
Review

Targeting protein lysine methylation and demethylation in cancers

Yunlong He1†, Ilia Korboukh2†, Jian Jin2*, and Jing Huang1*

1Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
2Center for Integrative Chemical Biology & Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7363, USA
†These authors contributed equally to this work.
*Correspondence address. Tel: þ1-919-843-8459; Fax: þ1-919-843-8465; E-mail: jianjin@email.unc.edu (J.J.)/Tel: þ1-301-496-2202;
Fax: þ1-301-402-1031; E-mail: huangj3@mail.nih.gov (J.H.)

During the last decade, we saw an explosion of studies
investigating the role of lysine methylation/demethylation
of histones and non-histone proteins, such as p53,
NF-kappaB, and E2F1. These ‘Ying-Yang’ post-transla-
tional modifications are important to fine-tuning the
activity of these proteins. Lysine methylation and
demethylation are catalyzed by protein lysine methyl-
transferases (PKMTs) and protein lysine demethylases
(PKDMs). PKMTs, PKDMs, and their substrates have
been shown to play important roles in cancers. Although
the underlying mechanisms of tumorigenesis are still
largely unknown, growing evidence is starting to link ab-
errant regulation of methylation to tumorigenesis. This
review focuses on summarizing the recent progress in
understanding of the function of protein lysine methyla-
tion, and in the discovery of small molecule inhibitors for
PKMTs and PKDMs. We also discuss the potential and
the caveats of targeting protein lysine methylation for the
treatment of cancer.
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Introduction

Protein lysine methylation has gained tremendous attention
since the discovery of SUV39H1 as the first histone lysine
methyltransferase in 2000 [1]. Following the discovery, nu-
merous proteins have been found to possess methyltransfer-
ase activity, such as G9a/GLP [2,3], MLLs [4], EZH2 [5],
SET2 [6], SET7/9 [7], DOT1 [8,9], and PR-SET7 (also
known as SETD8) [10]. These enzymes catalyze the
transfer of methyl group(s) from the co-factor S-adenosyl-
L-methionine (SAM) to the lysine residues of histones.
More recently, many non-histone proteins have been identi-
fied as substrates for these enzymes, hence the name

protein lysine (K) methyltransferases (PKMTs). Apart from
lysine methylation, arginine methylation also exists. The
history of arginine methylation was recently surveyed [11]
and is not the subject of this review. Here we will focus on
the implications of PKMTs in cancers and the recent pro-
gress in the discovery of selective PKMT inhibitors. It is
worth pointing out that PKMTs play important roles in
other biological processes including developmental biology
and stem cell differentiation. Like other protein modifica-
tions, lysine methylation is also subject to its counter modi-
fication, demethylation. For histones, the first reported
demethylase is lysine-specific demethylase 1 (LSD1, also
known as BHC110) [12,13]. However, LSD1 can only
demethylate mono- or dimethylated lysines. Shortly after
the discovery of LSD1, a second family of enzymes, JmjC
domain containing proteins, was found to have demethyla-
tion activity for trimethylated, as well as mono- and
dimethylated lysines [14]. These enzymes are referred to as
protein lysine demethylases (PKDMs). The substrate speci-
ficity and potential biological functions of these enzymes
have recently been reviewed [11,15]. In this review, we aim
to describe the newly discovered inhibitors for PKDMs.

Proteins that are Subject to Lysine
Methylation

Lysine methylation has been extensively studied on his-
tones. The potential roles of histone modifications in
cancers have been reviewed recently [16]. Besides histone
methylation, non-histone methylation is also implicated in
tumorigenesis. p53 is arguably the most extensively studied
protein for lysine methylation. It is methylated by SET7/9,
SMYD2, SETD8, and G9a/GLP at K372, K370, K382,
and K373, respectively (Fig. 1) [17–21]. The number of
non-histone proteins that are methylated at lysine residues
is growing rapidly. DNA methyltransferase 1 (DNMT1)
was reported to be methylated by SET7/9 [22] at K142.
However, another report concluded that the methylation
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site of DNMT1 by SET7/9 was at K1094, which was
subject to demethylation regulation by LSD1 [23]. It is cur-
rently unclear what causes the discrepancy between these
two reports. A similar ‘Ying-Yang’ action was also
observed on STAT3 and E2F1. STAT3 K140 methylation
is carried out by SET7/9 and this methylation is reversed
by LSD1 [24]. Similarly, SET7/9 also methylates E2F1 at
K185 while LSD1 demethylates at this site [25]. An inter-
esting note is that SET7/9 can carry out dimethylation on
STAT3 as well as on p53 in vitro, but has been shown to
be a strict mono-methylase for histones according to the
X-ray structural data [26]. NF-kappaB subunit, p65, is
methylated at K218 and K221 by NSD1 and demethylated
by FBXL11 [27]. In addition, another report showed that
p65 was methylated by SET7/9 at K37 [28]. Another
NF-kappaB subunit, RelA, is methylated by SET7/9 at
K314 and K315 [29] and by SETD6 at K310 [30]. Nuclear
receptor, estrogen receptor alpha, is methylated by SET7/9
at K302 [31]. Besides the proteins described here, numer-
ous other proteins, for example, Rubisco in plant and cyto-
chrome c in yeast, that are subject to methylation are
summarized in a previous review [11]. However, the bio-
logical function of the lysine methylation of these proteins
is not related to cancers.

