based on this estimate, they conclude that calling 

contemporary migrants “transnational” does not do a good job reflecting the reality of their 

cross-border ties (2010:1507). Waldinger (2008) takes a similar approach—looking at home 

country visits, remittances, political participation, long-term residence plans, and self-

described identity—using data from the 2002 Pew Hispanic Survey and concludes that few 

Latino immigrants can be described as “transmigrants”.

José Itziqsohn and Silvia G. Saucedo (2002) use an even stricter definition of transnational 

activities than Waldinger (2008), using data from the Comparative Immigrant Enterprise 

Project (CIEP) to measure the rate of giving money to hometown projects and participation 

in the following institutions: hometown associations, hometown festivities, local sports 

clubs, and charities linked to the hometown. They find that only 21.6% of their overall 

sample participates in even one of these activities on a regular basis (p.776). Guarnizo, 

Portes, and Haller (2003) use the CIEP to study cross-border political engagement and find 

that regular involvement in transnational political activities is small. Looking at samples of 

Columbian, Dominican, and Salvadoran immigrants, they find involvement levels ranging 

from 7–14% using six different indicators of political involvement such as membership in a 

home country political party and involvement in a home country charitable organization. 

They conclude that the “transnational political field is not as extensive or evenly distributed 

among contemporary immigrants as proposed by previous accounts” (2003:1238).

Overall, the accumulated evidence of studies that use individual-level survey information 

suggests rather low levels of participation in transnational practices. In a recent critical 

review of the literature, Paolo Boccagni (2012) argues that the question of its actual 

empirical prevalence and impact is in stark contrast to its increasing popularity in the 

academic literature: “…migrant transnationalism has gained increasing currency and 

salience. However what is left of its theoretical import, once established that transnational 

activities…aside from remittances, are relatively infrequent…?” (Boccagni 2012:2).

While Boccagni’s evaluation of this empirical literature indicates an appropriate concern 

about the gap between theoretical popularity and empirical measurement, a potential 

problem with any application of the individual-based definition of transnationalism is 
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knowing how high to set the bar for determining who is, and who is not, a transmigrant. In 

some cases, the definition of transnationalism that is used may not match up with the 

realities of current migration patterns. For example, many recent Latino immigrants in the 

United States are undocumented and, as a result, they may find it difficult to travel back to 

their origin communities on a regular basis due to increased border enforcement. Thus, they 

would not be coded as transmigrants based on the definition used by Soehl and Waldinger 

(2011) which, as discussed above, only includes migrants who make yearly return visits to 

the country of origin, regardless of their level of communication with friends and family in 

the origin and their long-term migration intentions

(b) Social network data and influence models—In contrast to the individual-level 

analyses discussed above, using the “social fields” or “social spaces” definition of 

transnationalism leads to an attempt to measure transnationalism using network data. 

Dahinden (2009) uses egocentric network data on 250 individuals (including 152 

immigrants) living in Switzerland to measure the proportion of cross-border social ties in 

respondent’s networks, and shows how this measure varies across demographic groups 

clustered by nativity, time since immigration, and socio-economic status. Similarly, 

Dahinden (2005) uses egocentric data on Albanian immigrants in Switzerland and finds that 

only 9% of their social contacts lived outside of Switzerland, which suggests low levels of 

transnational engagement. In the Guarnizo, Portes, and Haller (2003) study discussed above, 

data on network size is used as an additional variable, but the network variable consists of a 

count of the number of personal ties that respondents could rely on for various needs (see 

Table B1, p.1241) and doesn’t provide any information on cross-border ties. As a result, 

their analysis does not directly measure or estimate the effect of respondents’ structural 

location within a transnational network.

Miranda J. Lubbers, José L. Molina and Christopher McCarty (2007) use extensive 

egocentric data – which they term the “personal network approach” because they ask egos to 

enumerate their perceptions of the relationships amongst their alters – on up to 45 network 

members for migrants in Spain to test the effect of network composition on respondents’ 

ethnic identity (also see Lubbers et al. 2010, Brandes et al. 2010, and Maya-Jariego and 

Armitage (2007) for related work). Lubbers et. al. (2007) find that egocentric networks with 

high proportions of family members and/or individuals living in respondents’ countries of 

origin were correlated with more ethnic-origin based self-classifications. In contrast, 

migrants with the largest proportions of Spanish citizens and migrants living in Spain were 

associated with increased prevalence of ethnically plural identifications.

Overall, an important distinction should be made between existing research that uses 

egocentric network data and the underlying transnational social network that connects 

migrants to friends and family members on both sides of the border. As noted by Linton 

Freeman (2004) and Prasad Balkundi and Martin Kilduff (2005) a key point of emphasis of 

the social networks literature is the essential difference between individuals’ attributes and 

their structural positions in social networks. While studies such as Lubbers et al. (2007) 

provide important insights about the composition of migrants’ networks, egocentric network 

data ultimately cannot map out the larger transnational networks that connect individuals 

together, and, as a result, cannot locate the position of respondents within those networks. 
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This is true for limited ego-centric designs where individuals only report their alters as well 

as for the more advanced collection techniques of Lubbers and colleagues (i.e., having egos 

report on perceived links amongst their alters) because those ties more than two steps from 

ego are not visible. Further, because they rely solely on individual data on immigrants in the 

destination country, these existing studies by Dahinden (2005, 2009) and Guarnizo, Portes, 

and Haller (2003) are limited to exploring only half of the transnational social field and 

cannot incorporate the potential influence that those in origin communities may have on 

transnational values and behavior.

One of the reasons that having information on respondents’ structural position in the 

transnational network is important is provided by the idea of “social remittances” (Levitt 

1998). As previously mentioned, social remittances can be used to describe how migrants 

transmit ideas and cultural practices back and forth in a transnational network (Levitt 1998; 

Levitt and Lamba 2011): The basic idea is that members of a transnational social network 

might be influenced by the information, ideas, and norms of other members of the network, 

even if they do not cross the border or directly engage in transnational activities themselves 

(i.e., cross-border entrepreneurship, political action etc.). While ethnographic studies have 

examined the impact transnationalism in both origin and destination (Bryceson and Vuorela 

2003, Parreñas 2005, Dreby 2009, 2010), quantitative studies have typically been limited to 

half of the transnational social field, namely the destination communities where immigrants 

currently reside.

