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Abstract
Fixed and random effects models for longitudinal data are common in sociology. Their primary
advantage is that they control for time-invariant omitted variables. However, analysts face several
issues when they employ these models. One is the uncertainty of whether to apply the fixed effects
(FEM) versus the random effects (REM) models. Another less discussed issue is that the FEM and
REM models as usually implemented might be insufficiently flexible. For instance, the effects of
variables, including the latent time-invariant variable, might change over time rather than be
constant as in the usual FEM and REM. The latent time-invariant variable might correlate with
some variables and not others. Lagged endogenous variables might be necessary. Alternatives that
move beyond the classic FEM and REM models are known, but they involve different estimators
and software that make these extended models difficult to implement and to compare. This paper
presents a general panel model that includes the standard FEM and REM as special cases. In
addition, it provides a sequence of nested models that provide a richer range of models that
researchers can easily compare with likelihood ratio tests and fit statistics. Furthermore,
researchers can implement our general panel model and its special cases in widely available
structural equation models (SEMs) software. The paper is oriented towards applied researchers
with most technical details given in the appendix and footnotes. An extended empirical example
illustrates our results.

Introduction
Longitudinal data are more available today than ever before. The National Longitudinal
Study of Youth (NLSY), National Longitudinal Study of Adolescent Health (Add Health),
Panel Study of Income Dynamics (PSID), and National Education Longitudinal Study
(NELS) are just a few of the more frequently analyzed panel data sets in sociology. The
relative advantages of longitudinal data compared to cross-sectional are well-known
(Baltagi, 2005:4–9; Halaby 2004) and panel data are permitting more sophisticated analyses
than were previously available.

In sociology two common models for such data are referred to as the random effects model
(REM) and fixed effects model (FEM) (Allison 1994; Guo and Hipp 2004). Indeed, a
number of articles have made use of the FEM or REM in sociology (e.g., Nielsen and
Hannan, 1977; Nielsen, 1980; Kilbourne, England, Farkas, Beron, and Weir, 1994;
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Alderson, 1999; Alderson and Nielsen, 1999; Conley and Bennet 2000; Mouw, 2000;
VanLaningham, Johnson, and Amato, 2001; Budig and England, 2001; Wheaton and Clarke,
2003; Teachman, 2004; Yakubovich, 2005; Beckfield 2006; Brand, 2006; Matsueda,
Kreager, and Huizinga, 2006; Shauman and Noonan, 2007). A major attraction of these
models is that they provide a way to control for all time-invariant unmeasured (or latent)
variables that influence the dependent variable whether these variables are known or
unknown to the researcher. Given the likely presence of such omitted variables, this is a
major advantage. The REM assumes that the omitted time-invariant variables are
uncorrelated with the included time-varying covariates while the FEM allows these variables
to freely correlate (Mundlak, 1978). The REM has the advantage of greater efficiency
relative to the FEM leading to smaller standard errors of coefficients and higher statistical
power to detect effects (Hsiao 2003). A Hausman (1978) test enables researchers to
distinguish between the REM and FEM. Statistical software for REM and FEM is readily
available (e.g., xtreg in Stata and Proc GLM, Proc Mixed in SAS).

Despite the many desirable features of the REM and FEM for longitudinal data, they are
limited by the way sociologists typically use them. First, there appears to be confusion over
when to use the REM versus FEM. Halaby (2004) reviews a number of panel studies from
sociology and concludes that many studies “ignore the issue of unobserved unit effects
altogether, or they recognize such effects but fail to assess and take steps to deal with their
correlation with measured covariates” (p.520).

Researchers sometimes take false comfort in the use of the REM in that it does include a
latent time-invariant variable (“individual heterogeneity”) without realizing that biased
coefficients might result if the observed covariates are associated with the latent time-
invariant variable. Second, there are restrictions imposed in the usual estimation of FEM and
REM that might not make substantive sense in sociological applications. For instance, both
the usually implemented FEM and REM assume that the coefficients of the same covariate
remain equal and the error variances of equations are equal across all waves of data.1 If
individuals pass through major life course transitions during the time period of the study
(e.g., actively employed to retired or adolescence to adulthood), these assumptions of stable
effects could be invalid. So in an analysis of say, income’s effect on conservatism, a
standard model forces the impact of income on conservatism to remain the same across all
waves of data. Similarly, the impact of the latent time-invariant variable on the outcome
variable is assumed to be stable across all waves of data.

Another constraint in the standard models is that the latent time-invariant variables are either
free to correlate with all time-varying covariates as in the FEM or they must be uncorrelated
with all covariates as in the REM. Even with strong prior evidence that some correlations
are zero and some are not, the usual models result in just two choices, freely correlated or all
uncorrelated. Incorrectly assuming that the latent time-invariant variable is uncorrelated with
the observed covariates is likely to bias estimates. Unnecessarily estimating zero
correlations as in the usual FEM uses up degrees of freedom and can increase asymptotic
standard errors.

Yet another implicit constraint in the usual models is that the lagged dependent variables
have no effects. In some areas, prior values of the dependent variable influence current
values even net of other variables. Last year’s income, for example, might influence this
year’s income net of control variables, so it would be helpful to include lagged income as an

1As we mention below, there are methods of handling time-specific coefficients for the time-varying covariates, but this issue is
seldom examined in practice.
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explanatory variable. Furthermore, in the usual FEM and REM, the observed covariates in
the models are not permitted to influence the latent time-invariant variable.

There is a vast literature in econometrics that suggests models and estimators to overcome
many but not all of these limitations (for reviews see Baltagi and Raj, 1992; Wooldridge,
2002; Hsiao, 2003; Halaby, 2004; Baltagi, 2005). For instance, interaction terms of the time
period with a covariate permits the observed time-invariant or time-varying variables’
effects to differ by wave (Chamberlain, 1984). While lagged values of time-varying
covariates are straightforward to include, lagged dependent (endogenous) variables raise
other complications in the FEM and REM that can lead to biased estimates with several
authors suggesting solutions (e.g., Arellano and Bond, 1991; Arellano and Bover, 1995).
Hausman and Taylor (1981) proposed a method by which observed time-invariant variables
such as sex, race, place of birth, etc. can be included in FEM.

In the political science literature, Beck (2001) and Wilson and Butler (2007) review panel
methods that work well when the number of waves of data are large relative to the number
of cases. Beck and Katz (1995) recommend a cross-sectional time-series models that
assumes that all cases have a common intercept and common slopes over time. Wilson and
Butler (2007) argue that researchers should test these assumptions as well as whether a
lagged dependent variable should be included.

A variety of estimators for these alternative models are proposed. This raises two issues.
One is that the use of different models and different estimators complicates the ability to
compare the relative fit of alternative models to the same data. This makes it hard to
determine what improvements to the model are necessary and which are not. A practical
related issue is that not all of these extensions are readily accessible in software packages
which tend to inhibit their use. Indeed, Halaby’s (2004) review of the sociological literature
suggests that most panel analyses are limited to the standard FEM or REM with little
consideration of alternatives.

Another limitation of the usual application of FEM and REM is that researchers make very
limited assessments of the fit of their model to the data. When statistical tests of the model
are applied it is the Hausman (1978) test comparing the usual FEM and REM that is typical.
The Hausman test might lend support to one of these models even if the selected model is an
inadequate description of the data. Additional tests are available that can provide evidence
of model adequacy. As we will explain, the standard FEM and REM are overidentified
models that imply overidentifying constraints. These overidentifying constraints are testable
and provide evidence on the validity of the FEM, REM, or alternative specifications of
models. We also will explain how it is possible to test not only whether the observed
covariates have different effects for different waves, but how to test this same possibility for
the latent time-invariant variables. This latter possibility is neglected in the panel model
literature.

