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Abstract

In recently developed hierarchical age-period-cohort (HAPC) models, inferential questions arise: 

How can one assess or judge the significance of estimates of individual cohort and period effects 

in such models? And how does one assess the overall statistical significance of the cohort and/or 

the period effects? Beyond statistical significance is the question of substantive significance. This 

paper addresses these questions. In the context of empirical applications of linear and generalized 

linear mixed-model specifications of HAPC models using data on verbal test scores and voter 

turnout in U.S. presidential elections, respectively, we describe a two-step approach and a set of 

guidelines for assessing statistical significance. The guidelines include assessments of patterns of 

effects and statistical tests both for the effects of individual cohorts and time periods as well as for 

entire sets of cohorts and periods. The empirical applications show strong evidence that trends in 

verbal test scores are primarily cohort driven, while voter turnout is primarily a period 

phenomenon.

Social scientists often study time-specific phenomena for which there may be age, period, 

and/or cohort effects. Because age-period-cohort (APC) analysis has the capacity to depict 

the entire complex of social, historical, and environmental factors that shape individual life 

courses parsimoniously, it is important for constructing and refining theories of social 

change. One common goal of such analysis is to distinguish the unique effects associated 

with age, period, and cohort (Hobcraft, Menken, and Preston 1982). Attempts to estimate 

these effects, however, must address the model identification problem that occurs due to the 

exact linear dependency between the three variables: cohort = period – age. Thus, one 

cannot separately estimate them using conventional linear regression models without adding 

© The Author 2013.

Please direct correspondence to Steven M. Frenk, CB#8120, University Square, 123 West Franklin Street, Chapel Hill, NC 
27516-2524; phone: (919) 843-5548; frenk@live.unc.edu. 

An earlier version of this manuscript was presented at the Measurement and Models Session at the Annual Meeting of the American 
Sociological Association, San Francisco, CA (August 8–11, 2009) and at Demography Daze, a symposium of demographic research 
organized by the Carolina Population Center and the Duke University Population Research Institute, Durham, NC (July 14, 2012).

NIH Public Access
Author Manuscript
Soc Forces. Author manuscript; available in PMC 2014 November 10.

Published in final edited form as:
Soc Forces. 2013 ; 92(1): 221–248. doi:10.1093/sf/sot066.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



constraints to identify the model. A vast literature in demography, biostatistics, 

epidemiology, and sociology has used this general model with various sorts of constraints 

(Mason and Fienberg 1985; Mason and Wolfinger 2001; Mason et al. 1973; Kupper et al. 

1985), yet differences among the solutions often produce ambiguous and inconsistent 

results.

Beginning in 2000, new interest in APC models and methods has emerged in the social 

sciences to address this question (see special issue of Sociological Methods and Research 

[2008]; Yang et al. 2008). Statistics has continued to develop as a discipline since the 

Mason-Feinberg synthesis of 1985, and new statistical models and new computationally 

intensive estimation methods have been developed (i.e., mixed [fixed and random] effects 

models, Markov chain Monte Carlo methods). In addition, data sets with research designs 

that invite or even require the analysis of separate age, period, and cohort components of 

change are increasingly available.

One type is repeated cross-sectional surveys. It is composed of multiple waves of cross-

sectional surveys, which over time lead to the accumulation of data spanning several 

decades. Although the same respondents are not surveyed in each wave, by combining each 

survey wave together, one can produce synthetic cohorts, which trace the same groups of 

people from the same birth cohorts over a large segment of the life span (Mason and 

Fienberg 1985; Preston, Heuveline, and Guillot 2001). Recent methodological research has 

highlighted the opportunities they provide for examining cohort and period effects (Yang 

2006; Yang and Land 2006, 2008). One of their crucial features is that they provide a 

multilevel data structure (individuals are nested in a cross-classification of survey periods 

and birth cohorts) that allows researchers to specify a different family of models rather than 

conventional linear models composed of fixed and additive age, period, and cohort effects. 

These latter models are not only certain to produce the identification problem, but are a poor 

approximation to the process of social change.

Recently, a mixed effects modeling framework was developed for APC analysis that utilizes 

data from repeat cross-sectional surveys—the class of Hierarchical APC (HAPC) models 

(Yang 2006; Yang and Land 2006, 2008). The HAPC approach conceptualizes time periods 

and cohort memberships as social historical contexts within which individuals are embedded 

and ordered by age and models them as random as opposed to fixed effects additive to that 

of age. This contextual approach broadens the theoretical foundation of APC analysis, helps 

deal with (by completely avoiding) the identification problem, and also accounts for 

potentially correlated errors. In addition, mixed-model specifications are more statistically 

efficient, which is useful because repeated cross-sectional surveys produce highly 

unbalanced data (Yang and Land 2008, 321).1 HAPC mixed models also have 

parameterizations that produce estimates of period and cohort effects that are interpretable 

as effects that apply across all cohorts in the former case and across all periods in the latter; 

by comparison, the estimated partial regression coefficients of a HAPC fixed model must be 

1Sample respondents in a repeated survey design are cross-classified by cohort (arrayed in rows) and time period of observation 
(arrayed in columns). The number of observations in cells above the diagonal is not symmetric with those below the diagonal.
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transformed algebraically to produce estimates of such effects (Yang and Land 2008, 317–

18).2

The simplest form of model specification of a HAPC mixed model is that of a linear mixed 

effects model (LMM) (Yang and Land 2006). It consists of a two-level model: the level-1 

component is a regression of an individual-level outcome variable on a set of individual-

level explanatory variables (or covariates) with regression slope coefficients (fixed effects), 

a constant or intercept term, and an individual-level random error term. Level-2 models use 

level-1 regression coefficients as outcomes and contain intercepts and specifications of 

random effects of each cohort and time period distinguished in the model. The level-2 model 

may also contain cohort or time-period explanatory variables with fixed effect coefficients 

that are hypothesized to explain, at least in part, the cohort or period effects (Yang 2006). As 

formulated by Yang and Land (2006), a key feature of the HAPC approach to modeling age, 

period, and cohort effects is the recognition that an individual’s age is intrinsically an 

individual-level characteristic that each individual in a sample survey carries with him or 

her. On the other hand, an individual’s presence in a birth cohort or time period and the 

potential effects that such a presence can have on their outcomes may be best conceived, as 

emphasized by Ryder (1965), as group memberships and thus modeled as contextual effects. 

A second key feature is the recognition that time periods in a repeated cross-sectional survey 

design are not fully nested within cohorts and cohorts are not fully nested within time 

periods. Rather, one obtains a cross-classified structure with individuals nested within cells 

defined by birth cohorts and time periods.

The development of HAPC models provides a useful apparatus for modeling and estimating 

distinct age, period, and cohort effects in repeated cross-sectional survey. Several studies 

have already utilized these methods on topics ranging from the obesity epidemic (Reither, 

Hauser, and Yang 2009) to attendance at religious services (Schwadel 2010). In this context, 

however, the question arises: How can one assess or judge the significance of estimates of 

cohort and period effects in such models? This question may be addressed by examining the 

statistical significance of the estimated random effect for each individual cohort and time 

period in a study. But it may be the case that some cohorts have statistically significant 

effect coefficients and some do not, and the same may be true for the estimated period 

effects. In such a case, how does one assess the overall statistical significance of the cohort 

and/or the period effects? Beyond statistical significance is the question of substantive 

significance. It could be the case, for example, that most of the individual estimates of 

cohort or period effects are not statistically significant at a conventional level of significance 

but exhibit a substantively interesting trend or pattern that merits substantive interpretation.