According to the social fields perspective, transnational networks “matter”—i.e., one’s 

structural position and involvement in a transnational network affects outcomes through the 

transmission of ideas, norms, information, and influence through that network. In order to 

test how much transnational networks matter, we have to consider methodological questions 

about the causality of network effects that leads us to a broader empirical and 

methodological literature on peer influence models and contagion effects in social networks 

more generally (e.g., Bramoulle et al 2007; Friedkin 1998, 2001; Centola and Macy 2007). 

The key methodological issue here involves the difficulty of differentiating between the 

causal effect of peer influence and social contagion from the effect of social homophily, 

which is the tendency for similar people to become friends (McPherson, Smith-Lovin, and 

Cook 2001). Social homophily could result in positive correlations among friends’ attitudes 

and behavior that mimicked what we would expect to find from peer effects even in the 

absence of a direct causal effect of peer influence. Charles Manski (1993), Lawrence E. 

Blume and Steven N. Durlauf (2005), Yann Bramoullé, Habiba Djebbari, and Bernard 

Fortin (2008), Cosma Shalizi and Andrew C. Thomas (2010) and Weihua An (2012) discuss 

the challenges involved in distinguishing between peer effects and social homophily.

Even with longitudinal data, the accurate estimation of peer effects has been a contentious 

issue in the academic literature (see, for example, Ethan Cohen-Cole and Jason M. Fletcher 

[2008] and Russell Lyons [2011]). In some cases, such as randomly assigned roommates in 

college dorm rooms (Sacerdote 2001), a natural experiment might exist that would allow us 

to disentangle peer effects from homophily, but in general caution must be exercised in 

interpreting the results of network models of peer effects or influence. Newer statistical 
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techniques are also under investigation but remain imprecise and underdeveloped (Shalizi 

and Thomas 2010).

Although we are not aware of any previous attempts to estimate peer influence models in 

transnational immigrant networks, a related empirical literature exists in demography, where 

peer influence models been widely used to study the impact of networks on respondents’ 

fertility intentions and contraceptive use (Lindstrom and Munoz-Franco 2005; Avogo, 

Agadjanian and Casterline 2008; Behrman, Kohler, and Watkins 2002; Bernardi, Keim, and 

Lippe 2007; Sandberg 2005). Although the specific topics (fertility and contraception) may 

differ from the key issues surrounding recent research on immigrant transnationalism, the 

underlying methodological issues regarding attempts to test mechanisms of diffusion and 

social influence are very similar. David P. Lindstrom and Elisa Muñoz-Franco (2005) 

estimate diffusion effects on contraceptive use among women in Guatemala, using data on 

family- and community-level migration as proxies for the flow of (alternative) ideas about 

contraceptive use through migration networks. Similarly, Jere R. Behrman, Hans-Peter 

Kohler and Susan C. Watkins (2002) use longitudinal data from Kenya to estimate a peer 

effects model of contraceptive use. By using data on the 156 women who changed their 

contraceptive use between waves 1 and 3 of their data, they estimate a fixed-effects logit 

model of the effect of having at least one family planning user in the respondent’s social 

network. Building on this literature, Laura Bernardi (2011) proposes a research design for a 

study of transnational families which would collect data on not only respondents themselves 

but a sample of the network members for each respondent to allow the estimation of a social 

influences model, using an empirical example of peer effects on fertility intentions in 

Germany.

In the analysis presented below, we use network data on three dependent variables 

measuring the level of incorporation and attachment to migrants’ destination and origin 

communities to test models of network peer influence and homophily. We use several 

different measures of respondents’ engagement in this transnational network as our key 

independent variables: (1) the values of the dependent variables of respondent’s peers—as a 

measure of peer effects or clustering, (2) respondents’ degree of local and cross-border 

communication in the network, and (3) the respondent’s “betweenness centrality” as a 

measure of how centrally located they are in the network. We argue that if the flow of ideas, 

norms, and practices through transnational networks actually matters, then we should find 

positive effects of peers, communication flows, and betweenness centrality, even after 

controlling for standard measures of incorporation such as time in the U.S. and English 

language ability.

Although we will test for whether our results are consistent with the predictions of a model 

of transnational social fields, we emphasize that we see these results as a preliminary 

specification of a broader research agenda that would involve collecting longitudinal data on 

multiple cross-border networks. At the moment, with cross-sectional data from a single 

network, we do not claim to be able to distinguish between the causal effects of peers or 

social remittances and the non-random ways in which the network was formed—for 

example, due to the tendency for people to choose friends who are similar to them. As a 

result, we will attempt to identify a significant “clustering” of individuals with similar 
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outcome variables in the topography of the social network—keeping in mind that results that 

are consistent with peer effects could also be due to selection effects based on social 

homophily.

Data and Methods

Sample Design

The data for this paper come from the 2010 Network Survey of Immigration and 

Transnationalism (NSIT), which was a bi-national survey of the migration network 

connecting a medium size town in the state of Guanajuato, Mexico, with migrants (from that 

town) living in the Research Triangle area of North Carolina and Houston, Texas. North 

Carolina represents a relatively new destination for migrants from Mexico, with the first 

large cohort of migrants arriving in the early 1990s (Durand et al. 2005; Griffith 2005: 56; 

Kasarda and Johnson 2006). In contrast to North Carolina, Houston is an older, more 

traditional destination for migrants from this origin community. Overall, the survey had a 

sample size of 607 interviews, with 146 interviews in North Carolina, 51 in Houston, and 

410 in the origin community in Guanajuato.3

In collecting the data, we used a link-tracing design, because, as depicted in Figure 1, we 

were attempting to collect data on a hard to find population in both the origin and 

destination communities. In general, rare populations are difficult to sample because lots of 

potential respondents must be contacted in order to obtain a sufficient sample size (cf. 

Kalton 2001).4 Migrants in particular are challenging to locate but network approaches are 

an effective means of finding them (Rindfuss et al. 2007). In Figure 1, the origin community 

in Mexico (represented by circle “A”) is in the upper left hand corner of the figure and the 

destination community in the U.S. (circle “B”) is in the bottom right hand corner.

In order to conduct a survey of this transnational community, we wanted to sample migrants 

from “A” who live in “B” (the circle labeled “AB1”), and their friends and family back in A 

(the circle labeled “AB2”). The combined population of AB1 and AB2 consists of those 

individuals who are members of the transnational network connecting A to B. While a 

random household sample design would be preferable because of its attractive sampling 

properties, it is not a viable strategy to sample from our target population as defined in 

Figure 1. For a random household sample, the problem is that the target population 

represents a very small percentage of the overall population in both A and B. As a result, 

even with a set of preliminary questions to screen for members of the target population, 

many households would have to be contacted in order to obtain a sufficient sample size of 

members of AB1 (migrants from A) and AB2 (their friends and family back in B).