These tasks are facilitated by having a general panel model that encompasses not only the
usual FEM and REM, but includes a wide variety of extensions. Furthermore, having a
common estimator that permits comparisons of nested models and assesses the plausibility
of the overidentifying constraints is a real asset to this work. Our purpose is to present a
general panel model that includes the usual FEM and REM as well as a variety of other
nonstandard models as special cases. We will explain how the general equation as well as its
special cases can be estimated, tested, and compared using structural equation models
(SEMs) and SEM software. More specifically, we will illustrate how to test the
overidentifying restrictions of the random effects, fixed effects, and alternative models to
help assess their relative fit; we will show how to test whether coefficients or error variances
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are equal across waves; we will illustrate the estimation of the covariance of the latent time-
invariant variable and the time-varying observed covariates; we will develop models that
permit lagged dependent variables or lagged covariates and create models that permit time-
invariant observed variables in fixed effects like models. We also will take advantage of
alternative estimators and fit statistics from the SEM literature to assess the correspondence
of the models to the data and to compare different models. We will illustrate our results
using a model and data from an excellent empirical application of the usual FEM and its
estimation to demonstrate that we can gain new insights with this approach even in a well-
executed study.

A few prior papers have drawn connections between SEMs and random or fixed effects
panel models. An unpublished convention paper by Allison & Bollen (1997) and a SAS
publication by Allison (2005) discuss SEM set-ups of the standard FEM and REM.
Teachman, Duncan, Yeung, and Levy (2001) look at the FEM in SEM, but concentrate their
discussion and example on cross sectional data with clusters of families rather than panel
data. Finally, Ejrnaes & Holm (2006) look at different types of fixed effects estimators in
panel data models, but do not cover the REM, lagged dependent variable models, or some of
the other variants that we include here. None of these papers presents our general panel
model, they do not discuss testing the equality of parameters over time or treat supplemental
fit indices, and they do not provide the justification for the maximum likelihood estimator
for models with lagged dependent variables.

Our paper is oriented to readers who have had experience with the standard FEM or REM.
Our citations above to recent substantive literature reveal their presence in a broad range of
fields in sociology and suggest that these techniques have wide appeal. Our reading of the
literature also suggests that there is some confusion among practitioners regarding when to
use one model versus the other. We do not intend our results only for specialists in
quantitative methods. Despite the generality and flexibility of our models, they can be
implemented with any of the numerous SEM software programs (e.g., LISREL, AMOS,
Mplus, EQS, etc.) that are widely available. Because of our intended audience, full technical
details are not provided in the text, but are reserved for footnotes, the appendix, and in the
cited works.

The next section will present the notation, a general panel model, and its assumptions.
Following this are subsections on restricted forms of the general panel model, the FEM, the
REM, and the general panel model with lagged variables. Sections on estimation and testing
model fit follow. Then an extended empirical example illustrates many of the results. The
conclusion reviews the capabilities and limitations of our approach. An appendix provides
more technical details including a justification of the maximum likelihood (ML) system
estimator in SEMs with lagged dependent variables.

General Panel Model
In this section, we represent a general panel model that enables us to consider individual
heterogeneity (latent time-invariant variables) as in the usual FEM and REM, but permits
additional structures for comparison. There are two versions of this model, one with a
lagged dependent variable as a covariate and another without it. We present the latter first
and show how we can derive the well-known random effects, fixed effects, and alternative
models by imposing restrictions on this general panel model. In a separate subsection we
introduce lagged endogenous variables into this general panel model.

Consider the following equation
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where yit is the value of the dependent variable for the i th case in the sample at the t th time
period, xit is the vector of time-varying covariates for the i th case at the t th time period,
Byxt is the row vector of coefficients that give the impact of xit on yit at time t, zi is the
vector of observed time-invariant covariates for the i th case with Byzt a row vector of
coefficients at time t that give the impact of zi on yit. The ηi is a scalar of all other latent
time-invariant variables that influence yit and λt is the coefficient of the latent time-invariant
variable (ηi) at time t and at least one of these λt is set to one to provide the units in which
the latent variable is measured (e.g., set λ1 = 1). The εit is the random disturbance for the i th

case at the t th time period with E(εit)=0 and . It also is assumed that εit is
uncorrelated with xit, zi, and ηi and that COV(εit, εis) = 0 for t ≠ s. As an example, yit might
be the infant mortality rate in county i at time t, xit might consist of time-varying variables
such as unemployment rate, physicians per capita, medical expenditures per capita, etc. all
for county i at time t, zi might be time-invariant variables such as region and founding date
of county, and ηi would contain all other time-invariant variables that influence infant
mortality, but that are not explicitly measured in the model. The ηi represents individual
heterogeneity that affects the outcome variable.2 We assume that ηi is uncorrelated with zi if
both are included in the same model.

Note that i always indexes the cases in the sample while t indexes the wave or time period. If
either subscript is missing from a variable or coefficient, then the variable or coefficient
does not change either over individuals or over time. For instance, zi and ηi have no t
subscript, but do have an i subscript. This means that these variables vary across different
individuals, but do not change over time for that individual3 and are time-invariant
variables. In a similar fashion, the absence of an í subscript means that the coefficients in the
model do not change over individuals. If a time period or wave of data were distinct, then
we could include a dummy variable, say Dt, that is the same value across all individuals but
could differ over time.

General Panel Model and Restrictive Forms
The general panel model in equation (general model) incorporates the usual REM and FEM
as special cases and goes considerably beyond these options. Indeed, there are numerous
variants of the general panel model and a large number of models that a researcher could
choose. For instance, suppose researchers are studying conservatism among individuals.
Assume that the relationships between authoritarian personality and other latent time-
invariant variables and conservatism (yit) increases over time. Allowing λt to increase rather
than always being equal to one would permit us to accommodate the changing relations. Or
the effects of education, race, and income on conservatism might vary with age and these
differences in coefficients for the same variable over time are permitted in the general panel
model. On the other hand, if the coefficients for the same variable are erratic and without
discernable patterns at different waves, this raises questions about the specification of the
model. In brief, the general panel model enables us to vary the coefficients of any of the

2Other SEM approaches use special cases of this model. Teachman, Duncan, Yeung, and Levy (2001) and Ejrnaes & Holm (2006)
focus on the fixed effects model of yit = Byx xit + ηi + εit. An unpublished paper by Allison and Bollen (1997) present a model
equivalent to what we call the REM/FEM Hybrid Model of yit = Byx xit + Byz zi + ηi + εit where εi can correlate with xit as long as zi
does not. Allison’s (2005) SAS book on fixed effects models also includes the Allison and Bollen (1997) Hybrid REM/FEM. No
papers of which we are aware introduce the full general panel model that we have here.
3Though we use the term “individual” to refer to a case, the cases do not have to be individual people. They could be groups,
organizations, nations, etc.
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observed or latent variables while also serving as a sensitivity test of the model
specification.

Given our general panel model (yit = Byxtxit + Byztzi + λtηi + εit), we need a method to select
more restrictive models to which we can compare its fit to the data. If a researcher is in the
fortunate situation to have prior studies or theories suggest a formulation, then this
hypothesized model is a desirable starting point. More commonly knowledge in an area is
insufficiently developed to provide such specific guidance. A “forward model” search
strategy begins with a model much more restrictive than the general panel model and lifts
restrictions until the researcher judges the fit of the model to be adequate. So the standard
random effects model (REM) could be the starting point and if its fit is not good, the
researcher could test whether it significantly improves by, say, allowing the error variances
to differ over time. If the model fit is still lacking, then the researcher could try a hybrid
model that lets xit and ηi correlate. This process could continue until the model fit is
acceptable. So the modeling process is one of moving from more restrictive to less
restrictive models and stopping when the fit passes some standard.

A “backwards model” search strategy begins by fitting the general panel model of yit =
Byxtxit + Byztzi + λtηi + εit. To identify this model we constrain the correlations of zi and ηi to
zero4 and set one of the λt s to one (e.g., λ1 = 1). This is the least restrictive model. If it does
not fit the panel data, it is doubtful that more restrictive forms of the general panel model
will. If it does fit, then we could impose further restrictions until we judge that the fit to the
data is inadequate. Table 1 outlines a general strategy of fitting models from less to more
restrictive when prior knowledge does not point to a single, specific model.