It is worth noting that most of these studies are based on
overexpression of enzymes or substrates in cells. Therefore,
the physiological roles of these lysine methylation marks
are still elusive. For example, p53 knock-in mice with
seven (p537KR: lysines 367, 369, 370, 378, 379, 383 and
384 in mouse) or six (p53K6R: lysines 367, 369, 370, 378,
379 and 383 in mouse) lysine-to-arginine mutations at its
carboxyl terminus develop normally and show little defect

in p53-mediated damage response [32–34]. This is in
drastic contrast to the results observed in the overexpres-
sion studies. It is possible that methylation, similar to
acetylation, only plays a fine-tuning role in the regulation
of the activity of p53. Particularly, two recent studies on
SET7/9 knockout cast doubt on the role of K372 methyla-
tion in regulating the biological function of p53 [35,36].
Future studies are needed to address these discrepancies.

Potential Biological Functions of PKMTs
in Cancers

SUV39H1
SUV39H1 and its homolog SUV39H2 are required for het-
erochromatin formation. Double knockout of SUV39h1
and SUV39h2 mice are subject to genomic instability [37].
SUV39h1-dependent senescence has been shown to protect
mice from Ras-driven invasive T-cell lymphoma [38].
Based on these studies, SUV39H1 appears to play a tumor-
suppressive function. Controversially, SUV39H1-mediated
H3K9me has been linked to gene silencing of the tumor
suppressor genes, such as p15INK4B and E-cadherin, in
acute myeloid leukemia (AML) [39]. Therefore, it is highly
possible that the default function of SUV39H1 is to main-
tain genome stability by limiting the acute activation of
oncogenes while its dysregulation could cause tumor
formation.

EZH2
EZH2 is one of the first PKMTs implicated in human
cancers [40,41]. Its expression is highly correlated with the
metastasis of various cancers, such as prostate and breast
cancers. EZH2 is the enzymatic subunit of polycomb re-
pressive group 2 (PRC2) that methylates histone H3 at K27
[42]. However, the underlying mechanisms of oncogenic
effect of EZH2 are not fully understood. It is also unclear
whether H3K27 methylation is required for the role of
EZH2 in tumorigenesis since EZH2 may have other sub-
strates beyond histone H3 [43]. Nevertheless, ablation of
EZH2 in tumor cells using RNA interference technology
has demonstrated that EZH2 is a promising drug target to
treat cancers [40].

DOT1L
DOT1L performs H3K79 methylation, a modification that
is associated with transcription elongation. One of its
pathological roles is the mis-regulation of the hox gene ex-
pression through interacting with AF9, a fusion partner of
mixed lineage leukemia (MLL). The mis-regulation can
lead to leukemogenesis [44].

Figure 1 Lysine methylation sites of p53 as an example of complex
protein methylation Scheme showing lysine methylation sites of p53

carboxyl terminus (amino acid residues from 300 to 393). Enzymes that

carry out dimethylation at K370 and K382 are unknown. However,

dimethylation at these two sites has been detected using mass

spectrometry analysis [20]. The existence of a di-methylase of K370 was

also predicted based on western blot analysis [18]. Square blocks

represent methyl groups.
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SMYD2
Another promising therapeutic target for cancer is SMYD2.
A recent paper has shown that SMYD2 is involved in
maintaining an un-differentiated status of MLL-AF9-
induced acute myeloid leukemia (AML) [45]. Although the
mechanism underlying this leukemia maintenance is
unclear, SMYD2 has been shown to methylate p53 [18]
and Rb [46], two of the most important tumor suppressors.
In addition, SMYD2 is reportedly overexpressed in esopha-
geal squamous cell carcinoma [47]. Knockout mice for
SMYD2 have been generated [48]. Future work needs to
address whether SMYD2 knockout mice are resistant to
tumorigenesis in response to oncogenic insults at various
tissues. In addition, the epigenetic role of SMYD2 in cells
is largely unknown. One report showed that SMYD2
methylates histone H3K36 [49], while another report sug-
gested that SMYD2 is an H3K4 methyltransferase [50].
These observations merit further studies to elucidate the
mechanisms underlying this dual-substrate specificity.