For example, based upon the results of our network survey discussed below, we estimate 

that members of our target population make up about 0.22% of the overall two-county 

3In general, when discussing the results below, we will combine the North Carolina and Houston results together as the “U.S. based 
sample” because the Houston sample size was too small to analyze separately. A goal of future research is to collect large enough 
samples from multiple destinations so that we can distinguish different effects across the different destination communities.
4In addition, Valentina Mazzucato (2009) provides a useful discussion the difficulties involved in collecting simultaneous network 
data in origin and destination communities.
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population of our North Carolina study area, which would mean that we would have had to 

conduct approximately 64,444 screening interviews to obtain the 150 interviews that we 

conducted in North Carolina. In Houston, a large metropolitan area, the number of screening 

interviews necessary to obtain each respondent would have been even greater. Furthermore, 

such an approach would make it difficult to collect the structural network data of substantive 

interest given our theoretical framework.

Because random household sampling was not a viable method to obtain a sufficient sample 

size or the type of data needed to test our hypotheses, we elected to collect link-tracing 

samples in both the destination communities. As discussed at length in Martín Félix-Medina 

and Steven K. Thompson (2004), a link-tracing sample is a sample where referrals from 

current respondents are used to obtain the next wave of interviews. For the U.S. based data 

(in North Carolina and Houston) the survey began with a number of initial “seed” 

respondents that we had identified through previous field research (12 in North Carolina and 

5 in Houston), and subsequent interviews were obtained by following the links (in the 

network data) from earlier respondents. Link-tracing and snowball sampling have been 

criticized as leading to biased samples (Erickson 1979; Rothenberg 1995; Heimer 2005), 

primarily because more popular members of a population will be more likely to be sampled 

precisely because more people will nominate them. However, recent developments in the 

mathematics of random walks on networks make it possible to conceptualize how to use a 

link-tracing sample to obtain a representative sample from a population (Lovasz 1993). If 

the population is connected through a social network, then a random walk on the network 

(by randomly selecting one link to follow from the current person to one of his or her 

friends), will eventually settle into a steady state distribution where the probability of being 

“interviewed” by the random walk is proportional to the number of friends that person has in 

the network (Handcock and Gile 2011; Lawler and Coyle 1999). For example, someone with 

10 friends in the target population will be twice as likely to be sampled as someone with 5 

friends.5 The logic behind Google’s original PageRank algorithm, for example, was based 

on approximating this result of the “steady state” probability of sampling a particular web 

page (Brin and Page 1998).

Recent innovations in link-tracing sampling from a network, such as Respondent Driven 

Sampling (RDS) make use of the relationship between the number of ties someone has and 

their (steady state) sampling probability in a random walk (Goel and Salganik 2009). In 

RDS, respondents are asked how many friends they have in the target population, and the 

inverse of this number is used as a sampling weight (cf. William W. Neely 2009 for a 

complete description of RDS estimation methods). Using these weights results in an 

unbiased sample from the population, provided respondents accurately estimate the number 

of friends they have and the sampling chain reaches the long-run “steady state” distribution. 

With our data, because we collect a detailed network roster for each respondent that allows 

us to reconstruct the underlying network of the population, we use the number of 

nominations that each respondent received from other respondents in the survey as a control 

variable for the popularity of each respondent in the network.6

5This calculation assumes that the sampling is conducted with replacement.
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While the U.S. based sample was conducted using a link-tracing sample design, the Mexican 

sample was obtained using a modified approach. First, we started with 20 randomly selected 

“seeds” chosen from the list of individuals in the origin community who were nominated by 

respondents in the U.S. sample. Then, starting with each seed respondent, we used an 

inverted “pyramid” approach as illustrated by the diagram in Figure 2 to sample from their 

network to a depth of 4 levels. The goal here was to find respondents who were not as 

closely linked to the original cross-border seeds, but to be inclusive of friend and family ties. 

As depicted in Figure 2, Level 1 is the seed. Level 2 consists of two interviews from the 

seed’s friend contacts and two interviews from the seed’s family contacts. Level 3 consists 

of 2 interviews with friends and family members of each of the Level 2 respondents (1 

friend and 1 family member each), and Level 4 consisted of 1 (randomly chosen) friend or 

family member from each of the Level 3 respondents. For all the interviews, the decision of 

which friend or family member to interview was based on a random selection from the 

current respondent’s friend or family network roster. The reason we opted to use this 

“pyramid” approach was to interview individuals with different levels of connection to the 

destination communities in the U.S. and to branch out to members across the Mexican based 

sample.

Collecting Network Data

As part of our questionnaire, we asked for detailed network rosters of the friends and family 

members of each respondent. In order to protect the privacy of respondents, we collected 

data on only the first four letters of both the first name and last name of the respondent’s 

network members, along with key social and demographic information that we could use for 

identification: nickname, gender, age, occupation, and the number of children living in the 

household. In order to identify unique individuals in the resulting network data, we wrote a 

matching program in Stata that allows for a range of error in the demographic and name 

variables in determining whether two network nominations from different interviews 

represent the same person. We used the Levenshtein edit distance (the number of edits 

needed to match two strings, cf. Julian Reif [2010]) to allow for reporting and coding errors 

in the first name, last name, and nickname.

The U.S. survey asked for up to 10 friends and 6 family members currently living in the 

same destination community in the U.S. (North Carolina or Houston), 6 total family and 

friends currently living in the origin city in Mexico, and up to 5 returned migrants currently 

living in the origin. In the Mexican sample, we asked for data on 6 friends and 6 relatives 

currently living in Guanajuato, and up to 6 friends or family members living in each of the 

two destination locations (North Carolina and Houston). The reason the maximum number 

of same-location friends was higher in the U.S. than in Mexico was due to the design of the 

sample: in the U.S. we were using a link-tracing sample and wanted as many alters 

(contacts) as possible. Overall, given concerns about interviewer and respondent fatigue due 

to the extensive information that we collected about each alter, we did not feel that it was 

practical to press the respondents for an unlimited number of contacts.