This paper addresses these questions. In the context of empirical applications of linear and 

generalized linear mixed-model specifications of HAPC models, we describe a two-step 

2For brevity and simplicity we will use the terms “estimated period and cohort effects” or “estimated effect coefficients.” Other terms 
used in the general mixed-models statistical literature are “random effect estimates,” “residual estimates,” or “empirical Bayes 
estimates.” They are posterior estimates in the sense that they are not parameters estimated along with the covariate coefficients and 
random effect variance. Statistically, they are “shrunk” by a factor that depends on the number of observations in a particular cohort/
period and the size of the between-cell variances relative to the within-cell variance (see Demidenko 2004; Raudenbush and Bryck 
2002; or Snijders and Bosker 1999).
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approach and set of guidelines for assessing statistical significance. The guidelines include 

assessments of patterns of effects and statistical tests both for the effects of individual 

cohorts and time periods as well as for entire sets of cohorts and periods. This procedure and 

set of guidelines build upon a large body of literature on methods for hypothesis testing in 

mixed (fixed and random effects) models in statistics. We claim no originality for these 

general statistical methods. Rather, the contribution of this paper is to organize them into a 

set of methods specifically adapted to the features of HAPC models and to illustrate their 

application in the context of empirical analyses of two data sets widely used by social 

scientists—the General Social Survey (trends in verbal ability) and the American National 

Election Studies (trends in voter turnout in U.S. presidential elections). In addition to our 

presentation of a set of methods for hypothesis testing in HAPC models, substantive 

findings from the empirical applications clearly demonstrate the dominance of cohort effects 

in the former case and period effects in the latter and thus help resolve long-standing 

empirical questions and disputes in each case. The procedure and guidelines that are 

articulated and illustrated in these two empirical analyses can be readily adapted and applied 

more generally to other empirical APC analyses focused on outcomes of interest to social 

scientists (behaviors, beliefs, health outcomes, etc.).

Two Applications

Verbal Test Scores

The first application involves trends in verbal ability among American adults. A series of 

articles published in the American Sociological Review in 1999 center upon the existence of 

an inter-cohort decline in verbal ability in the General Social Survey. The debate was 

initiated by Alwin’s (1991) and Glenn’s (1994) finding of a long-term inter-cohort decline in 

verbal ability beginning in the early part of the twentieth century. Wilson and Gove (1999a) 

took issue with this finding and argued that the Alwin and Glenn analyses confused cohort 

effects with aging effects and ignored time-period effects. In response, Glenn (1999) and 

Alwin and McCammon (1999) disagreed that the decline in GSS vocabulary scores resulted 

solely from period influences and argued against the Wilson and Gove claim that cohort 

differences actually reflected only age effects—to which Wilson and Gove (1999b) 

responded by continuing to insist on the strength of the period effects. Yang and Land 

(2006) used hierarchical age-period-cohort models to provide better estimates of the effect 

of period and cohort on verbal test scores. Their findings led to the conclusion that there 

were significant cohort effects and only modest time-period effects. The cohort effects were 

bimodal, with an increase in verbal knowledge from the early 1900s to the 1940s and then 

declining until increasing again in the 1980s.

To further test whether the birth-cohort and time-period effects make statistically significant 

contributions to explained variance in an outcome variable—taken in their entirety as sets of 

effects, as opposed to individual period and cohort effects—a general linear hypothesis may 

be applied. Specifically, one can use an F-test to test the hypothesis of the presence of 

random effects. The sampling distribution of the F-statistic is exact when the random effects 

are independently distributed as normal random variables. This test statistic is preferred over 

the z-score when the sample sizes for random effects are small (Littell et al. 2006). The 
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statistical theory for such tests has been developed in a very general LMM context 

(Demidenko 2004).

How can one assess or judge the significance of estimates of cohort and period effects in 

such models? This question may be addressed by examining the statistical significance of 

the estimated effect coefficients for each individual cohort and time period in a study. But it 

may be the case that, say, some cohorts have statistically significant effect coefficients and 

some do not, and the same may be true for the estimated period coefficients. In such a case, 

how does one assess the overall statistical significance of the cohort and/or the period 

effects? Beyond statistical significance is the question of substantive significance. It could 

be the case, for example, that most of the individual estimates of cohort or period effects are 

not statistically significant at a conventional level of significance but exhibit an interesting 

trend or pattern that merits substantive interpretation.

Data

Data for this analysis come from 17 waves of the General Social Survey (1974–2006). The 

GSS is a nationally representative survey of non-institutionalized adults age 18 and older in 

the United States (Davis, Smith, and Marsden 2007). The GSS collects data on a wide 

variety of demographic characteristics, attitudes, and behaviors as well as a measure of 

respondents’ verbal vocabulary knowledge operationalized as a ten-item vocabulary scale. 

The scale serves as the outcome variable in our analysis. Age is transformed by centering it 

around the grand mean.3 Three other independent variables are included in the analysis: sex, 

race, and years of education (centered around cohort means).4 Birth cohort is measured in 

five-year intervals, and period is measured by year of the GSS wave. Table 1 reports the 

mean, central tendency, and range for all variables used in the analysis and gives a brief 

description of each measure. All models were estimated using SAS PROC MIXED.5

Analysis

Because the WORDSUM outcome variable has a relatively bell-shaped sample frequency 

distribution, it is reasonable to use an HAPC mixed-model specification that has a 

conventional normal-errors level-1 regression model. In the absence of evidence to the 

contrary, this level-1 model can be combined with a conventional normal period and cohort 

3An important decision in hierarchical modeling pertains to “centering” or choosing the location of the individual level (Raudenbush 
and Bryk 2002; Yang and Land 2006, 88). The choices include (a) using the natural metric of the variables [NM], (b) grand-mean 
centering by subtracting the complete sample or grand mean from the observed values [GMC], and (c) centering within subgroups or 
contexts [CWC]. When the minimum value of an explanatory variable does not include zero, as is the case of age (since the GSS 
sampling frame is for age 18 and over) in the model of equation (1), conventional methodological guidelines (Raudenbush and Bryk 
2002, 32) indicate that one of the latter two options should be used. Furthermore, the literature on the effects of age on vocabulary 
knowledge cites a pure physiological age effect that does not vary by cohort context (Wilson and Gove 1999a, 257–58). Thus, we 
apply centering around the grand mean to the individual-level age variable. For hierarchical models in which only the intercept but not 
the slopes are random at level 1, as is the case for the model of equations (1)–(3), Snijders and Bosker (1999, 81) show that all three of 
the NM, GMC, and CWC approaches lead to models that are statistically equivalent in terms of the parameterizations of the combined 
models. In fact, we found empirically in our analyses of the WORDSUM data that there is not a great deal of difference among 
estimated coefficients under the three different approaches (although there are some variations in terms of variance decompositions 
and fit statistics). Thus, in the absence of methodological guidelines that privilege one of the three alternatives, substantive-theoretical 
reasoning guided the choice of centering.
4Wilson and Gove (1999a, 255–56) argue that changing average levels of school years completed varies substantially across the 
cohorts survey in the GSS. Thus, education is centered around the cohort means.
5Cross-classified mixed models can be estimated by using HML 6 (Raudenbush et al. 2004) or other statistical software packages.
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residual effects specification at level 2.6 Specifically, after testing for the presence of cross-

level interactions of time periods and birth cohorts with individual-level covariates on the 