Assuming that the general panel model at the top of Table 1 fits the data, then researchers
can turn to a model that constrains the effects of the latent time-invariant variable (ηi) to be
equal over time as shown in option (1) in Table 1. Option (1) is nested in the general panel
model, so as we explain in the section on Model Fit, we can test whether there is a
statistically significant decline in fit by imposing the restriction of λt = 1 for all waves. If
option (1) has an adequate fit, then researchers can impose an additional restriction that the
coefficients for the impact of each observed time-invariant variable is equal over time
(option (2) in Table 1). With this restriction, we have both the latent and observed time-
invariant variables having stable influences over each wave of data. If option (2) proves to
be a good fit, then we can introduce the additional constraint that the coefficients for the
time-varying variables maintain the same values over time (Byxt = Byx) (option (3) in Table
1).

If the model represented by option (3) in Table 1 fits, then we introduce different types of
restrictions in the other options. Option (4) keeps all coefficients equal over time, but also
constrains the correlations of the time-varying variables (xit) with the latent time-invariant
variable (ηi) set to zero. Table 1 points to two different options depending on the fit of the
model represented in option (4). If we fail to reject option (4), then option (5)(a) introduces
the additional constraint of the error variances being equal for all waves of data. If we do
reject option (4), then option (5)(b) returns to the model in option (3) where the time-varying
and latent time-invariant variables correlate and constrains the error variances to be equal
over time. Table 1 does not show all possible options; it is meant more as an illustration
rather than the only way to proceed. For instance, if the restriction of λt = 1 for all waves
does not hold we could remove this restriction but still check whether Byxt = Byx holds. In
such a series of specifications, we would not recover the standard REM and SEM. We

4Attempting to estimate this correlation would lead to perfect collinearity between zi and ηi. This would make it impossible to
estimate the effects of these variables.
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encourage readers to view Table 1 as providing guidelines rather than a rigid sequence of
steps. The REM and FEM are such important restrictive forms of the general panel model
that the next two subsections will discuss them more fully.

Random Effects Model (REM)
The Random Effects Model (REM) is one of the most popular models for panel data. Table
1 option (6) indicates that the REM is equivalent to the model of option (5)(a). If we assume
that the coefficients of the time-varying variables (xit), of the observed (zi) and latent (ηi)
time-invariant variables do not change over time (i.e., Byxt = Byx; Byzt = Byz, and λt = 1,
respectively for all t), that the equation error variances are equal ( ), and that λi is
uncorrelated with xit and zi, then equation (general model) becomes

which is the usual REM. Comparing this to the general panel model we can see that the
REM assumes that all explanatory variables (i.e., xit, zi, ηi) have effects on yit that are the
same over all time periods. Furthermore, the REM allows the time-varying observed
variables in xit and the time-invariant observed variables in zi to correlate, but none of these
observed variables is permitted to correlate with the latent time-invariant variable, ηi. The
assumption that ηi is uncorrelated with xit and zi is similar to the assumption that the
disturbance in a cross-section is uncorrelated with the observed explanatory variables. The
main difference is that with panel data there are circumstances when we can partially test
this assumption as we will describe in out treatment of the FEM.

Figure 1 is a path diagram representation of a REM that is kept simple with a single time-
varying variable (x) for four waves of data and a single time-invariant variable (z1). A path
diagram is a graph that represents a multiequation system and its assumptions. By
convention, boxes represent observed variables, ovals represent latent variables, single-
headed straight arrows represent the direct effect of the variable at the base of the arrow on
the variable at the head of the arrow, and two-headed arrows such as those connecting the x
s and z1 stand for possible associations between the connected variables where that
association is taken account of, but not explained within the model.5 To simplify the
notation the i subscript is excluded for the variables. It is noteworthy that the latent time-
invariant variable (η) is part of the model, but it is shown to be uncorrelated with the time-
varying variables (xt) and the time-invariant variable (z1) since there are no two-headed
arrows linking it to the observed variables. The direct impact of the latent time-invariant
variable (η) on the repeated measures (y s) is equal to 1 as is implicit in the equation for the
REM.

Fixed Effects Model (FEM)
Returning to the general panel model in equation (general model), suppose that we keep the
coefficients for the time-varying variables equal for all waves (Byxt = Byx, λt = 1), we drop
Byztzi, we allow the latent time-invariant variables (ηi) to correlate with, and we set the
equation error variances equal ( ) This is option (7) in Table 1 and leads equation
(general model) to become

5A possible source of confusion is that path analysis is sometimes used to refer just to recursive or nonrecursive models of only
observed variables where measurement error and latent variables are not considered. This is an inaccurate restriction on the usage of
the term. In fact, Sewall Wright, the inventor of path analysis, included latent variables as part of path analysis.
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which is the equation for the usual fixed effects model (FEM).

The most obvious difference between the FEM and the REM one is the absence of Byzzi.
These are the time-invariant observed variables and their coefficients. The usual FEM does
not explicitly include these variables, but rather folds them into ηi, the latent time-invariant
variable. The reason is that the FEM allows ηi to correlate with xit and if we were also to
include time-invariant observed variables (zi), these would be perfectly collinear with ηi and
we could not get separate estimates of the effects of ηi and zi. Hence, we allow ηi to include
zi as well as latent time-invariant variables. Though losing the ability to estimate the impact
of time-invariant variables such as race, sex, etc. is a disadvantage, we still are controlling
for their effects by including ηi in the model. In addition, we have a potentially more
realistic assumption that allows the ηi variable to correlate with the time-varying covariates
in xit. In the hypothetical example of infant mortality rates in counties presented above, we
could not include the time-invariant variables of region and founding date explicitly in the
model. But these and all other time-invariant variables would be part of ηi and hence
controlled. If a researcher is not explicitly interested in the specific effects of the time-
invariant variables, then this is not a serious disadvantage since the potentially confounding
effects of all time-invariant variables would be controlled. In addition, we allow these time-
invariant variables to correlate with the time-varying variables such as unemployment,
physicians per capita, and so on.

Figure 2 is a path diagram representation of a FEM with a single time-varying variable. We
drop zi given its perfect collinearity with ηi. Easily visible within the diagram is the
covariance of the time-varying x1t and η that is part of the FEM specification. But one
difference from the usual implementation of FEM is that the covariances of the time-varying
variables with η are an explicit part of the model. This can provide the researcher a better
sense of the properties of these latent time-invariant variables and their pattern of
associations in that a researcher can estimate the correlation with observed covariates. The
equality of the coefficients from x1t to yt is shown by using the same coefficient for each
path as is the coefficient of 1 from η to yt. Below we will present an empirical application
where the repeated measure (yt) is wages, the number of children is a time-varying covariate
(x1t), and all omitted time-invariant variables (e.g., intelligence, motivation, other stable
personality traits) are combined in η with this latent variable permitted to correlate with x1t.

Note that if the REM does not include zi, then the REM and FEM are nested and only differ
in that the FEM allows xit and ηi to freely correlate where the REM restricts them to be
uncorrelated. If the REM does include zi and the FEM does not, then the models are not
nested. But if we include zi in the FEM while keeping it uncorrelated with ηi, we are led to
the model 5 (b) which is nested in the REM 5 (a). These two differ only in that the REM
assumes that the covariances of the time-varying xit and ηi are zero whereas model 5 (b)
does not.6

Viewing the REM and FEM from the perspective of the more general panel model in
equation (general model), these models are two important special cases, but there are other
models which might better correspond to our theoretical and substantive ideas and which

6A reviewer points out that a classic approach views the FEM as a within-unit estimator and views the REM as a weighted average of
the within and between-unit model. As we demonstrate later with our empirical example, if we use the ML estimator we will get the
same estimates whether obtained via a classic FEM and REM procedure in Stata or using SEM software. This suggests that the classic
interpretations hold regardless of software used. However, as we depart from these classic FEM and REM, this no longer will be true.