6see Winship and Radbill (1994) for a discussion on the benefits of un-weighted data in regressions where the weights are a function 
of independent variables in the analysis.
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The resulting data demonstrates that the survey was successful at eliciting responses to the 

network questions. The 607 respondents who were interviewed listed an average of 14.06 

friends and relatives on their network rosters. The final network consists of 8,538 

nominations, which were matched to 5,086 unique individuals in the following locations: 

964 in North Carolina, 3,516 in Guanajuato, and 606 in Houston. Figure 3 shows the 

resulting network of this bi-national immigrant community. Blue nodes are individuals 

located in North Carolina, red nodes are located in Guanajuato, Mexico, and green nodes are 

located in Houston, Texas. A key descriptive finding in Figure 3 is the interconnectedness of 

the network: there are substantial ties and overlap between the communities on different 

sides of the border, which would not be the case if the communities were disconnected with 

only a few cross-border connections.

Methods

In addition to providing an example of the collection of cross-border network data, the goal 

of this paper is to show how that data can be used to provide a test of the social fields 

perspective on transnationalism. In order to test how much these networks “matter” we use 

three different types of models in our analysis below that exploit the network data from our 

bi-national survey: (1) individual-level probit models that use the average response among 

the respondent’s contacts as the key explanatory variable, (2) network autoregressive probit 

models (NAP) that incorporate additional dependencies in the network based on the degree 

of separation between respondents, and (3) exponential random graph (ERGM) models that 

jointly model the structural features of the networks and individual clustering based on 

covariates. James O’Malley and Peter V. Marsden (2008) provide an integrative discussion 

of the use of all three of these models to study contagion effects and clustering with network 

data. These three models are progressively more sophisticated in the way that they 

incorporate the network data into the analysis; while the individual level model will be the 

most transparent and familiar to readers, we believe, as discussed below, that the NAP and 

ERGM models more fully exploit the advantages of having network data vis-à-vis 

conventional survey data with no network ties.

The individual level models are used to estimate peer-effects models controlling for basic 

demographic characteristics and standard measures of immigrant incorporation (time since 

immigration and English language ability). These models use a “linear-in-means” approach 

to estimate peer effects (An 2011), keeping in mind the cautionary note above (on p.17) that 

in these models we do not distinguish between the causal effect of peer influence and 

homophily based clustering. The probit model with a linear-in-means specification for peer 

effects is depicted in Equation 1:

(1)

where Φ is the cumulative density function of the normal distribution, yi is a dichotomous 

dependent variable for individual i, and α and β are coefficient vectors. In addition, ȳ−i 

indicates average value of y for i’s contacts in the network, xi indicates a set of individual-

level explanatory variables, and εi is an error term.
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While the linear in means specification is widespread in the peer effects literature, it is 

possible that the ȳ−i term in Equation 1 does not capture all of the network-related 

dependencies in the data. Roger Leenders (2002), Keith Ord (1975) and Patrick Dorien 

(1989) discuss modeling the interdependencies among outcomes in a network using an 

autocorrelation approach similar to spatial regression models (e.g., LeSage and Pace 2009), 

where the correlation in outcomes between cases is considered to be a function of the 

distance between them. In this analysis, we construct a weights matrix W based on the 

inverse of the geodesic distance (the shortest path) between respondents using the full cross-

border network depicted in Figure 3.7 We estimate a “network autoregressive” model 

(Leenders 2002; O’Malley and Marsden 2008; Fujimoto, Chou, and Valente 2011) that 

extends the individual level model in Equation 1 by including the possibility of additional 

network-related dependencies in the data:

(2)

where W is the network weights matrix, and the parameter ρ tests for the existence of 

clustering or peer effects based on the inverse distance between respondents in the network, 

above and beyond the effect of the respondent’s immediate circle of contacts which is 

already included in the ȳ−i term. In general, the estimation of a network or spatial 

autocorrelation model is more complicated with dichotomous or categorical dependent 

variables because we are modeling dependencies in the underlying latent variable not the 

observed variable (e.g., Bille and Arbia 2013), as depicted by the terms inside the 

parentheses on the right hand side of Equation 2. We estimate this model using the Spatial 

Probit package in R (Wilhelm and Godinho de Matos 2013).8

While both the individual-level and network autoregressive models described in Equations 1 

and 2 provide intuitive tests of peer-effects, they are simplifications of the true social 

processes at work because they assume that the network structure is fixed. In other words, 

the network autocorrelation models described by Leenders (2002) have a direct analogy with 

spatial autocorrelation models because they treat the relational nature of the data as static—

i.e., the existence (or not) of ties between individuals in a network is treated as if it were 

fixed in the same way that the spatial distance between geographic units is. In reality, of 

course, individuals can choose who they want to be friends with, and the observed network 

is the result of a dynamic process of friendship formation—which could lead to misleading 

results with either a linear-in-means or a network autoregressive model (Hsieh and Lee 

2011). In order to account for this type of dependency in the data, we also estimate ERGM 

models, which are a recent development in the statistics literature that allow for endogenous 

structural dependencies in the network data (Hunter, Handcock, Butts, Goodreau, and 

Morris 2008; Snijders, Pattison, and Robins 2006).

7W is row normalized to that the sum of each row is equal to 1. If dij If is the geodesic distance between respondent i and j, then the 

value of the i,j cell of the weights matrix W is 
8An example of an autoregressive probit model, albeit in the context of a spatial analysis, is given in Lesage (2011).
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In contrast to the individual level and network autoregressive models which use individuals 

as cases, the ERGM models treat the entire observed network as the unit of analysis and the 

observed ties between individuals as the result of a process of network formation. In an 

ERGM model, the dependent variable is whether or not there is a tie between each possible 

pair of respondents. If there are strong peer or diffusion effects on any of our dependent 

variables, then we would to find that individuals with similar levels of those variables are 

more likely to be friends. What is compelling about the ERGM approach is that it allows for 

network effects beyond simple peer-alter interactions. For example, the notion of “triad 

closure” is based on the idea that two individuals are more likely to be friends if they have 

mutual friends in common (Hunter 2007, Goodreau, Morris, and Kitts 2008). These higher-

order network processes may have substantial effects on the shape and structure of observed 

networks, and hence they would be important in trying to understand variation in 

transnational networks either over time or across different origin-destination communities.

While a full description of the estimation of random graph models is beyond the scope of 

this paper, we note that the basic idea is that the model uses a “Markov Chain Monte Carlo” 

approach that iterates back and forth between parameter estimation and simulations of 

networks based on those parameters, stopping only when the simulated networks resulting 

from the parameters of the model are a good fit for the observed network data. We estimate 

a basic model of network structure that allows for triad closure. We find that a simple 

measure of triad closure where the effect of mutual friends exhibits diminishing returns to 

scale provides a very good fit for the observed U.S. and Mexican based networks. This 

measure, the geometrically weighted edgewise partner distribution (GWESP), has been 

found to be effective at preventing the simulated networks from degenerating into networks 

with far too many friendship ties compared to the observed data across many networks (e.g., 

Goodreau, Morris, and Kitts 2008). We estimate these models using the ERGM package 

available in R (Handcock, Hunter, Butts, Goodreau, Morris, and Krivitsky 2010).