WORDSUM scores following standard multilevel modeling methods (see, e.g., Raudenbush 

and Bryk 2002; Snijders and Bosker 1999) and finding them insignificant, Yang and Land 

(2006, 87) specified the following Hierarchical Age-Period-Cohort-Cross-Classified 

Random Effects Model (HAPC-CCREM) with random effects of periods and cohorts on the 

intercept of the individual-level regression model:

Level-1 or “Within-Cell” Model:

(1)

Level-2 or “Between-Cell” Model:7

(2)

Combined Model:

(3)

for i = 1, 2, …, njk individuals within cohort j and period k;

j = 1, …, 20 birth cohorts;

k = 1, …, 17 time periods (survey years),

where, within each birth cohort j and survey year k, respondent i’s verbal score is modeled 

as a function of her/his age, age squared, educational attainment, and two covariates, gender 

and race, that have been found in previous research to be related to verbal ability. Since, in 

preliminary analyses, Yang and Land (2006) found that none of the level-1 slope 

6With the random errors at level 1 and the random effects at level 2 both assumed to be normally distributed, this model is a member 
of the class of Gaussian linear mixed models. This is the most widely used specification of LMM and is the standard specification 
applied in hierarchical linear model applications in the social sciences. However, statistical methods also have been developed for 
alternative models that assume that the random effects and errors are independent, or simply uncorrelated, but not normal (see Jiang 
[2007] for a review of these alternative models and methods). After estimation of a Gaussian LMM version of a HAPC model, at the 
“model diagnostics” phase of analysis, an analyst can apply various diagnostic plots and goodness-of-fit tests (Jiang 2007, 88–92) to 
assess the normality assumptions. If these diagnostics indicate substantial departures from normality of the errors or random effects 
and/or nonzero correlations thereof, then a non-Gaussian LMM should be specified and estimated in order to assess the robustness of 
the estimates from the Gaussian specification and possibly to replace them. For the empirical application to the WORDSUM data 
described here, the model diagnostics indicate that the Gaussian assumptions are acceptable.
7In mixed (fixed and random) effects linear or generalized linear regression models, the usual specification on the random effects—
the time periods and birth cohorts in the analyses in the paper—is that they are normally distributed with an expectation of zero. We 
use the term “usual” here because there are versions of mixed effects models that specify frequency distributions other than the normal 
for the random effects (e.g., Lee and Nelder 2006). However, it is the normal distribution assumption that is most common and that is 
programmed into the standard software for estimation of mixed effects models. And for most empirical applications it is adequate. 
Accordingly, it is the specification used in the analyses reported in the paper. Other than this distributional assumption, the estimated 
time-period and cohort effects are not constrained. Thus, for example, if the data indicated such, the estimates of the period effects 
could, perhaps with some stochasticity, line up pretty much in a downward-sloping linear trend. These estimated effects then would 
add a positive adjustment to the estimated intercept of the level-1 regression model in the early periods of a study, decreasing with 
each period until they hit zero or very close to zero, and then further decreasing and becoming negative such that they would adjust the 
estimated level-1 intercept down. Estimates of the cohort effects similarly could show a linear trend.
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coefficients exhibit significant random variation across cohorts and periods in the GSS 

verbal test score data, this random-intercepts model specification allows only the level-1 

intercept to vary randomly from cohort to cohort and period to period, but not the level-1 

slopes.

In this model, β0jk is the intercept or “cell mean,” that is, the mean verbal test score of 

individuals who belong to birth cohort j and are surveyed in year k at zero values of age and 

the covariates; β1…β5 are the level-1 fixed effects; eijk is the random individual effect, that 

is, the deviation of individual ijk’s score from the mean for cohort period jk; the eijk are 

assumed normally distributed with mean 0 and a within-cell variance σ2; γ0 is the model 

intercept, or grand-mean verbal test score of all sampled individuals at zero values of age 

and the covariates; u0j is the random effect of cohort j, that is, the contribution of cohort j 

averaged over all periods, on β0jk, assumed normally distributed with mean 0 and variance 

τu; and v0k is the random effect of period k, that is, the contribution of period k averaged 

over all cohorts, assumed normally distributed with mean 0 and variance τv, controlling in 

both cases for the effects of age and the covariates. In addition, at zero values of age and the 

covariates, β0j = γ0 + u0j is the cohort verbal test score mean, and β0k = γ0 + v0k is the period 

verbal test score mean.

Assessing the significance of estimated cohort and period effects

Table 2 reports the parameter estimates and model fit statistics for the HAPC-CCREM of 

equations 1–3 estimated on the 17 GSS repeated cross-section surveys.8 These results were 

obtained using the restricted maximum-likelihood-empirical Bayes (REML-EB) estimation 

method (Raudenbush and Bryk 2002: Chapters 3 and 12).9 Yang and Land (2006) gave 

detailed substantive interpretations of the coefficients and statistics reported in table 2. For 

present purposes, the key focus is on how one assesses and tests the statistical significance 

of the cohort and time-period effects reported in the table. We suggest a two-step approach.

Step 1: Study the Patterns and Statistical Significance of the Individual Estimated 
Coefficients for Time Periods and Birth Cohorts

As an initial step, the individual estimated period and cohort effects should be studied for 

both substantively meaningful patterns and statistical significance. This can be done in two 

parts.

Step 1.1: Graphically Plot the Estimated Cohort and Period Effect Coefficients

While the numerical values of the estimated cohort and period effects in table 2 contain the 

same information, as a first step in the analysis of their substantive and statistical 

significance, we recommend that analysts graphically plot the estimates. This facilitates a 

quick visual check of the extent to which the estimated effects exhibit patterns that are of 

8Model diagnostics (see endnote 3) indicated that the assumptions of a Gaussian linear mixed-model specification (normally 
distributed errors at level 1 and independently and normally distributed random effects at level 2) were acceptable for the WORDSUM 
data.
9The REML-EB estimation algorithm uses a restricted maximum likelihood estimator to estimate the fixed effects of a mixed effects, 
or multilevel, model and an empirical Bayes estimator to estimate the random effects.
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substantive significance. Particular periods or birth cohorts that stand out also may be 

identified.

Figure 1 contains graphs of the estimated cohort effects (i.e., the estimated β0j = γ0 + u0j 

cohort verbal test score effects averaged over all time periods for each cohort j) and the 

time-period effects (i.e., the estimated β0k = γ0 + v0k period verbal test score effects averaged 

over all cohorts for each time period k) with their 95-percent confidence bounds. Each graph 

also has a horizontal line at 6.175, the numerical value of the estimated γ0 or intercept 

coefficient reported in table 2. This line facilitates a visual inspection of those cohorts and 

time periods, if any, that have substantial deviations from the overall intercept.