Bollen and Brand Page 8

Soc Forces. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



might better explain our panel data. We can enrich these models further by considering
lagged effects as we do in the next subsection.

General Panel Model with Lagged Effects
Researchers can add lagged values of the time-varying covariates to the vector, xit. The cost
of doing so is the loss of the first wave of data since the lagged value of the time-varying
covariate is not available for the first wave of data and thus cannot be included. Lagged
endogenous variables for autoregressive effects are also straightforward to include. We
modify the general panel model in equation (general model) to include a lagged endogenous
variable:

where the new symbol is the autoregressive coefficient ρt of the effect of yit–1 on yit. We can
get to more familiar models by introducing restrictions. A modified version of the FEM with
equal autoregressive parameters would be

The first wave yi1 should be treated as predetermined and correlated with the time-varying
(xit) and latent time-invariant variables (ηi). Figure 3 is a modified version of Figure 2 that
includes the lagged endogenous variable. Allison (2005: 135) mentions a similar, simpler
FEM with a single x variable, but states that it has not been investigated analytically. The
Appendix of this paper presents a general version of this model and treats its formulation
and estimation.

An added complication to check with lagged endogenous variables is whether there is an
autoregressive disturbance. This is particularly problematic if present with a lagged
dependent variable since it creates a correlation between the disturbance and explanatory
variable. We can treat this by adding an autoregressive relation between the disturbance
term. We could further modify Figure 3 to include an autoregressive disturbance provided
we allow an association between εi2 and yi1 that would be created by the autocorrelation. It
is also possible to include additional lagged values of the covariates or the endogenous
variable. Furthermore, we could create a variety of special cases of equation (lagged
general) in an analogous way to what we did in Table 1 but adding the autoregressive term
ρt. To conserve space we do not present these extensions, but instead turn to the estimation
and assessment of model fit using tools from structural equation models.

Estimation
Equation (general model) is the general panel model that incorporates the standard FEM,
REM, and other models that we have presented except for those with the lagged endogenous
variables which is in equation (lagged general). The latter we will discuss later. The
literature on panel methods has proposed a variety of estimators for different special cases of
this model. For instance, the Least Squares Dummy Variable (LSDV) estimator is popular
for the usual FEM in (fixed effects) and generalized least squares (GLS) is a common choice
for the usual REM in equation (random effects). To enhance the comparison of models we
will use the same maximum likelihood estimator for both of these models as well as the
model extensions proposed (see appendix). Structural equation model (SEM) software is
well-suited to estimate these models in that it has a variety of estimators and it allows latent

Bollen and Brand Page 9

Soc Forces. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



variables such as ηi. The default and dominant estimator for continuous dependent variables
in SEM is the maximum likelihood estimator (MLE). The MLE is derived under the
assumption that yit, conditional on xit and zi, [yit|xit, zi] comes from a multivariate normal
distribution (Jö reskog 1973; Bollen 1989:126–28). Under these conditions, the coefficients
and parameter estimates of the model have the desirable properties of MLE.7 The appendix
gives a more formal presentation of the model and MLE fitting function for SEMs. There is
much work in the SEM literature that examines the robustness of the ML estimator to the
normality assumption and it finds conditions where it is not required for accurate
significance tests (e.g., Satorra, 1990).

Furthermore, there are other readily available estimators for SEMs that either do not require
normal disturbances or that correct for nonnormality (e.g., Bollen and Stine 1990 e.g.,
Bollen and Stine 1992; Satorra and Bentler 1994). This means that when required we have
alternative estimators that permit disturbances from nonnormal distributions.8

A practical matter in using the SEM software is preparing the data set. Panel data commonly
appears in one of two forms. One is the long form where observations of the same individual
are stacked on top of each other. Each row of the data set in a sample of individuals over
several years is a “person-year.” In the wide form of data, by contrast, each row refers to a
different individual. The variables give the variable values for a particular individual in a
particular wave of the data. The wide form is most suitable for the SEM approach. Statistical
software have routines that enable easy movement between the long and wide form of panel
data (e.g., in Stata, reshape)

Missing Data
Attrition or other sources of missing values on variables in panel analysis is common. In
panel data “balanced” and “unbalanced” data are terms that capture the possibility that a
different number of waves of data are available for different cases. The unbalanced design
implies missing data. In a SEM there are two options for treating data that are Missing
Completely at Random (MCAR) or Missing at Random (MAR) (Little and Rubin, 1987;
Schafer, 2000). One is the direct MLE approach that allows the variables available for a case
to differ across individuals and that estimates the parameters with all of the nonmissing
variable information (Arbuckle, 1996). The second option is multiple imputation where
multiple data sets are imputed, estimated, and their estimates combined. We apply the direct
MLE in our application. Direct MLE forms the likelihood for each case in the sample using
all variables that are not missing for that case. No data are imputed. Rather the contribution
of a case to the total likelihood will depend on the number of observed variables with
complete information for a case (Arbuckle, 1996; Wothke, 2000). Most SEM software now
have the direct MLE capability to handle missing data.9 Either of these approaches requires
the analysis of the raw data rather than the covariance matrix of the observed variables.

7MLEs are consistent, asymptotically unbiased, asymptotically normally distributed, asymptotically efficient among asymptotically
unbiased estimators, and the inverse of the expected information matrix is available to estimate the asymptotic covariance matrix of
the parameter estimator that we use for significance testing.
8A reviewer asked whether estimation with SEM requires any additional assumptions beyond the ones in classic FEM and REM. A
variety of estimators are possible with the classic FEM and REM. However, given the variety of estimators and the generality of the
models we present, the assumptions are less restrictive than the classic FEM and REM. Exceptions to this are discussed in the
conclusions.
9Allison (2005:129) suggests that the SEM approach requires listwise deletion, though given the context of his comments they
probably refer to Proc Calis in SAS. However, direct MLE or multiple imputation are both options when using most other SEM
software for panel data.
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Tests of Model Fit
Borrowing from the SEM literature, we can form tests of overall model fit for our panel data
models. If a model is exactly correct, the null hypotheses (Ho) of

are true where μ and Σ are the means and covariance matrix of the observed variables and
μ(θ) and Σ(θ) are the model-implied means and covariance matrix of the observed variables.
The θ that is part of the model-implied means and covariance consists of the free parameters
(e.g., coefficients, error variances, etc.) of a model. Each model implies a particular form of
μ(θ) and Σ(θ) that predicts the means and covariance matrix. See the Appendix for these
implied moment matrices for our models. In light of this, the null hypothesis in equation
(moment Ho) is a test of the validity of the model. Rejection suggests that the model is
incorrect while failure to reject suggests consistency of the model with the data.

The MLE provides a readily available test statistic, say T, that is a likelihood ratio (LR) test
that asymptotically follows a chi-square distribution with degrees of freedom of

 where P is the number of observed variables and t is the number of free
parameters estimated in the model. The  is the number of variances, covariances,
and means of the observed variables that provide information on the model parameters.
Comparing T to a chi-square distribution with df at a given Type I error rate leads us to
reject or fail to reject Ho.

The LR test of Ho : μ = μ(θ) & Σ = Σ(θ) can have considerable statistical power when the
sample is large. Even minor misspecifications in the model can lead to its rejection. In
practice, this means that nearly all models will be rejected in a sufficiently large sample and
this might be due to errors in specification that most would consider trivial. See Satorra and
Saris (1985) or Matsueda and Bielby (1986) for methods to estimate the statistical power of
the chi square test of equation (moment Ho).