The ERGM models that we use in this paper estimate the “assortative mixing” among 

respondents based on observed characteristics, controlling for the structural features of the 

networks. As such, they treat the covariates (such as the desire for permanent residence in 

the United States) as fixed. A better approach for future research would be to combine the 

strengths of the individual level and network level approaches together to estimate models of 

individual level outcomes accounting for the dependent nature of the network data as well as 

the role of individual level variables.9

Results

Descriptive Analysis

Table 1 shows the distribution of network ties in the data by ego and alter location.10 The 

respondent’s (“ego”) location is in the columns, and the contact’s (“alter”) location is in the 

9A recent working paper by Fellows and Handcock (2012) does this, jointly modeling individual and network variables, but the 
software needed to replicate their findings is still in development and not yet publically available. As a result, we view this as a subject 
of future research.
10In the context of our discussion of the network data, “ego” refers to the respondent and “alter” is a person who the respondent 
nominated on his or her network roster. All egos were interviewed, but only a subset of alters were.
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rows. Of the 2,760 nominations from respondents in North Carolina, for example, 1,559 

(56%) were to alters in North Carolina, and 1,201 (44%) were to alters in Guanajuato. Table 

2 shows the relationship between egos and alters in the data. Overall, 53.5% of the network 

ties that we recorded were between friends, and the remaining ties were between non co-

resident family members. The largest category of family ties, brothers and sisters, 

represented 12.3% of the network ties.

For each friend or family member in the respondent’s network, the survey asked how 

frequently they talked to that person. Table 3 shows the distribution of communication 

frequency by friend or family ties and the respondent’s location. For example, the first row 

of Table 3 shows the communication among U.S. respondents and their friends living in the 

U.S. Looking across the row, we see that 20.5% communicate with their friend daily, and 

35.6% communicated weekly. Similarly, Row 3 shows that with respect to cross-border U.S. 

to Mexico ties, communication among friends is much less frequent, with only 3.4% 

communicating daily, and 48.3% communicating less than yearly. In general, comparing 

local to cross-border communication between the U.S. and Mexico, we see that cross-border 

communication with both friends and family occurs more infrequently. Nonetheless, about 

35% of cross-border family ties had daily or weekly communication (compared to about 6–

7% of cross-border friendship ties).

In the analysis below, we use the network data on communication frequency as a measure of 

the respondent’s location in the transnational social field. As a measure of the volume of 

communication that the respondent is involved in across each of the dimensions (cross-

border/local and friend/family) from Table 3, we calculate the “communication flow” as the 

log sum of the communication frequency with each network member by type:

(Equation 3)

Where c indicates the type of connection (i.e., cross-border family communication) and fc 

indicates the frequency of communication (1 to 5, see Table 3) with the network alter. We 

note that this is not a perfect measure of communication flows since it only indicates 

communication in one direction, but it is one that tries to strike a balance between the 

number of alters of each type and the intensity of communication with each.

Tables 4–6 show the key dependent variables in this paper. The variables were chosen as 

measures of an underlying process of assimilation or incorporation that could meaningfully 

be asked of respondents on both sides of the border. Table 4 shows the respondent’s desire 

for permanent residence; respondents were asked whether they would live permanently in 

the U.S. if they had all the necessary documents. Fifty-seven percent of respondents in the 

U.S. and 14.3% of the Mexican sample said that they would reside in the U.S. if they could. 

Table 5 shows the results for a similar question, which is where the respondent thinks he or 

she would be the happiest given the choice of the U.S., Mexico, or both equally. In the U.S. 

sample, 29.9% believed they would be happiest in the U.S. and 44.85 % answered 

“Mexico”, while in the Mexican sample only 4.68% thought they would be happiest in the 

U.S. and 88.92% answered “Mexico”. What is interesting about Tables 4 and 5 is the 
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evidence that only a minority of respondents in the origin community—which is a high 

migration sending city in the state of Guanajuato, Mexico—said that they would like to live 

in the U.S. or thought that they would be happier living in the U.S. In the statistical analysis 

below we seek to understand variation in respondents’ answers to these questions as a 

function of their position in the social network connecting respondents in the sample 

together.

Table 6 asks a general question about the respondent’s opinion of U.S. culture, with answers 

ranging from 1 “I don’t like it” to 5 “I like it a lot”. For U.S. respondents, the modal 

response was “3” (48.19%), while for Mexican respondents, 46.4% said that they did not 

like U.S. culture (category 1). Only 12% of respondents in the U.S., and 7.9% of those in 

Mexico, said that, in general, they liked U.S. culture. In the analysis below, we will use this 

variable as an additional dependent variable in analyses of the effect of transnationalism.

Tables 7 and 8 show the results of assimilation related questions that were only asked of the 

U.S. based sample. Table 7 shows the response to a question that asked “how much do you 

want to adapt to the society, culture, and lifestyle of the U.S.?”, ranging from 1 “only what 

is necessary” (30.6% of the sample) to 5 “I want to adapt completely” (22.8% of the 

sample). The results indicate a broad distribution of opinion on this question, with only a 

minority of respondents expressing a desire to completely adapt to life in the United States. 

Finally, Table 8 shows the respondents’ degree of self-identification as “Mexican” (for U.S. 

based respondents only). As a measure of the strong identification with their country of 

origin among this sample of first-generation immigrant, 77.6% said that they identified as 

“100%” Mexican.

Multivariate Analysis

In the analysis presented below we present the results separately for the U.S. and Mexican 

samples, in order to allow the effects to vary by location. First, Table 9 shows the 

explanatory variables used in the analysis. Measures of peers’ response variables are 

calculated as the average level of our three dependent variables across the respondent’s 

contacts in the network (Rows 1–3 of Table 9). For the purposes of calculating these 

variables, we use anyone who nominated—or was nominated by—the respondent. Because 

only 607 of the 5,086 unique individuals identified in the data were actually interviewed, 

these variables are based on a sample of the respondent’s network. The network roster count 

variables (Rows 16–18 of Table 9) show the average size of these sampled network 

members. For example, in Row 16, the average number of other respondents who nominated 

the respondent was 3.06 in the U.S. sample and 2.24 in Mexico. The sum of Row 16 and 

Row 17 gives the average number of other respondents who either nominated or were 

nominated by the focal respondent and were used, as a result, to construct the contact 

average variables (Rows 1–3).