With 20 and 17 data points, respectively, the 95-percent confidence bounds for the birth-

cohort and time-period effects are relatively broad. The pattern of the estimated time-period 

effects does not show much variability, with only the 1988 data deviating substantially from 

the overall average. By comparison, it can be seen that the estimated pattern of birth-cohort 

effects contains some fluctuations that are quite pronounced and relevant to substantive 

debates concerning historical trends in verbal ability (see Glenn 1999; Alwin and 

McCammon 1999; Wilson and Gove 1999a, 1999b). Specifically, there are peaks in the 

cohort effects for the 1940–1944, 1945–1949, and 1950–1954 War Babies and Early Baby 

Boomer birth cohorts followed by declining effects in subsequent cohorts. In addition, 

however, there is evidence of an early twentieth-century peak in cohort effects, specifically 

of the 1910–1914 and 1915–1919 birth cohorts. There also is a dip in the estimated effect for 

the 1905–1909 cohort.

Step 1.2: Examine the Statistical Significance of Individual Cohort and Period Effect 
Coefficients

Turning from visual and substantive assessments of estimated cohort and period effects, the 

next step is to examine the statistical significance of the individual effect coefficients for the 

birth cohorts and time periods—the estimates of the u0j and the v0k random effects with the 

null hypothesis in each case being that the respective coefficient is zero, that is:

If these null hypotheses are not rejected, this implies that the mean of the WORDSUM 

outcome variable for the jth time period or the kth cohort is no different than the overall 

average. The coefficients and their standard errors for the birth cohorts and time periods in 

table 2 were estimated by the REML-EB method, and their ratios can be interpreted as 

asymptotic/large sample t-ratios in the conventional way (Raudenbush and Bryk 2002, 57–

58).10

10“Asymptotic” is a term used to describe statistical estimators and hypothesis tests that are derived under assumptions of large 
samples as opposed to estimators and tests that are “exact” or apply for any sample size, including small samples of, say, 30 or fewer 
observations. Because some of the statistical estimators and tests described in this paper are exact and some hold only in large 
samples, we use the asymptotic term to identify the latter.
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As will often be the case with HAPC models, some cohorts and time periods may have 

statistically significant effects, as measured by t-ratios, while others do not. For instance, in 

table 2, the effect coefficients for the 1905–1909, 1915–1919, 1940–1945, 1945–1949, 

1950–1954, 1965–1969, and 1970–1974 cohorts are statistically significant at conventional 

levels, whereas those for the other cohorts are not. For time periods, only the effect 

coefficient for 1988 attains conventional levels of statistical significance.

These assessments of statistical significance of the individual cohort and period estimated 

coefficients are consistent with the graphical representations in figure 1. Given that the 

estimated cohort and period coefficients are displayed in the figure with their 95-percent 

confidence bounds, there is a correspondence between those cohort and period coefficients 

with asymptotic t-ratios that are statistically significant at the 0.05 level in table 2 and those 

for which the 95-percent confidence bounds do not cross the 6.175 horizontal line in figure 

1, that is, the 1905–1909, 1915–1919, 1940–1945, 1945–1949, 1950–1954, 1965–1969, and 

1970–1974 cohorts and the 1988 period. In general, however, even when none of the 

individual birth-cohort and time-period coefficients are statistically significant, it often is 

useful to examine graphically the patterns of each set of coefficients for trends that could be 

of substantive interest.

Step 2: Test for the Statistical Significance of the Period and Cohort Effects Taken as a 
Group

When some cohort and period effect coefficients attain statistical significance, but some or 

most do not, the analyst next may address the question of whether the birth-cohort and/or 

time-period effects, taken as a set, are statistically significant. This question is one of 

whether these effects, taken altogether, contribute to explained variance in the model.

Step 2.1: Deviance and Variance Components Analysis

First, study the model deviance statistic and variance components.11 In table 2, the bottom 

rows show that the deviance statistic is very large compared to the degrees of freedom of the 

model, thus indicating a highly significant association of the explanatory variables with the 

WORDSUM response variable. In addition, the variance components show that most of the 

variance in WORDSUM is the individual-level regressors at level 1. Level-2 variance 

components results indicate that variation by cohorts is statistically significant, whereas that 

for time periods is not. This variance component analysis based on z-scores is consistent 

with the results noted above for the individual cohort and period coefficients. That is, a 

sufficient number of estimated cohort effects are statistically significant for the cohort 

variance component to attain statistical significance. But, since only one of the time-period 

effects is statistically significant, the overall contribution of the random effects for time 

periods is not sufficiently large for its variance component to attain statistical significance.12

11The deviance is defined as minus twice the natural logarithm of the likelihood of an estimated model and can be regarded as a 
measure of lack of fit between model and data (see Raudenbush and Bryk 2002, 63–65; Snijders and Bosker 1999, 88–109).
12These conclusions are not changed if the level-1 model is specified with only the linear and quadratic age effects.
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Step 2.2: An F-Test for the Presence of Random Effects

The above results have been obtained using REML, which rests on the assumption that the 

error terms are asymptotic normally distributed, and yields random effect estimators with 

good large sample properties. When the number of level-2 units, in this case cohorts and 

periods, is not large, this assumption may not be appropriate. And the z-scores for the 

REML estimates of the variance components are only proximate.

To further test whether the birth-cohort and time-period effects make statistically significant 

contributions to explained variance in an outcome variable, a general linear hypothesis may 

be applied. Specifically, one can use an F-test to test the hypothesis of the presence of 

random effects.13 The sampling distribution of an F-statistic is exact when the random 

effects are independently distributed as normal random variables. This test statistic is 

preferred over the z-score when the sample sizes for random effects are small (Littell et al. 

2006).14 The statistical theory for such tests has been developed in a very general LMM 

context (Demidenko 2004).15

In the present case, for the CCREM model of equations (1)–(3), there are only two sets of 

random effect coefficients that are estimated, namely, the set of residual random effects of 

cohort j, u0j, and the set of residual random effects of period k, v0k. Each of these sets of 

random coefficients is assumed to be independently, normally distributed with mean 0 and 

variances τu and τv, respectively. Thus, for a CCREM model with random intercepts of the 

form of equations (1)–(3), the exact F-test amounts to testing null hypotheses for the 

relevance of either of the birth-cohort random effects:

(4)

or the time-period effects:

(5)

Alternatively, one can test for the joint relevance of both the cohort and period effects:

(6)

13The exposition presented here focuses on the F-test as an exact test when the numbers of estimated random effects are small and 
independent. An alternative is the likelihood ratio test statistic (Wasserman 2004, 299), the chi-squared asymptotic distribution of 
which has long been studied. Recently, however, Crainiceanu and Ruppert (2004) derived the finite sample distribution of likelihood 
ratio statistics in linear mixed models with one variance component, and Lu and Zhang (2010) proved an equivalence between the 
likelihood ratio and F-test for testing variance components in a balanced one-way random effects model. Accordingly, it is likely that 
likelihood ratio test equivalents to the F-test described here will be developed for all forms of linear and generalized linear mixed 
models in the near future.
14A reviewer suggested the use of an information criterion such as the Bayes Information Criterion (BIC) to ascertain which models 
among a set were best fitting. The BIC statistic is an approximation to the Bayes factor for assessing the posterior odds of one model 
as compared to another with an error of approximation that, for a reasonable choice of prior distributions, is on the order of the square 
root of the sample size (Raftery 1995). By comparison, the F-test is exact for the LMM when the random effects are Gaussian and 
thus applies to all sample sizes.
15Demidenko (2004, 138) noted that this F-test may be viewed as a generalization of F-tests previously developed for variance 
components models and for mixed effects models with one random effect.
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These null hypotheses correspond to situations, respectively, in which the levels of variation 

in the cohort effects, the period effects, and the cohort and period effects taken together do 

not differ significantly from zero.