Alternative measures of fit have emerged in the SEM literature. The literature on these fit
indices is vast (e.g., Bollen and Long, 1993; Hu and Bentler, 1998) and we do not have the
space to fully review these. However, Table 2 lists several fit indices that we have found
useful. Current guidelines would describe a model’s fit to the data as inadequate if the
Tucker and Lewis (1973) Index [TLI], the Bollen (1989) Incremental Fit Index [IFI], or the
McDonald and Marsh (1990) - Bentler (1990) Relative Noncentrality Index [RNI] is less
than 0.9. If the Steiger and Lind (1980) Root Mean Square Error of Approximation
(RMSEA) is greater than 0.1 or if the Schwarz (1978) Bayesian Information Criterion (BIC)
is positive (see Raftery, 1993; 1995), then the model is generally not acceptable.10 In
general it is good practice to report several fit indices along with the chi-square test statistic
(T), degrees of freedom, and p-value. The Hausman Test provides another way to compare
FEM and REM, when these are among the models estimated. Since these indices and tests
measure model fit in different ways, they will not always lead to an unambiguous best
model. This means that the researcher must take these fit statistics in conjunction with prior
studies and knowledge of the substantive area, and perhaps further guided empirical

10These cutoffs are meant as rough guidelines. There are circumstances where different cutoffs might make sense. Nested and
sometimes nonnested models are compared with these fit indices.
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exploration of the data in coming to an assessment of which model appears to best represent
the social world. We illustrate these ideas in our empirical example.

Comparisons of Models
In our presentation we described a number of models as having relations where the
parameters of one model were a restricted form of another. Table 1 provides a number of
examples. We can use the likelihood ratio (LR) test to compare such nested models. The LR
chi-square and degrees of freedom associated with the least restricted model is subtracted
from the model with fewer restrictions. A new LR chi-square test statistic and degrees of
freedom results which tests whether the most restrictive model fits as well as the more
restricted one. A nonsignificant chi-square is evidence in support of the more restricted
model whereas a significant chi-square supports the less restricted model assuming that the
less restricted model fits. This LR chi-square difference test allows us to test such
hypotheses as whether the error variances or the variable coefficients are the same over time.

The fit indices described above are also a tool to compare different model structures. We
already have mentioned how the BIC with the lowest value indicates the best fit. Differences
in the other fit indices might also provide useful information, though in our experience, the
differences in these other fit indices can be more difficult to interpret than the BIC, because
the differences in the former are small in magnitude.

Wage Penalty Empirical Example
We illustrate a variety of the preceding models by examining the wage penalty for
motherhood using data from the National Longitudinal Survey of Youth (NLSY). The
NLSY is a national probability sample of 12,686 young men and women who were 14 to 22
years old when they were first interviewed in 1979; blacks and Hispanics are oversampled.
These individuals were interviewed annually through 1994 and biannually thereafter. We
begin by generally replicating the results from an earlier study by Budig and England
(2001), who examined data from the 1982–93 waves of the NLSY; we differ in that, for
simplicity, we only analyze every other year, i.e. 1983, 1985, 1987, 1989, 1991, and 1993.
The coefficients are quite similar to those for all 12 years of data (not shown). Budig and
England were interested in whether the relationship between number of children and
women’s earnings is spurious or causal, and use the FEM to address this question. This
study builds on a still earlier study by Waldfogel (1997), which also uses a common FEM to
examine the wage penalty for motherhood. Budig and England’s study is an excellent
empirical application of the usual FEM. Nevertheless, we will show how we gain new
insights using our approach.

We limit our sample to women employed part-time or full-time during at least two of the
years from 1982–93, to replicate Budig and England’s sample selection. Out of a total of
6,283 women in the 1979 NLSY, we have a final sample size of 5,285 women.11 The
dependent variable is log hourly wages in the respondent’s current job, where person-years
whose hourly wages appear to be outliers (i.e., less than $1 or above $200 per hour) are
eliminated. The main independent variable of interest is the total number of children that a
respondent reported by the interview date.12 Our first model, Model 1, includes only
number of children as a covariate. In Model 2, we control for marital status using
dichotomous measures to indicate married and divorced (including separated and widowed),

11Budig and England’s (2001) analysis resulted in a final sample of 5,287 women.
12Budig and England also examined the wage penalty with three dichotomous measures indicating one child, two children, and three
or more children. They find that the effects are monotonic, although not perfectly linear, and prefer the continuous indicator of number
of children for all other analyses.
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where never married is the reference category. In Model 3, we further control for measures
of human capital including years of educational attainment, current school enrollment, years
of full-time and part-time work experience, years of full-time and part-time job seniority,
and the total number of breaks in employment.13 Budig and England also included a fourth
model with a range of job characteristics. However, they find that these additional variables
do little to change their estimates of the wage penalty for motherhood. We therefore only
replicate the first three models. For all their models, Budig and England conduct a Hausman
test to assess whether REMs were adequate, and in all cases, they find that the test supports
the FEM. Therefore, they do not present the estimates for REM, only for FEM and the OLS
estimator.

REM and FEM as SEMs
We first demonstrate how we can estimate the standard REM and FEM, as well as a hybrid
of these models in a SEM framework. To estimate models in the SEM framework, we use
data in wide format and estimate all models using Mplus 4.0. We apply the direct MLE
(Arbuckle 1996) that estimates the parameters with all of the nonmissing variable
information. Table 3 provides estimates for several model specifications in the SEM
framework. The first three columns correspond to the standard REM and next three columns
to the standard FEM, but estimated in the SEM framework. We compared these estimates to
those obtained in Stata for the usual REM and FEM and the estimates were virtually
identical except for rounding. We would expect this since we have programmed the SEM
formulations to match the specifications of the REM and FEM. Hence we can reproduce the
results of the REM and FEM using SEM. However, the SEM results provide additional
information by way of the measures of model fit.

The model fit statistics that we include are the Likelihood Ratio (LR) test statistic (Tm),
degrees of freedom (df), IFI/RNI, RMSEA, and BIC. We described the calculation of these
fit indices in Table 2. In Table 3, the chi-square LR test statistic that compares the
hypothesized FEM or REM to the saturated model leads to a highly statistically significant
result, suggesting that these hypothesized models do not exactly reproduce the means and
covariance matrix of the observed variables. With over 5,000 cases in this sample, the LR
chi-square test has considerable statistical power to detect even small departures of the
model from the data. In light of this statistical power, it is not surprising that the null
hypotheses are rejected for these models (p < 0.001).

The supplemental fit indices provide an additional means by which to assess model fit. Both
the REM and FEM for the model with no controls (Model 1) and the model that controls for
marital status (Model 2) have values of IFI and RNI exceeding 0.90, a common cutoff value.
However, values of RMSEA are often greater than 0.05 and values of BIC are positive,
indicating problems with model fit for Models 1 and 2. In contrast, Model 3 that further
controls for human capital variables has values of RNI and IFI close to 1, values less than
0.05 of RMSEA, and large negative values of BIC, all indicating good model fit. Thus, the
fit statistics from the SEM results support the choice of Model 3 over Models 1 or 2 whether
we use the REM or FEM versions.

As explained previously, when we do not include any observed time-invariant variables, the
REM is a restricted form of the FEM where in the former, the latent time-invariant variables
(ηi) are uncorrelated with all other covariates. Correlations are allowed in the FEM. Given
this nesting, we can form a LR chi-square difference test to compare the FEM and REM by
subtracting Tm test statistics for the REM versus FEM, taking a difference in their respective

13We thank Michelle Budig for sharing with us the experience and seniority variables from the Budig and England (2001) analysis.
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degrees of freedom, and comparing the results to a chi-square distribution. A statistically
significant LR chi-square is evidence that favors the FEM while an insignificant chi-square
favors the REM. Performing these LR chi-square difference tests consistently leads to a
statistically significant result lending support to the FEM versions of Models 1, 2, and 3 in
Table 3. These results are consistent with the Hausman test in favoring the FEM. However,
the large sample size combined with the large degrees of freedom for these models
complicates the result in that the statistical power of all these tests is high and does not tell
us the magnitude of the differences. The RNI and IFI (i.e. the baseline fit indices) differ in
the third decimal place and values as close as these are generally treated as essentially
equivalent. The RMSEA has slightly larger differences in the pairwise comparisons with a
tendency to favor the REM. The greatest separation in the pairwise comparisons for Models
1, 2, and 3 occur for the BIC and the BIC favors the REM versions of the models.