As measures of the respondent’s participation in communication networks, we use the cross-

border and local communication flow variables (Rows 4–7 of Table 9) calculated as the log 

of the sum of the communication frequency variables for each type of social tie (cross 

border/local and family/friend), as defined by Equation 3 above. In addition to these 

communication variables, we also measure the respondent’s position in the transnational 
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network as their “betweenness centrality” (Freeman 1977), calculated here based on the 

proportion of shortest paths between nodes in the network that pass through the respondent 

(see Row 20 of Table 9.). In calculating the betweenness centrality we used a subsample of 

the cross-border network depicted in Figure 3 consisting of all 607 sampled nodes.11 In the 

U.S. sample, we also include a variable indicating whether or not the respondent sent 

monetary remittances back to Mexico in the past 30 days (Row 14), and whether he or she 

has visited Mexico in the past 4 years.12

For respondents in the U.S., we include the number of years the respondent has lived in the 

U.S (Row 5). In our statistical models presented below, we use the log number of years in 

the U.S. (Row 6) to allow for diminishing effects over time. In the analysis for the Mexican 

sample, we use a dummy variable indicating whether or not the respondent has lived in the 

U.S. (i.e., the 70 returned migrants in the data).13 Education level is measured as a 

dichotomous variable indicating whether the respondent had a high school education or 

higher (Row 9), and we control for age (Row 13) and age squared. While Table 9 shows the 

counts and means of the raw non-imputed data, we use multiple imputations to impute any 

variable in Table 9 that is missing, using 10 imputations with the ICE procedure in Stata 12 

(Royston 2005)14.

In Tables 10 and 11 we estimate separate models for the U.S. and Mexican samples, which 

allows us to separate the effects of the key independent variables by location. In addition, we 

note that the sample size for each location is small—197 in the U.S. and 410 in Mexico—

and the data is based on a sample of a single transnational network, so we should proceed 

with caution in interpreting the results. In both Tables 10 and 11, we show the regression 

results for our three dependent variables for the individual level probit (panel A of each 

table) and network autoregressive probit (“NAP”) models (panel B). Model 1 estimates a 

probit model of the desire for permanent residence in the U.S. (see Table 4 above), Model 2 

is a probit model of the respondent’s opinion of U.S. culture (see Table 6), and Model 3 

presents a model for a dichotomous variable indicating whether the respondent thought 

he/she would be happier living in Mexico compared to the United States (see Table 5 

above),.15 In all the models, we use the average value of the dependent variable among the 

respondent’s social contacts as a key explanatory variable. These “contacts’ average” 

variables are intended to provide a measure of the flow of information or influence which 

could induce a correlation between respondents who are connected in the transnational 

network. As discussed above, we note that a positive correlation between peer and 

respondent dependent variables could be the result of social homophily—the tendency of 

11See Handcock and Gile 2010 for a discussion of analysis using sampled networks.
12Respondents who migrated in the past four years are coded as zero for this variable (their recent migration will be reflected in their 
lower number of years in the U.S.), unless they reported a recent visit since their migration.
13Using a dichotomous variable for returned migrants was easier to interpret than a continuous variable for the length of time 
Mexican based respondents had lived in the U.S. (however, these results are available from the author by request).
14In the results presented in Tables 10 and 11 with the multiply imputed data, the standard errors are corrected for the use of the 
multiply imputed data using Rubin’s rules (Rubin 1987). The coefficient estimates are the mean of the coefficients across the 10 
imputations.
15We use a dichotomous version the variable about opinion of U.S. culture by collapsing the 5-point answer into two categories 
(combining 1 and 2 into “1” and 3–5 into “0”). An ordinal probit would be the preferred model, but the spatial autoregressive probit 
package that we use does not have an option for ordinal variables. Results for a standard ordinal probit using the specification in 
Equation 1 are available upon request and do not change the interpretations of the results.
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similar people to choose to become friends with each other—rather than the causal effect of 

peer influence or information sharing. In the future, we would like to collect longitudinal 

data on these transnational network ties, which would permit a richer model of friend 

selection versus peer influence (e.g., Kandel 1978; Snijders et al. 2010).

In the U.S. sample in Table 10, all three models show a significant correlation between the 

contacts’ average of the dependent variable and the respondent’s response in both the 

individual-level and network approaches, which is consistent with a social influence model 

of the role of cross-border networks. In contrast, in the Mexican sample in Table 11, these 

same peer effects variables are not statistically significant in any of the three models at the 

p=0.05 level of significance.

In comparing the results for Panels A and B of both Tables 10 and 11, we find no 

substantive difference between the individual level models (Panel A) and the network 

autoregressive models (Panel B) in any of the key variables in Tables 10 and 11, and the 

estimate of ρ (“Rho”) does not suggest any significant dependencies in the network based on 

the inverse geodesic distance matrix W discussed above.

In addition to testing for peer influence, we also include the measure of communication 

flows and betweenness centrality. Of the four variables for communication flows in the 

transnational network, only cross-border communication with friends turns out to be 

statistically significant (at the p=.05 level)—in Model 1 in the U.S. sample, and Models 1 

and 3 in the Mexican sample. In these three cases, the direction of the coefficient indicates 

that cross-border friend communication is consistent with a “transnational” effect: For 

example, in the Mexican sample in Table 11, the level of cross-border friend communication 

increases the probability that the respondent desires to live permanently in the U.S. in Model 

1, and decreases the probability that the respondent is happier living in Mexico in Model 3. 

Similarly, in the U.S. sample in Table 10, cross-border communication with friends 

decreases the probability that a respondent would report a desire to remain in the U.S.

The variable measuring respondent’s position in the network, betweenness centrality, is not 

statistically significant (at the p=.05 level) in any of the models. Because the centrality 

measure was calculated with the combined cross-border network of sampled nodes, it 

identifies individuals who are located in the center of the sampled network.16 The general 

lack of significance for this variable suggests that it is not centrality per se that matters, but 

something related to the valence of those around you on key variables—i.e. the clustering of 

peers in certain parts of the network—and/or participation in the network (the 

communication with friends variable).

Next, in the U.S. sample in Table 10, we do not find an effect of sending remittances or 

recent visits back to the origin community on any of the three dependent variables. While 

both of these variables are, arguably, important indicators of transnationalism in their own 

right, they do not seem to be correlated with migration intentions and opinions of U.S. 

culture.