The results of the F-tests for hypotheses (4)–(6) for the GSS data are summarized in table 3. 

Consider the case of the null hypothesis (4), in which the birth-cohort effects are not 

relevant to explaining variation in the verbal test score outcome variable of equations (1)–

(3). The idea of the F-test is that, when the variance of the random birth-cohort effects τu = 

0, the difference between the minimum sum of squares (SS) of the model (1)–(3) with 

random cohort and period effects, Smin, and the minimum sum of squares without the 

random effects, as estimated by an ordinary least squares (OLS) regression on the level-1 

explanatory variables, SOLS, should be close. Accordingly, we compute the residual SS:

(7)

for an ordinary fixed effects regression model that assumes no random effects of cohorts or 

time periods. Next, the minimum sum of squares in the presence of the random effects, i.e., 

the minimum:

(8)

where the matrix W consists of the matrix X of data points on the individual-level 

explanatory variables adjoined with a design matrix Z for the random cohort effects, i.e., W 

= [X, Z], and δ = (β',u'0)'. In this example, SOLS = 69,377 and Smin = 68,696. Under the null 

hypothesis (4), it can be shown that the ratio of two quadratic forms has an F-distribution, or 

more precisely:

(9)

where NT denotes total sample size, r is the rank of the matrix W, and m is the number of 

explanatory variables in the OLS regression (Demidenko 2004, 137). When random cohort 

effects are present in an LMM model, such as equations (1)–(3), i.e., when τu is nonzero, 

Smin should be relatively small so that the ratio (9) becomes large. Thus, we reject the null 

hypothesis (4) if the left-hand side of (9) is large. More precisely, let 1 – α be a chosen 

significance level, e.g., α = 0.05, and f0.95 be the quantile of the F-distribution with r – m 

and NT – r degrees of freedom. Then the H0 is rejected when the ratio in (9) exceeds f0.95.

To apply the F-test (9) to models (1)–(3), note first that, under the assumption that the 

explanatory variables in the X matrix are linearly independent, the rank of X is m, the 

number of explanatory variables, five in this case. In addition, since individuals in the 

pooled GSS data may be members of different birth cohorts, the columns of the design 

matrix Z for the random effects will be linearly independent and thus have rank 20. 

Therefore, in the numerator of (9), r = 25 and m = 5, which gives r – m = 20 degrees of 

freedom. In the denominator, NT – r = 22,042 – 25 = 22,017. Under the null hypothesis (4) 
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that the cohort effects have zero variance in the GSS verbal test score analysis, the F-ratio is 

10.9. With 20 and 22,017 degrees of freedom, this far exceeds the critical value f0.95 = 

1.571. The corresponding F-ratio for hypothesis (5) of period effects is 2.03, which also 

exceeds the critical value of 1.623. Thus, we reject the null hypotheses that the variance of 

either the birth-cohort random effects or the period random effect is zero and conclude that 

inclusion of these sets of random effects is relevant to the explanation of variation of the 

GSS verbal test score data. In addition, the F-test can be applied to the sets of random effect 

coefficients taken as a whole, i.e., to test the null hypothesis (6). In this case, the Z matrix is 

expanded to include both u'0 and v'0, which changes the rank of W to 42 (= 5 + 20 + 17). The 

F-ratio is 7.096, which is significant at the 0.05 level.

The foregoing analyses indicate that there is evidence that the two sets of random effects 

taken together contribute significantly to the explained variance. Note that the z-score 

reported in table 2 for the variance component for period effects is 1.49 (p = 0.135), 

indicating the failure to reject the null hypothesis of zero variance for the period coefficients. 

The F-tests described here indicate the opposite, that is, that the period effects contribute 

significant variability that should not be ignored in the model. Because there are only a few 

levels of the period random effects, the F sum of squares method is a more statistically 

sensitive method for testing hypotheses about the variance components than the z-score 

method. In particular, the F-tests typically will indicate statistical significance of either the 

cohort or period effects, taken as a whole, when at least one of the members of these sets of 

effects is statistically significant, as is the case for the estimated period effects reported in 

table 2.

Voter Turnout in Presidential Elections

The second application involves trends in voter turnout in U.S. presidential elections. 

Previous studies have examined how age, period, and cohort affects voter turnout and have 

used these findings to explain the overall decline in voter turnout since the 1950s. Although 

many studies have established the importance of age as a major factor in voter turnout (see 

Wolfinger and Rosenstone 1980, 37), the effects of cohort and period are less settled. Using 

the Current Population Surveys (November edition) to gather data on voter turnout from the 

1968–1980 elections, Land, Hough, and McMillen (1986) found that variation in turnout 

was driven by individual-level factors rather than time-related variables such as period and 

cohort. Thus, they attribute the decline in voter turnout to the population aging past the age 

at which turnout is most likely (i.e., mid-60s). Other studies, however, have found 

significant cohort effects. Using data from pooled cross-sectional surveys, Lyons and 

Alexander (2000) claim that generational effects can explain much of the decline in voter 

turnout. Using qualitative cutoff points to generate two cohorts (i.e., respondents born before 

and after 1932), they find that those born before 1932 are more likely to vote than people 

born after 1932. In addition, they find that survey year (period) did not affect turnout. Based 

on these findings, the authors posit that efforts to increase voter turnout should focus on 

combating the “radical individualism” of recent cohorts and less on structural voting reforms 

such as motor-voter laws. Despite the focus on only two cohorts, the authors are confident of 

the impact of generations on voter turnout and state—“While it is statistically impossible to 

isolate a pure generational effect, it is certainly significant and substantial” (Lyons and 
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Alexander 2000, 1031)—and thus argue that generational effects should be included in 

models examining voter turnout.

These analyses lacked the ability to measure age, period, and cohort effects without 

addressing the identification problem described in the introduction. We estimate an HAPC 

model that includes covariates found to be significant in prior voter-turnout studies in order 

to assess the effect of cohort and period on voter turnout. To further test whether the birth-

cohort and time-period effects make statistically significant contributions to explained 

variance, an F-test will test the hypothesis of the presence of random effects.