These results are interesting in that they imply that the REM and FEM are closer in fit than
the Hausman test or the LR chi-square tests suggest. One reason is that the REM has
considerably more degrees of freedom than the FEM since the REM is forcing to zero all of
the covariances of the latent time-invariant variable with the time-varying observed
covariates. The BIC gives considerable weight to the degrees of freedom of the model in
large samples and the greater degrees of freedom contributes to making the BIC more
favorable towards the REM. A second related reason for the REM appearing more
competitive is that the magnitudes of the estimated covariances between the time-varying
covariates and the latent variable are not always large in the FEM. Table 4 provides a
sample of the estimated covariances between the full set of time-varying covariates and ηi in
the FEM version of Model 3. We provide only three years of covariances and correlations
for simplicity, but note that we actually estimate all six years of covariances. These results
show that many of the covariances of the latent time-invariant variable (ηi) and the time-
varying x s are not statistically significantly different from zero even though the significance
tests are based on an N greater than 5,000. Interestingly, number of children, the key
explanatory variable, is essentially uncorrelated with ηi as is marital status, part-time
seniority, and experience. The other statistically significant correlations are often modest in
magnitude (e.g., currently in school and part-time experience correlates less than 0.01). Thus
our results suggest a more nuanced picture of the association between ηi and the x s than
suggested by the REM or FEM. The latent time-invariant variable has a statistically
significant association with some x s, but not with others. Even the statistically significant
ones are modest in magnitude (e.g., ≤ 0.2).14 So the modest and sometimes not statistically
significant covariances of ηi and the x s seem to be the reason that the REM and FEM have
fits that are so close as gauged by our fit indices. The low correlation of ηi with our focal
independent variable, number of children, likely explains why the coefficients for this
variable do not differ even more between the REM and FEM.

As we noted above, these fit indices and the estimates of the covariances of the latent time-
invariant variables and the observed time-varying covariates are not available with most
random and fixed effects statistical routines; the Hausman test indicated, as is often the case,
that the FEM are unambiguously superior to the REM. Our results present a more subtle
view of their relative fit.

The results above show that Model 3’s fit is superior to Models 1 and 2. While Model 3 fits
the data fairly well, the LR chi-square test suggests the potential for improvement in fit. One

14A researcher could also use BIC tests on these covariances rather than conventional statistical significance tests. These would tend
to be more conservative in finding noteworthy covariances. Both this approach and the one we take do not take account of the multiple
tests of significance performed when examining these individual parameters one-at-a-time. For this reason, the simultaneous tests of
overall model fit reported in Table 3 are more useful in that they permit comparisons of a model where all covariances are zero versus
not.
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possibility is to estimate a FEM/REM hybrid model. In the final column of Table 3, we
present results from the hybrid model, where the latent time invariant variable (ηi) is
correlated only with the consistently significant covariances, i.e. educational attainment,
currently in school, full-time experience, and employment breaks, and is uncorrelated with
the remaining covariates. When we compare the FEM/REM hybrid model to the REM and
FEM, we find that the chi-square difference tests support the FEM. However, the differences
in the IFI, RNI, and RMSEA are small. Finally, the BIC supports the REM. If a researcher
judges the correlations between the time-varying covariates and the latent time-invariant
variable to be small, then it seems reasonable that BIC supports the REM. The coefficient
estimate for number of children increases in absolute magnitude from −0.034 to −0.043 as
we move from the REM to the FEM/REM hybrid and FEM. As a greater than 25% increase
this is noteworthy, though substantively the change might not appear significant.

General Panel Model and Restrictive Forms
As we discussed in section 2, we can estimate a general panel model that enables us to
consider individual heterogeneity (latent time-invariant variables) as in the usual FEM and
REM, but also permits time-differing coefficients and additional structures for comparison.
In these models, we can also include time-invariant observed variables, and thus we include
indicators for race in these models (with one indicator for black, one for Hispanic, and
where the omitted category is non-black, non-Hispanic). This addition provides estimates for
the time-invariant variables, useful additional information in many applications. As we do
not have prior knowledge as to a single, specific model, we adopt the strategy of fitting
models outlined in Table 1. Table 5 contains the fit statistics for the models we estimate,
beginning with the general panel model and followed by the more restrictive forms as
described in Table 1.

As we see from Table 5, the general panel model fits quite well. Constraining the latent
time-invariant effect to be invariant over time significantly reduces model fit from the
general panel model, and indeed in all the specifications that follow we find that allowing
this effect to vary over time is consequential to the fit of the model. Substantively, this
implies that the latent time-invariant factors, such as stable personality traits, impact wages
differently over a woman’s life course. Conversely, constraining the effect of race to be
constant over time improves model fit, as we see from specification 2b.

Figures 4 plots the effects of number of children on log wages for several alternative
specifications, including specification 2b. The x-axis indicates year and the y-axis indicates
the child effect on women’s wages. The y-axis is in reverse order such that higher values
indicate a larger wage penalty for motherhood.

Specification 2b allows the time-varying coefficients to vary over time, and we observe a
generally increasing effect of number of children over time. This result makes substantive
sense, suggesting a form of cumulative disadvantage associated with motherhood on
women’s wages.

Constraining all the time-varying variables to be constant over time (specification 3) does
not significantly change the fit indices. If we had specific hypotheses concerning which
variables are the most likely to vary over time, then we could estimate the model freeing
only those coefficients and compare the fit of this new model to the fixed and random
effects versions of the same model where the coefficients of the same variable are set equal
over time. In our case, we do not have specific hypotheses on which variable’s coefficients
might differ over time. Therefore, we constrain all the coefficients of the time-varying
variables to be fixed over time. The IFI, RNI, and RMSEA suggest only slight differences
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between models that do and do not allow the coefficients to vary over time. We report the
results for specification 3b in Table 6.

Our specifications that set the covariance between the time-varying variables and the latent
time-invariant variables to zero also improve model fit, and we report the results from
specification 4b in Table 6. This is again not surprising, as most of the covariances of the
latent time-invariant variable with the observed covariates are substantively near zero. The
effect of number of children on wages for specification 4b is the smallest of those we have
estimated, −0.028. Given the high level of model fit for specification 4b, we try some slight
modifications at this point, allowing just the child coefficient to vary over time (4b*) and
constraining some of the covariances of the observed time-varying and latent time-invariant
variables to be zero (4b**). The fit is comparable between 4b and 4b*/4b**, except
according to BIC which favors 4b. We report the results of the child coefficients for 4b* in
Figure 4, where we again see a generally increasing negative effect of number of children
over time suggesting a form of cumulative disadvantage. We next allow the error variances
to vary over time (specification 5). The chi-square difference tests are statistically significant
supporting the models where the error variances are allowed to differ, while the IFI, RNI,
and RMSEA suggest only slight differences between models that do and do not allow the
error variances to vary over time. The BIC comparisons support the conclusion that we
prefer the models that do not allow the coefficients and error variances to change over time.
If we continue to follow our series of specifications outlined in Table 1, we next estimate the
classic REM (specification 6) and FEM (specification 7). The fit indices do not support
these as preferred models. The weight of evidence tends to favor the models with a latent
time-invariant variable whose effects vary over time, observed time-invariant and time-
varying effects that are constrained to be equal over time (although perhaps the child
coefficient is best left to vary over time), and error variances that are constrained to be equal
over time. This alternative specification leads to some interesting substantive results, as we
note above.