16The inclusion or exclusion of the number of nominations in the survey does not affect the significance of the betweenness centrality 
measure (results available upon request).
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As a counterargument to the “transnationalism” variables measured by network peer effects 

and cross-border communication rates, we also include variables consistent with the 

assimilation perspective—migration experience in the U.S. and English ability. In Table 10, 

cumulative years in the U.S. has no effect in any of the models, while English ability has an 

effect in Model 3—respondents who speak English poorly are more likely to report that they 

would be happier living in Mexico—which is consistent with an assimilation-based 

interpretation.17 In contrast, in the Mexican sample in Table 11, we find a strong and 

consistent effect on the variable for return migrants: compared to non-migrants, return 

migrants are more likely to desire permanent residence in the U.S., less likely to say they are 

happier living in Mexico, and they have a more positive opinion of U.S. culture. This 

suggests a twist on the conventional story about assimilation: return migrants living in 

Mexico have higher rates of “incorporation” in U.S. society—at least as measured by these 

dependent variables. As a result, it might be reasonable to consider these returned migrants 

as “transmigrants” themselves—in the sense that they may be keeping up with things in the 

destination community and, at least to some degree, imagining a potential return to the other 

side of the border.

So far, Tables 10 and 11 have tested models that treat the ties in the network as fixed or 

exogenous, which is a simplification since individuals choose who they want to become 

friends with. In order to test a model of similarity between respondents that controls for the 

underlying processes of network formation, Table 12 presents Exponential Random Graph 

Models (ERGM) of the correlation of the dependent variables among respondents who 

nominated each other in the network. As discussed above in the methods section, the benefit 

of the ERGM models is that they model the formation of ties in the network as an 

endogenous process, which allows us to incorporate the dependent nature of the ties between 

respondents directly into the model. As mentioned above, Goodreau, Morris, and Kitts 

(2008) provide a valuable discussion of use of ERGM models to analyze friendship 

homophily in social networks. We estimate ERGM models of the network of sampled 

respondents, analyzing the data separately by location similar to the analysis in Tables 10 

and 11. Both samples include cross border nominations, but the respondents themselves are 

located in either the U.S. or Mexico. In general, the parameters can be interpreted in terms 

of a standard logit model predicting the probability of a connection between any pair of 

respondents. First, the variable measuring triad closure, GWESP, is a significant predictor of 

a connection between nodes in both samples. Although we estimated additional models that 

included other measures of network structure, we found that the GWESP variable along with 

the intercept fits the structure of the network very well, consistent with the results in 

Goodreau, J Kitts and Morris (2008) for different data.

In addition to the triad closure variable, the intercept is a measure of the overall density of 

the network, and the other “sociality” coefficients indicate the effect of covariates on 

number of ties; for example, the sociality coefficient on female is −0.039 in the U.S. sample, 

which indicates that women have (slightly) fewer connections in the data than men.

17The collective effect of the English language variable in Model 3 of Table 10 is not significant, despite the fact that one of the 
indicator variables (“Good”) is.
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For our purposes, the key variables are the “selective mixing” variables, which measure the 

correlation in these variables among connected members of the network. There is a high 

level of gender homophily, for instance, in the data, as the coefficient is significant at the p=.

001 level for both the U.S. and Mexican samples. In the U.S. sample (but not in the Mexican 

sample), we find a significant degree of selective mixing between respondents on the basis 

of the three dependent variables from Table 10 (desire for permanent residence, happier 

living in Mexico, and opinion of U.S. culture). The negative coefficient on opinion of U.S. 

culture reflects the fact that this variable is measured as the absolute value of the difference 

in this variable (which goes from 1–5) between pairs of respondents—hence agreement in 

this variable is a positive predictor of a connection between them. Again, similar to the 

discussion above in Table 10, the significant effects of these three variables are consistent 

with both peer effects and social homophily. Even though we are modeling the dependent 

nature of the network data using the ERGM models, any attempt to truly disentangle peer 

effects from homophily will require some combination of longitudinal network data and/or a 

“natural experiment” that could plausibly identify exogenously formed friendship ties. 

Nonetheless, the results presented here indicate the benefit of applying network-level 

statistical models to analyze the interrelations and connections between members of 

transnational communities.

Finally, because the results are presented in three different tables, we present one additional 

table that summarizes the key findings. A “+” sign indicates a result consistent with the 

transnational or assimilation perspectives for at least two of the three dependent variables, 

and a “~” indicates a significant result for one of the three.

As discussed above, we believe one set of findings are the significant results for peer effects/

homophily in the U.S. sample, indicated by the “+” sign in Rows 1–2 of Table 12. We argue 

that these results are consistent with a social influence model of how the respondent’s 

location in the network affects their answer to these questions. Similar to the literature in 

demography discussed above on peer effects and cultural diffusion with respect to fertility 

desires and contraceptive use, the underlying logic is that the flow of information and ideas 

through these networks will affect individual behavior and opinions. At the same time, we 

do not find similar evidence of peer effects in the Mexican sample. Based on the analysis of 

a single transnational network, we cannot say whether this is a finding that would hold in 

origin communities in general, or whether it is a feature of this particular network.18 

Similarly, we believe it is possible that the results here could vary across different origin-

destination communities and that this could be the subject of future research.

In contrast to the results for peer effects, we do find evidence of significant effects of 

communication with cross-border friends in the Mexican sample (row 3 in Table 12), as well 

as large effects for returned migrants. Overall, taking the complexity of the findings in 

Tables 10–12 into account, we interpret the combined results as indicating qualified support 

for a transnational perspective on these measures; while not all of the key independent 

variables have significant effects across all the models and samples, there is partial evidence 

18As an example of empirical evidence of variation in transnational migration, David Kyle (2001) finds important differences in 
migration patterns to New York City in an ethnographic study of four sending communities in Ecuador.
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of peer and/or homophily effects in the U.S. and the role of cross-border friend 

communication in Mexico.

Discussion and Conclusion

In this paper, we argue that the current debate on transnationalism and assimilation is 

incomplete because of the absence of data on the actual social networks that connect 

individuals in transnational social fields. We use data from the 2010 Network Survey of 

Immigrant Transnationalism (NSIT) which is a network survey of immigrants from Mexico 

in North Carolina and Houston, and their friends and family members back home in the 

origin community in the state of Guanajuato, Mexico. In our analysis in Tables 10–12, we 

use three dependent variables to measure migration related behavior and attitudes: the desire 

for permanent residence in the U.S., opinion of U.S. culture, and a question on where (the 

U.S. or Mexico) the respondent thought he or she would be happiest. As summarized above 

in Table 13, we find qualified support for our measures of transnationalism: we find 

evidence consistent with of the existence of peer effects in all three dependent variables in 

the U.S., and we find evidence of communication flow effects in Mexico.