Data

Data for this analysis come from the American National Election Studies (ANES) conducted 

by the Center for Political Studies at the University of Michigan (ANES 2012). The ANES 

surveys a nationally representative sample of the U.S. adult population and collects 

information on respondents’ demographic characteristics, socioeconomic status, and voting 

behavior. These surveys have been conducted during presidential and midterm elections 

since 1948, but for our analysis only data from surveys conducted during the 1976 to 2008 

presidential elections are used.16

Our outcome variable is a dichotomous measure of whether respondents reported that they 

voted in the U.S. presidential election (1 = yes). Age is centered around the grand mean, and 

five-year cohorts are used. Demographic characteristics and factors found in prior research 

to be associated with voter turnout in presidential elections are included in the model 

(Squire, Wolfinger, and Glass 1987; Wolfinger and Rosenstone 1980; Wolfinger and 

Wolfinger 2008). These variables include sex, race, education, marital status, and residential 

mobility (i.e., the length of time respondents have lived in their current dwelling). Table 1 

reports the mean, central tendency, and range for all variables used in the analysis and gives 

a brief description of each measure. All models were estimated using SAS PROC 

GLIMMIX.

Analysis

The HAPC approach to modeling age, birth-cohort, and time-period effects developed by 

Yang and Land (2006) is not restricted to applications to outcome variables that have 

relatively bell-shaped frequency distributions and can be modeled by a Gaussian LMM 

model specification. Rather, the HAPC approach can be applied to dichotomous and 

multiple categorical outcome variables. For such outcome variables, the HAPC framework 

takes the form of generalized linear mixed model (GLMM) specifications. Our suggested 

approach to testing for the statistical significance of the random effects again has two steps.

To model the likelihood of voter turnout, we specify the following HAPC-GLMM model:17

Level 1 or “Within-Cell” Model:

16Data on residential mobility, one of the covariates included in the analysis, were available only in the pre-election surveys covering 
the 1976–2008 presidential elections.
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(10)

Level 2 or “Between-Cell” Model:

(11)

COMBINED MODEL:

(12)

for i = 1, 2, . . ., njk individual within cohort j and period k;

j = 1, . . ., 19 birth cohorts;

k = 1, . . ., 9 time periods (presidential elections).

Based on supplementary analyses, this HAPC-GLMM model again specifies that the 

random effects of birth cohorts and election time periods affect the overall intercept of the 

level-1 model but not the slope coefficients.

Model (10)–(12) differs from model (1)–(3), however, in that its level-1 model is specified 

in terms of the logit of the probability of voting in a presidential election (p) modeled as the 

log-odds of voting, logit(p) = log[p/(1-p)], i.e., as a logistic response function. This moves 

the HAPC-CCREM model from the LMM family of statistical models into the GLMM 

family.18

Table 5 reports parameter estimates and model fit statistics for model (10)–(12) estimated on 

the nine ANES repeated cross-sectional surveys (1976–2008). Many of the individual-level 

explanatory variables have highly statistically significant slope coefficients. Likelihood of 

voting increases with age, but the effect is curvilinear. Specifically, the effect of age reaches 

its peak during the respondents’ mid-60s, when people are the most likely to vote, and then 

declines afterward. As found in previous research, more highly educated respondents as well 

17As indicated earlier in our LMM analysis of the GSS WORDSUM data, prior to assessing the substantive and statistical 
significance of estimated coefficients, preliminary model specification analyses should be performed. Additional analysis of the 
WORDSUM and TURNOUT data that examined whether statistically significant effects of time periods or birth cohorts on the 
individual-level slope coefficients of the level-1 regression model exist were performed. None were found for the WORDSUM data 
and for the TURNOUT data, none of the interactions with the level-1 slope coefficients affected the results, and thus only the 
estimates of effects of periods and cohorts on the level-1 intercepts are examined here.
18Estimation of a GLMM model is slightly more complicated than that of an LMM, but REML estimators still can be applied and 
were estimated via the GLIMMIX procedure available for SAS 9.1 (2005). Note that, as in the case of the Gaussian LMM version of 
the HAPC-CCREM of model (1)–(3), model (10)–(12) assumes normally distributed random effects. After model estimation, 
diagnostics also can be performed on GLMM versions of the HAPC-CCREM model to assess the applicability of the normal random 
effects specification. If this specification appears problematic, alternative model specifications, such as the hierarchical-likelihood-
based generalized linear models of Lee and Nelder (1996), which permit alternative distributional assumptions on the random effects, 
can be used.
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as those who are currently married are more likely to vote. Increased time of living in one’s 

current dwelling (i.e., apartment, house) increases the likelihood of voting.

Beyond the effects of the individual-level covariates of this model, what is interesting about 

the estimates in table 5 is that, as contrasted to those for the GSS verbal test score data 

described above, of the two sets of effects, period effects are more relevant to the 

explanation of voter turnout than are birth-cohort effects, as measured by contributions to 

explained variance. Yet, as the F-test indicates, birth cohort cannot be discounted as an 

explanation of voter turnout.

Assessing significance of cohort and period effects in HAPC-GLMM models

To reach this conclusion, we apply the same sequence of graphical displays and statistical 

tests of significance as identified above for the LMM form of the HAPC-CCREM model.

Step 1: Study the Patterns and Statistical Significance of the Individual Estimated 
Coefficients for Time Periods and Birth Cohorts

As an initial step, the individual estimated period and cohort effects should be studied for 

both substantively meaningful patterns and statistical significance. This can be done in two 

parts.

Step 1.1: Graphically Plot the Estimated Cohort and Period Effect Coefficients

As was the case for the estimated random effects of time periods and cohorts in LMM 

HAPC models, a first step is to examine graphical displays of the patterns of the effects. 

These may reveal substantively interesting patterns and/or effects of particular periods or 

birth cohorts that stand out.

Figure 2 contains graphs of the estimated cohort effects (i.e., the estimated β0j = γ0 + u0j 

cohort voting effects averaged over all time periods for each cohort j and converted to 

probabilities of voting) and the time-period effects (i.e., the estimated β0k = γ0 + v0k election 

period voting effects averaged over all cohorts for each time period k and converted to 

probabilities of voting) with their 95-percent confidence bounds.19 The graphs also have a 

horizontal line at 0.15, the transformed value of the intercept of the regression model given 

in table 5 and which, when multiplied by 100, is the grand-mean probability of voting of all 

sampled individuals at zero values of age and the covariates. With nineteen and nine 

observations, respectively, the 95-percent confidence bounds for the birth cohort and time 

period are relatively broad. In contrast to what was observed above for the WORDSUM 

cohort estimates in figure 1, the pattern for estimated birth-cohort effects in figure 2 is 

relatively constant except for a dip with the 1955–1959 cohort (Baby Boomer) followed by a 

modest increase with subsequent cohorts (1975–1979, 1980–1984, 1985–1990). The graph 

19The general formula for conversion of logit regression coefficients to coefficients for the probability that the outcome of the 
regression Y = 1, voting in a presidential election in the present case, is Probility(Y = 1) = (exp (α + β1X1 + β2X2 + … + βK XK ) / 1 + 
exp (α + β1 + β2 + … + βk XK ) where K is the number of regressors (see, e.g., Menard 2010, 15). This formula was applied to the 
estimated intercept term in table 5 to convert it to an estimated overall probability of voting in a presidential election and then adapted 
to convert the corresponding estimates of 95-percent confidence intervals, as shown in figure 2.
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of the estimated election time-period effects shows one pronounced decline in likelihood of 

voter turnout with the 1988 election, followed by a small increase with the 2008 election.