General Panel Model and Restrictive Forms with Lagged Effects
One possibility to further improve our models is having the lagged value of wages as a
determinant of current wages. Substantively, including such an effect makes sense in that
there is inertia in wages where last year’s wages are likely to be a good predictor of this
year’s. Though raises typically occur, there is a high degree of stability in relative wages
across individuals from year to year. As we described in section 2.4, lagged endogenous
variables for autoregressive effects are also straightforward to include. Our appendix
provides a more formal presentation of the SEM setup and assumptions for estimating such
a model. We lose one wave of data for each lag by specifying such a model; thus, our
hypothesized models will be compared to different saturated and baseline models than those
above. Table 5 provides fit statistics for the general panel model and restrictive forms with a
lagged endogenous variable. We plot the values for the specifications where the child
coefficient is freed in Figure 4 and report results from some of the better fitting
specifications in Table 6.

The overall fit statistics of the model in Table 5 enable us to compare the models. The large
sample size and accompanying high statistical power lead all the LR chi-square tests to be
statistically significant. We present fewer results than those above, generally omitting those
specifications sequentially that do not improve model fit. We find once again that the
equality constraint on the coefficients for the latent time-invariant variable is not supported.
The RNI and IFI are consistently close to 1.00 and the RMSEA is considerably lower than
the usual cutoff of 0.05. The BIC always takes large negative values supporting the selection
of any of these models over the saturated model.
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Specification 2b has particularly good fit according to IFI, RNI, and RMSEA, and we report
the time-varying child coefficient of this specification in Figure 4. The child coefficients are
quite similar to those in specification 4b* above. Specification 3b, which differs from 2b in
that we constrain the observed time-varying effects to be constant over time is an improved
fit according to BIC, but not according to the IFI, RNI, or RMSEA. According to BIC, the
best fitting specification is 5b2, and we report the results for this model in Table 6. The
coefficients are quite similar to specification 3b, and to the classic REM. We test a few
alternative specifications to 5b2 (5b* and 5b**), and the fit is quite comparable. We report
the time-varying child coefficient from specification 5b*, which is relatively flatter than the
other specifications.

Taken together we reach the following conclusions on overall fit of the models. First, we
significantly improve model fit when the coefficient on the latent time-invariant variable is
allowed to vary over time. Allowing the coefficients of the latent time-invariant variable to
vary is not an option in the usual FEM and REM that are typical in sociology. Our results
provide strong evidence that these effects do vary with time in this case. Second, the IFI,
RNI, and RMSEA do not reveal large differences among the different versions of these
models, but tend to favor a less restrictive model, where only observed time-varying effects
are allowed to vary over time. Third, the lagged endogenous variable models have very good
fit.15 These general panel model specifications and more restrictive forms suggest a smaller
wage penalty for motherhood than the classic REM and FEM, and provide some additional
substantive information. Moreover, models with lagged effects likewise suggest a smaller
penalty for motherhood’s direct effect, particularly in later years, than that suggested by
REM and FEM without lagged endogenous variables. However, given the lagged
endogenous variable there are additional lagged effects of motherhood on wages. For
instance, the number of children in say, 1983, has a direct effect on wages in 1983, but it
also has an indirect effect on wages in 1985 given the impact of 1983 wages on 1985 wages.
Thus the effect of number of children in one period extends beyond that period through its
indirect effect on wages through the lagged dependent variable. The same is true for the
other covariates with significant effects on wages. Their effects are not only direct, but
indirect. This useful distinction between direct, indirect, and total effects is well-known in
the SEM literature (e.g., Sobel 1982; Bollen 1987) and most SEM software permits its
exploration.

SEM models have helped us to uncover evidence that the standard assumptions of fixed
coefficients, fixed error variances, and no lagged endogenous variables were not always
supported when tested in our empirical example. We present this series of specifications to
demonstrate the flexibility of our approach. Still, we could have estimated various other
alternatives, or combined many of the elements we present separately. The SEM formulation
also allows investigation of indirect effects, as we mentioned above. Another realm that we
have not explored, but which is easily implemented, is to include latent covariates with
multiple indicators.

Conclusion
REM and FEM panel model applications are becoming more common in Social Forces and
throughout sociological research. However, too often researchers apply FEM or REM
without careful consideration as to why they should prefer one model over another. In this
paper, we show that these models are a restrictive form of a more general panel model that

15This statement recognizes the role that the large sample size plays in elevating statistical power for the LR chi-square tests and
hence downplays the statistical significance of these tests. However, the chi-square tests mean that there is still room for improvement
despite the favorable results with all other fit indices for these models.
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permits a wider range of alternatives and that is estimable using widely available SEM
software. With this general panel model, a researcher does not need to maintain these
constraints but can test them and only impose those supported by the data. In addition, a
wide variety of additional models and formulations are possible. For instance, a researcher
can test whether a covariate’s impact on the repeated measure stays the same across all
waves of data; test whether the error variances should be allowed to vary over time; include
lagged covariates or lagged dependent variables; free factor loadings on the latent time-
invariant variable; include observed time-invariant variables in a FEM either as uncorrelated
with the latent time-invariant variable or as a determinant of the latent variable; estimate the
magnitude of the covariance of the latent time-invariant variables with the observed time-
varying covariates, and estimate a hybrid FEM/REM model with the information gleaned as
to the magnitudes of these covariances. For these additional formulations, we have useful
tests of model fit and fit indices that are not part of the standard REM and FEM analysis. We
also have a likelihood ratio test of the FEM and REM to a hybrid model and a variety of fit
indices as supplements to the Hausman Test. Indeed it would be interesting to know how
many of the FEM and REM that have appeared in the literature would have adequate model
fit if some of these tools were applied.

Our empirical example of the impact of the number of children on women’s wages
illustrated some of the advantages that flow by casting FEM and REM panel models as part
of this general panel model. For one thing, we had access to a more complete set of model
fit statistics that revealed flaws in both the standard FEM and REM that were not evident in
the usual approaches and the publication based on them. Specifically, neither model fully
reproduced the covariance matrix and means of the observed variables as they should if the
models were correct. Furthermore, we found evidence that the REM were more competitive
than the Hausman test and likelihood ratio (LR) test alone revealed. In fact, the Hausman
and LR tests from the study upon which our example was based unambiguously supported
the FEM over the REM, as it generally does. The primary distinction between the FEM and
REM is whether the covariates correlate with the latent time-invariant variable. Using the
SEM approach we saw that many of the correlations of the covariates with the latent time-
invariant variable were close to zero -- information unavailable with usual methods, and thus
we fit a FEM/REM hybrid model in which only a subset of the covariates were correlated
with the latent time-invariant variable. Furthermore, the SEM approach suggested that the
impact of the latent time-invariant variable on wages was not the same across all years and
that the unexplained variances were not constant over time in all models. Most applications
of FEM and REM assume constant effects regardless of the year of the panel data. A further
departure from the published models for these data was that we looked at whether lagged
wages impacted current wages net of the other determinants. Given the degree to which
current salary is closely tied to past salary, this is a substantively plausible effect and it was
easy to explore with our model. We found strong evidence that the lagged endogenous
variable models were superior to the models without them. A related substantive point is that
these models show the importance of prior wages on current wages and this implies that any
variables that impact wages in a given year have an indirect effect on later years as well.
Thus, the number of children has direct as well as indirect effects on mothers’ wages. We
also incorporated an observed time-invariant variable, race, to the FEM, providing the
typically unavailable coefficients of a potential variable of interest.

Still the empirical example did not exhaust the types of models for panel data that could be
applied with our approach. For instance, it would be straightforward to develop a model that
permits the dependent variable to be latent with several indicators and to have a fixed or
random effects-like model for it. We could allow for measurement error in the time-varying
or time-invariant covariates and include them in the model. In addition, latent curve models
or Autoregressive Latent Trajectory (ALT) models might be applied (Bollen and Curran,
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2006). In brief, researchers can build a broader range of models than is commonly applied,
some of which might better capture the theory that they wish to test.