In contrast to the results we have presented here, most survey evidence in the transnational/

assimilation debate consists of randomly collected respondents without information on their 

embeddedness in cross-border networks. This is surely not due to a theoretical omission in 

the literature, as a discussion of the role of social networks and cross-border connections 

figures centrally in the literature on transnationalism (e.g., Levitt and Schiller 2004), but 

rather the methodological difficulty of collecting bi-national network data with a hidden 

population such as a migrant social network. While the advantages of using large-scale 

surveys are obvious in terms of sample size, they provide only indirect information on the 

network of ties that connect respondents across borders and allow them to live 

simultaneously—at least at some level—in two places.

In sum, this paper demonstrates the advantages of collecting network data on individuals in 

both origin and destination communities. While collecting binational network data increases 

the cost and effort involved in conducting a survey, we argue that it provides a better test of 

the prevalence and impact of transnationalism, which, on a theoretical level, results in 

effects that flow in both directions across international borders. We believe that this same 

type of survey could be conducted on other immigrant groups, and it would be interesting to 

map out the cross border networks in situations that are different than the U.S.–Mexico 

migration streams, where the levels of migration are particularly high and the context of 

incorporation may be significantly different than that experienced by other groups. In the 

future, we plan to extend this research by incorporating a broader range of destination 

communities and by collecting longitudinal data, which would allow us to analyze how 

these networks change over time and would enable us to estimate more sophisticated models 

of the effect of changes in network structure on the peer relationships and communication 

flows. While collecting and analyzing transnational network data presents methodological 

challenges, we believe it is a promising avenue for future research because it increases the 

sociological realism of empirical models by incorporating the connections and ties between 

individuals and communities both within and across international borders.
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Figure 1. 
Sampling migrant networks—the “needle in a haystack” problem
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Figure 2. 
Selection of Friend and Family Network Members in Mexico

FR=friend tie

FA=family tie

R= random (50% friend, 50% family)
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Figure 3. 
The binational network of sampled and nominated individuals in the 2010 Network Survey 

of Immigrant Transnationalism.

Notes: White nodes are located in the United States (North Carolina or Houston), black 

nodes are located in Mexico.
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Table 1

Location of Networks Ties

Ego (Respondent) location

North Carolina Houston Guanajuato Total

Alter location

North Carolina 1,559 698 2,257

Houston 528 383 5,370

Guanajuato 1,201 291 3,878 911

Total 2,760 819 4,959 8,538
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Table 2

Relationship between Ego and Alter in the network data

Freq. Percent

Friend 4,569 53.51

Spouse 34 0.4

Child 193 2.26

Brother/sister 1,050 12.3

Parent 213 2.49

grandson/daugher 23 0.27

Mother/father in law 32 0.37

Cousin 817 9.57

Uncle/aunt 631 7.39

Other relative 976 11.43

Total 8,538 100
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Table 4

Respondent’s Desire for Permanent Residence

Respondent’s location

R in the U.S. R in Mexico

Would you live permanently in the U.S. if you could? Total

No 42.8 85.7 72.1

Yes 57.2 14.3 27.9

Total (N) 100.0 (187) 100.0 (405) 100.0
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Table 5

Where R thinks he/she would be happiest

Respondent’s location

R in the U.S. R in Mexico

Where do you think you would be happiest? Total

in the U.S. 29.90 4.68 12.83

in Mexico 44.85 88.92 74.67

Equal 25.26 6.40 12.50

Total (N) 100.0 (194) 100.0 (406) 100.0 (600)
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Table 6

What is your opinion of U.S. culture? (Column percentage)

Respondent’s location

R in the U.S. R in Mexico Total

1. I don’t like it 9.33 46.40 34.40

2 9.84 14.39 12.92

3 48.19 24.81 32.38

4 19.69 6.45 10.74

5. I like it (me encanta) 12.95 7.94 9.56

Total 100 100 100

Number of respondents (193) (403) (596)
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Table 7

Desire to Adapt to the U.S. (U.S. respondents only, column percentage)

“How much do you want to adapt to the society, culture, and lifestyle of the U.S.?” Percent

1. Only what is necessary 30.6

2 8.3

3 26.9

4 11.4

5. I want to adapt completely 22.8

Total 100

Number of respondents (193)
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Mouw et al. Page 40

Table 8

R’s self-identification as Mexican (U.S. respondents only)

Degree of identification as Mexican Percent

0% 0.5

25% 0.5

50% 7.3

75% 14.1

100% 77.6

Total 100.0

Number of cases (192)
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Table 12

Exponential Random Graph Models of Selective Mixing in the U.S. and Mexico based networks.

U.S. based network. Mexico based network.

Estimate Std. Error Estimate Std. Error

Sociality

Intercept −4.873 0.817*** −6.042 0.956***

Female −0.039 0.067 −0.053 0.074

Desire for permanent residence −0.065 0.069 −0.006 0.114

Happier living in Mexico −0.113 0.077 0.107 0.296

Opinion of U.S. culture −0.021 0.039 0.069 0.038

Selective Mixing

Female 0.465 0.118*** 0.489 0.094***

Desire for permanent residence 0.271 0.085** 0.140 0.189

Happier living in Mexico 0.180 0.076* 0.027 0.294

Opinion of U.S. culture (Absolute value of difference between respondents) −0.147 0.059* −0.050 0.038

Triad Closure

GWESP 1.403 0.145*** 1.445 0.078***

Notes:

***
p<0.001,

**
p<0.01,

*+
p<0.05

GWESP = “Geometrically weighted shared partner distribution”
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Table 13

Summary of Overall Results

Variable U.S. sample Mexican sample

Transnationalism variables:

1. ERGM peer effects/homophily (Table 12) + 0

2. Peer effects/homophily + 0

3. Cross-border friend communication ~ +

4. All other communication variables 0 0

5. Network betweenness centrality 0 0

Assimilation variables:

6. Migration experience/returned migrants 0 +

7. English language ability ~ ~

“+” indicates significance in at least 2 of the 3 dependent variables.

“~” indicates significance in 1 of the 3 dependent variables.

Notes: All variables are from Table 10 (U.S. sample) and Table 11 (Mexican sample) except for the ERGM results in the first row. “Significance” 
means statistically significant at least at the p=.05 level.
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