Step 1.2: Examine the Statistical Significance of Individual Cohort and Period Effect 
Coefficients

Of the individual estimated random effect coefficients for birth cohorts and election periods 

given in table 5, it can be seen that the 1955–1959 birth cohort has a t-ratio that is 

statistically significant at the α = 0.10 level. The time-period coefficient for the 1988 

election is also significant at this level.

Step 2: Test for the Statistical Significance of the Period and Cohort Effects Taken as a 
Group

As in the analysis of the HAPC-LMM model for the verbal test score data described above, 

when some cohort and period effect coefficients in a HAPC-GLMM model attain statistical 

significance, but others do not, the analyst should address the question of whether the birth 

cohort and/or time period effects, taken as a set, are statistically significant.

Step 2.1: Deviance and Variance Components Analysis

As was the case for the GSS verbal test score data, the deviance statistic reported at the 

bottom of table 5 shows that the full GLMM model explains much variance in the voter-

turnout outcome variable. In contrast to the verbal test score example, however, the variance 

component analysis indicates that the period random effect coefficients make a statistically 

significant contribution to explaining voter turnout.

Step 2.2: F-Test for the Presence of Random Effects

The model of equations (10)–(12) is that of a logistic regression model with a random 

intercept. Demidenko (2004, 374–75, 408–9) shows that the F-test (9) can be generalized to 

develop an asymptotic F-test of the null hypothesis that the intercepts are constant or 

homogeneous in a logistic regression model with random intercepts. We next describe and 

apply this test.

To generalize the F-test (9) and to specify the homogeneity test of Demidenko (2004, 374–

75, 408) to GLMM formulations of HAPC-CCREM models, recall that the deviance 

statistic, twice the negative log-likelihood function, l, asymptotically behaves as the sum of 

squares (McCullagh and Nelder 1989). Given this, S in the test statistic (9) can be replaced 

by −2l to obtain

(13)

where l0 is the maximum of the log-likelihood of the standard level-1 logistic regression 

model with no level-2 controls for cohort and period effects, lmax is the maximum of the log-

likelihood treating the cohort and period effects as fixed parameters,20 and, as in (9), NT 

denotes total sample size, r is the rank of the matrix W, and m is the number of explanatory 

variables in the level-1 model.
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To apply the asymptotic F-test (13) to the ANES voter turnout model (10)–(12), note that m 

= 7, the number of explanatory variables in the level-1 logistic regression model, and r = 35 

= m + the number of birth cohorts + the number of election time periods = 7 + 19 + 9. Then 

the value of the F-ratio for the statistical significance of the birth-cohort effects alone is

that for the statistical significance of the period effects alone is

and that for the statistical significance of cohorts and periods together is

Numerical details for these F-tests for hypotheses (4)–(6) for the ANES data are given in 

table 6.

The foregoing analysis indicates that there is evidence that the two sets of random effects 

taken together contribute significantly to the explained variance. The F-scores reported in 

table 6 indicate the ability to reject the null hypothesis of zero variance for the cohort and 

period effects. The incorporation of election time-period and birth-cohort random effects 

into the model produces statistically significant variation in the level-1 model intercepts. In 

addition, the incorporation of both sets of effects produces a statistically significant F-ratio.

Discussion

We have described a two-step approach to testing the statistical significance of random 

birth-cohort and time-period effects in the class of Hierarchical Age-Period-Cohort models 

introduced by Yang and Land (2006). This approach focuses first on the examination of the 

statistical and substantive significance of estimates of individual time-period and cohort 

effect coefficients and second on assessing the contributions of the period and cohort effects 

as a set to explained variance in the outcome variable. It moves in four sub-steps from (1) 

graphical displays of the estimated random effects of individual cohort and period effects to 

(2) the examination of the statistical significance of the estimated individual cohort and 

period effects to (3) a variance components analysis of the statistical significance of each of 

the individual sets of cohort and period effects to (4) formal F-tests for null hypotheses of 

homogeneity of the sets of estimated cohort and period random effects individually and 

jointly. Empirical examples used for illustrating this strategy came from both the Linear 

Mixed Effects and Generalized Linear Mixed Models families of statistical models.

20Demidenko (2004, 54–55) shows that a fixed effects model that treats the random effects as fixed corresponds to a random effects 
model with infinite covariance matrix. Thus, lmax is an upper-bound estimate for the sum of squares of the mixed model.
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Verbal Knowledge

When taking into account all of the foregoing assessments of individual coefficients and sets 

of coefficients, it must be concluded that, while there is evidence of statistical significance 

of one time-period effect, and while this is sufficient to conclude that the period effects 

make a statistically significant contribution to explained variance, the dominant explanation 

on trends in verbal ability, as measured by the GSS WORDSUM data, is a cohort as 

opposed to a period one. That is, net of the effects of individual-level covariates in 

accounting for trends in individuals’ verbal test scores, cohort effects are much more 

prominent than period effects and researchers should indeed study cohort-based 

explanations for these trends (Alwin 2008, 2009; Alwin and McCammon 1999; Glenn 

1999).21

Voter Turnout

This analysis confirms the importance of age as a factor in explaining voter turnout and also 

clarifies the effects of cohort and period on voter turnout. In contrast to Lyons and 

Alexander (2000), we find only modest evidence that birth cohorts affect voter turnout. 

Individual cohorts showed little variation, with only a single cohort (1955–1959) reaching 

statistical significance. Yet, the F-test did reveal that birth cohorts improve the fit of the 

model. The HAPC model as well as the F-test found that period had a significant effect on 

voter turnout. These findings suggest that attempts to explain voter turnout by focusing 

exclusively on birth cohorts may miss the contributions of period, and in turn, structural 

factors. Additional analyses can be utilized to test hypotheses about the underlying 

mechanisms behind the cohort and period findings. This could include random coefficient 

models to determine variation in how social factors (i.e., residential mobility, marital status) 

and contextual factors (i.e., unemployment rate, amount spent on political television ads) 

affect voter turnout across birth cohorts or periods. Results from these analyses could be 

used to cultivate a more nuanced explanation of why voter turnout has declined and thus 

develop more precise initiatives to increase voter turnout.

Conclusion

HAPC models have been identified as one way to circumnavigate the identification problem 

that arises when researchers attempt to assess age, period, and cohort effects using repeated 

cross-sectional surveys. This paper provides guidelines for assessing the significance of the 

effects generated by these models and also an F-test to further determine the overall 

contribution of cohort and period effects to the model. By applying these guidelines and the 

F-test to two dissimilar outcome variables (verbal knowledge and voter turnout), we have 

provided evidence of the wide-ranging potential use of these models to social scientists 

engaged in research on a variety of topics.