Although the SEM approach offers considerable flexibility, it does not adequately handle all
situations that researchers might encounter. For instance, if the latent time-invariant variable
has a different correlation with the covariates for different individuals, these models will not
work. Ejrnaes & Holm (2006) show how a difference model or case mean deviation (fixed
effects) model would work in this situation where our SEM approach would not unless
difference scores were modeled. They also suggest a Hausman (1978) test that could test for
this possibility for the FEM. Similarly, the models we treat permit the covariate’s effect on
the repeated measure to differ over time, but assume that these coefficients are constant over
individuals. It is possible to estimate models where these coefficients differ over individuals
(e.g., Beck & Katz, 2007). Also there are some inherently nonlinear relationships between
variables that might be difficult or impossible to capture with the classic FEM and REM or
with SEM. Finally, models with numerous parameters, a great deal of missing data, and
many waves might exceed the computational capabilities of some desktops or SEM
software. Nevertheless, our paper allows considerable flexibility in the variants of the FEM
and REM that researchers can apply to panel data. By providing this SEM framework,
researchers will be able to test a richer variety of theoretical models and explore flexible
alternative models that could help test and shape new theories.
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Appendix

Fixed and Random Effects Models as Structural Equation Models
Classic Fixed and Random Effects Models

We represent the standard FEM and REM in the following matrix equation:

where

The xit vector contains the values of the time-varying covariates for the i th case at the t th
time, zi is the vector of observed time-invariant variables for the i th case, and ηi is the latent
time-invariant variable for the i th case. We assume that the mean of the disturbance is zero

[E(εi) = 0 for all i ], that they are not autorcorrelated over cases[  for i ≠ j], and
that the covariance of the disturbance with the covariates in wi is

. In SEMs the vector of means (μ) and the covariance matrix
(Σ) of the observed variables are functions of the parameters of the researcher’s model. If we
place all model parameters (coefficients, intercepts, variances, covariances) in a vector θ,
then these implied functions are the model implied covariance matrix (Σ(θ)) and implied
mean vector [(μ)]. When the model is valid, then

That is, we will exactly reproduce the means and covariance matrix of the observed
variables by knowing the model parameter values and substituting them into the implied
mean vector and implied covariance matrix. For equation (A1), the implied mean vector
[(μ)] is
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and the implied covariance matrix [Σ(θ)] is

where Σww is the covariance matrix of the covariates in w and Σεε is the covariance matrix
of the disturbances (ε).

In the usual FEM, we would drop zi from wi and the corresponding coefficients from Γ, set
By1x1 = By2x2 = ··· = ByTxT, and make Σεε a diagonal matrix with all elements of the main
diagonal equal. The Σww covariance matrix allows all covariates to correlate, including the
latent time-invariant variable. For the usual REM, we can return zi to wi, but now we must
constrain Σww so that all covariances of η with xt and z are zero and we maintain the
equality constraints on the coefficients so that By1x1 = By2x2 = ··· = ByTxT and By1z = By2z =
ByTz. As explained in the text, we can easily test these restrictions in SEMs.

The Maximum Likelihood Estimator (MLE) is the most widely used estimator in SEM
software. The fitting function that incorporates the MLE is

where S is the sample covariance matrix, z̄ is the vector of the sample means of the observed
variables, p is the number of observed variables, ln is the natural log, |·| is the determinant,
and tr is the trace of a matrix. The MLE estimator, θ̂, is chosen so as to minimize FML. Like
all MLEs, θ̂, has several desirable properties. It is consistent, asymptotically unbiased,
asymptotically efficient, asymptotically normally distributed, and the asymptotic covariance
matrix of θ̂ is the inverse of the expected information matrix.

The MLE estimator as implemented in FML leads to a consistent estimator of all intercepts,
means, coefficients, variances, and covariances in the model under a broad range of
conditions. This means that in larger samples, the estimator will converge on the true
parameters for valid models. However, if we wish to develop appropriate significance tests,
then we need to make assumptions about the distributions of the observed variables. The
usual assumption is that the observed variables come from a multivariate normal
distribution. A slightly less restrictive distributional assumption that maintains the properties
of the MLE and its significance tests is that the observed variables come from a multivariate
distribution with no excess multivariate kurtosis (Browne 1984). Multivariate skewness is
permitted as long as the multivariate kurtosis does not differ from that of a normal
distribution.

Fortunately, even when there is excess multivariate kurtosis there are a variety of alternative
ways to obtain asymptotically accurate signficance tests including bootstrapping techniques
(e.g., Bollen and Stine 1990 e.g., Bollen and Stine 1992), corrected standard errors and chi-
squares (e.g., Satorra and Bentler, 1994), or arbitrary distribution estimators (e.g., Browne
1984). See Bollen and Curran (2006:55–57) for further discussion and references. These
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options provide a broader range of choices than is true in the usual implementation of the
standard FEM and REM.

Dynamic Fixed and Random Effects Models
In the econometric literature, “dynamic” models refers to the FEM and REM with lagged
dependent variables included among the covariates. In the usual implementations, the lagged
dependent variable model creates considerable difficulties and is the source of much
discussion (see, e.g., Hsiao 2003, Ch.4). Fortunately, these models are relatively
straightforward in the SEM approach. A modification of equation (A1) permits lagged
endogenous variables,

where because of using a lagged dependent variable we need to redefine vectors to take
account of treating the first time wave variable, yi1, as predetermined and included among
the other covariates and the presence of lagged y influences, so that

In this model, yi1 is predetermined and uncorrelated with εi as are the other covariates.
However, there is a correlation between yi2…yiT and at least some elements of εi (e.g., yi2
correlates with εi2) so we need to consider all but the first wave (yi1) as endogenous.

For this model, the implied mean and covariance matrices become,

and the implied covariance matrix [Σ(θ)] is
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Fortunately, we can continue to use the ML fitting function in equation (Fml) and the
resulting estimator maintains the properties of an MLE under the precedingly described
distributional assumptions and the corrected test statistics are also available when needed
(see above). Autoregressive relations among the εi disturbances combined with the
autoregression of the yi s would complicate the situation, but are not discussed here.
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Figure 1.
Classic Random Effects Model in Path Diagram
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Figure 2.
Classic Fixed Effects Model in Path Diagram
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Figure 3.
Fixed Effects Model with Lagged Dependent Variables
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Figure 4.
SEM Coefficients for the Effect of Total Number of Children on Women’s Log Hourly
Wage: Model 3, Marital Status and Human Capital Variables
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Table 1

General Panel Model and Special Cases

General Panel Model

yit = Byxtxit + Byztzi + λtηi + εit

(1) time -invariant λ

 λt = 1 for all t

(2) time-invariant λ & Byx

 λt = 1, Byzt = Byz for all t

(3) time-invariant λ, Byz, & Byz

 λt = 1, Byxt = Byx, Byzt = Byz for all t

(4) time-invariant λ, Byz, & Byz, COV (xit, ηi) = 0

 λt = 1, Byxt = Byx, Byzt = Byz, COV (xit, ηi) = 0 for all t

(5)(a) Fail to reject (4) time-invariant λ, Byz, & Byz, COV (xit, ηi) = 0, σε

 λt = 1, Byxt = Byx, Byzt = Byz, COV (xit, ηi) = 0, σεt = σε for all t

 (b) Reject (4) time-invariant λ, Byz, & Byz, σε λt = 1, Byxt = Byx, Byzt = Byz, σεt = σε for all t

(6) Classic Random Effects Model (REM)

 Equivalent to (5) (a)

(7) Classic Fixed Effects Model (FEM)

 Equivalent to (5) (b) with Byz = 0 (no zi in equation)
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Table 2

Model fit indices and their definitions

Model Fit Index Definition

Tucker-Lewis Index (TLI)

Incremental Fit Index (IFI)

Relative Noncentrality Index (RNI)

Root Mean Square Error of Approximation (RMSEA)

Bayesian Information Critierion (BIC) BIC = Tm − dfm ln(N)

where

Tm = chi-square test statistic for m (m vs. saturated)

m = hypothesized model

dfm degrees of freedom for m

N = # cases

Tb = chi-square test statistic for b (b vs. saturated)

b = baseline (uncorrelated obs.vars.)

dfb degrees of freedom for b
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