21Alwin (1991, 2008, 2009) has consistently argued that, because vocabulary knowledge is acquired first via schooling and then 
gradually during the life course, the action in the vocabulary test data is in the cohorts. Prior to the development of HAPC models and 
the careful and detailed applications of statistical tests for the significance of effect coefficients and sets of effect coefficients 
described in this paper, however, no prior studies have assessed this argument in the context of statistical models that fully incorporate 
all three sets of effects (age, periods, cohorts). The main substantive inferences from the results reported here provide strong statistical 
evidence for Alwin’s position.
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Figure 1. 
Estimated Cohort and Period Effects and 95-Percent Confidence Bounds for GSS Verbal 

Ability Model
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Figure 2. 
Estimated Cohort and Period Effects and 95-Percent Confidence Bounds for ANES Voter 

Turnout Model
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Table 2

HAPC-CCREM Model of the GSS WORDSUM Data, 1974–2006

Fixed effects Coefficient se t-ratio p-value

INTERCEPT 6.175 0.055 112.50 < .001

AGE 0.026 0.015 1.71 .087

AGE2 −0.057 0.005 −11.87 < .001

FEMALE 0.229 0.024 9.49 < .001

BLACK −1.030 0.034 −30.07 < .001

EDUCATION 0.366 0.004 86.57 < .001

Random effects

Cohort Coefficient se t-ratio p-value

1894 −0.210 0.142 −1.48 0.140

1895 −0.114 0.123 −0.93 0.353

1900 −0.051 0.104 −0.49 0.625

1905 −0.294 0.090 −3.27 0.001

1910 0.021 0.081 0.26 0.797

1915 0.163 0.073 2.22 0.027

1920 −0.079 0.068 −1.15 0.249

1925 0.083 0.068 1.23 0.220

1930 0.001 0.067 0.01 0.990

1935 0.068 0.064 1.06 0.289

1940 0.240 0.061 3.91 < .001

1945 0.447 0.060 7.50 < .001

1950 0.184 0.059 3.10 0.002

1955 −0.035 0.061 −0.57 0.568

1960 0.002 0.065 0.04 0.970

1965 −0.157 0.071 −2.20 0.028

1970 −0.135 0.080 −1.70 0.090

1975 −0.001 0.092 −0.01 0.990

1980 0.062 0.112 0.55 0.583

1985 −0.195 0.146 −1.34 0.180

Period

1974 0.033 0.043 0.77 0.442

1976 0.060 0.043 1.41 0.158

1978 −0.002 0.042 −0.04 0.967

1982 −0.014 0.040 −0.36 0.718

1984 0.016 0.042 0.37 0.709

1987 −0.061 0.040 −1.52 0.129

1988 −0.128 0.046 −2.76 0.006
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Fixed effects Coefficient se t-ratio p-value

Fixed effects Coefficient se t-ratio p-value

1989 −0.061 0.046 −1.34 0.182

1990 0.020 0.047 0.43 0.670

1991 0.042 0.046 0.92 0.358

1993 −0.004 0.045 −0.09 0.926

1994 0.019 0.039 0.49 0.623

1996 −0.060 0.039 −1.52 0.128

1998 0.044 0.043 1.02 0.306

2000 0.005 0.043 0.11 0.915

2004 0.038 0.043 0.88 0.381

2006 0.052 0.045 1.16 0.247

Variance components Variance se z-statistic p-value

Cohort 0.034 0.013 2.56 .010

Period 0.005 0.003 1.49 .135

Individual 3.116 0.030 104.87 < .001

Deviance 87707.2 df = 21,999
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Table 3

F-Tests for the Presence of Random Effects, GSS WORDSUM Data

Cohort effects
τu = 0 vs. τu > 0

Period effects
τv = 0 vs. τv > 0

Cohort and period
effects τu = τv = 0
vs. τu or τv > 0

SOLS 69,377 69,377 69,377

Smin 68,696 69,268 68,558

R 25 22 42

M 5 5 5

NT 22,042 22,042 22,042

(SOLS − Smin) / (r − m) 34.05 6.41 22.14

Smin / (NT − r) 3.12 3.15 3.12

F 10.9 2.03 7.096

f0.95(r − m, NT − r) 1.571 1.623 1.411
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Table 5

HAPC-GLMM Model of the ANES Voter Turnout Data, 1976–2008

Fixed effects Coefficient se t-ratio p-value

Intercept −1.774 0.110 −16.18 < 0.001

AGE 0.023 0.002 14.05 < 0.002

AGE2 −0.001 0.0001 −7.66 < 0.003

MALE 0.003 0.0001 0.06 0.951

BLACK 0.115 0.061 1.9 0.058

EDUCATION 0.942 0.03 31.46 < 0.001

MARRIED 0.47 0.046 10.11 < 0.001

MOBILITY 0.262 0.02 13.32 < 0.001

Random effects

Cohort Coefficient se t-ratio p-value

1899 −0.07 0.081 −0.87 0.385

1904 −0.043 0.079 −0.55 0.583

1909 0.029 0.075 0.38 0.701

1914 0.051 0.072 0.71 0.478

1919 0.049 0.07 0.7 0.486

1924 0.046 0.068 0.68 0.494

1929 0.057 0.067 0.85 0.397

1934 0.046 0.068 0.67 0.5

1939 0.024 0.066 0.37 0.713

1944 −0.008 0.063 −0.13 0.9

1949 −0.042 0.06 −0.71 0.48

1954 −0.052 0.057 −0.91 0.364

1959 −0.103 0.056 −1.83 0.067

1964 −0.024 0.059 −0.41 0.683

1969 −0.066 0.065 −1.01 0.311

1974 −0.032 0.069 −0.47 0.642

1979 0.035 0.074 0.47 0.639

1984 0.007 0.077 0.09 0.93

1990 0.096 0.08 1.2 0.229

Period

1976 0.09 0.063 1.42 0.156

1980 0.017 0.067 0.25 0.799

1984 0.077 0.063 1.22 0.224

1988 −0.183 0.064 −2.86 0.004

1992 0.078 0.062 1.25 0.212

1996 −0.082 0.068 −1.21 0.227
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Fixed effects Coefficient se t-ratio p-value

Fixed effects Coefficient se t-ratio p-value

2000 −0.077 0.069 −1.11 0.266

2004 −0.01 0.076 −0.13 0.897

2008 0.091 0.068 1.33 0.182

Variance components Variance se z−statistic p-value

COHORT 0.008 0.008 0.88 0.188

PERIOD 0.013 0.008 1.51 0.066

Model fit

-2 Res Log Pseudo-Likelihood 65678.03 df = 13474
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Table 6

F-Tests for the Presence of Random Effects, ANES Voter Turnout Dataa

Cohort effects
τu = 0 vs. τu > 0

Period effects
τv = 0 vs. τv > 0

Cohort and period effects
τu = τv = 0 vs. τu or τv > 0

l0 12,934 12,934 12,934

lmax 12,896 12,901 12,867

R 26 16 35

M 7 7 7

NT 13,508 13,508 13,508

(l0 − lmax)/(r − m) 2.00 3.67 2.39

lmax/(NT − r) 0.96 0.96 0.96

F 2.09 3.83 2.51

f0.95 (r − m, NT − r) 1.59 1.88 1.48
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