G9a and GLP
G9a and GLP belong to one new group of methyltrans-
ferases that methylate p53. They have a wide range of bio-
logical and pathological functions. From the cancer
perspective, G9a and GLP regulate the apoptotic function
of p53. The dimethylation of p53K373 by G9a and GLP
decreases the transcriptional activity of p53. Interrogation
of Oncomine database reveals that G9a is overexpressed in
various tumors, further suggesting its oncogenic effects.
Indeed, the overexpression of G9a was shown to increase
metastasis and invasion in lung cancer [51]. However, the
ultimate outcome of inhibition of G9a/GLP could be com-
plicated by the fact that they methylate other histone and
non-histone substrates [52]. G9a and GLP are largely re-
sponsible for H3K9 mono- and dimethylation. Recently, a
distinguishing feature of cancer cell lines, i.e. the loss of
G9a-dependent large block of H3K9me2, was observed
[53]. This suggests that the loss of G9a activity or its sub-
strate H3K9me2 confers growth or survival advantage to
cancer cells. Therefore, whether the inhibition of G9a/GLP
can decrease the growth or increase the apoptosis of cancer
cells requires further investigation.

Potential Biological Functions of PKDMs in
Cancers

LSD1 and LSD2
LSD1 may serve as a viable target for therapeutic interven-
tion in cancers. It decreases the activity of p53. However,
recent studies have uncovered some controversial roles of
LSD1. LSD1 has been shown to demethylate p53 and de-
crease the apoptotic effect of p53, suggesting that it can act
as an oncogene. Indeed, the overexpression of LSD1 is

observed in prostate cancer [54] and also correlates with
poor prognosis of neuroblastoma [55]. Several reports have
also shown that LSD1 has a potential role in the repression
of E-cadherin, a molecule mediating the cell–cell junction,
and cell migration [56–58]. The expression of E-cadherin
is inversely correlated with metastasis. All of these studies
suggest that LSD1 is a putative onco-protein. However,
one report proposes that LSD1 can suppress the metastasis
of breast cancer by repressing tumor growth factor
(TGF)-beta1 signaling [59]. The exact cause of this contro-
versy is at present unknown. It is possible that the function
of LSD1 is regulated by other binding partner(s) and the
ultimate effect is context-dependent. LSD2, the homolog
of LSD1, was recently shown to have demethylation activ-
ity toward H3K4me2 [60]. So far, there is no report to
indicate that LSD2 plays a role in tumorigenesis.

JMJD2c
JMJD2c (also known as GASC1) is a member of the JmjC
domain-containing protein family. The members of this
family, as described above, can demethylate mono-, di-
and/or trimethylated lysines. JMJD2c was characterized as
an H3K9me3/me2 demethylase. The overexpression of
JMJD2c was observed in esophageal squamous carcinoma
[61]. It regulates androgen receptor-mediated gene expres-
sion [62]. Therefore, it could also play an important role in
androgen receptor-dependent prostate cancer, although this
hypothesis needs to be tested formally. Very recently, func-
tional interplay between JMJD2c and JAK2, a histone tyro-
sine kinase [63], has been revealed in B cell lymphoma
and Hodgkin’s lymphoma [64]. This finding provides a
mechanistic rationale for testing the co-inhibition of JAK2
and JMJD2c in cancers. It is worth pointing out that
JMJD2c and LSD1 also cooperate in androgen receptor-
regulated gene expression [62]. This observation fuels the
idea of investigating the effects of LSD1 and JMJD2c
inhibition in prostate cancer.

PLU-1
PLU-1 is another member of the JmjC domain-containing
protein family. It has H3K4me demethylation activity [65].
Overexpression of PLU-1 has been specifically detected in
breast cancer cells and its inhibition by RNA interference
decreased the proliferation of breast cancer cells [65,66].
This offers a unique opportunity to treat breast cancer
through targeting PLU-1, although it is currently unclear
whether PLU-1 plays a role in other types of cancer.

PKMT Inhibitors

Since Greiner et al. [67] discovered the first selective,
non-nucleoside inhibitor of recombinant Drosophila
Su(var)3–9, chaetocin (IC50 ¼ 0.6 mM) in 2005, the
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inhibitor discovery effort has quickly gained momentum
and a number of new inhibitors have emerged. Herein, we
describe selective PKMT inhibitors with an emphasis on
most recently discovered compounds (Fig. 2). PRMT inhi-
bitors were recently surveyed and are not the subject of this
review [68]. Chaetocin was found to inhibit SUV39H1
(IC50 ¼ 0.8 mM), the human ortholog of Drosophila
Su(var)3–9, as well as other H3K9 PKMTs, including
Neurospora DIM5 (IC50 ¼ 3.0 mM) and mouse G9a
(IC50 ¼ 2.5 mM). It was selective over non-H3K9 PKMTs,
such as H3K27 PKMT dE(z) complex, H3K4 PKMT
SET7/9, and H4K20 PKMT SETD8 [67] (IC50 dE(z)
complex.90 mM; SET7/9 and SETD8.180 mM).
Interestingly, a total synthesis report found natural (þ)-
and synthetic (2)-chaetocin to be equipotent against G9a
(IC50 ¼ 2.4 and 1.7 mM, respectively) [69]. In addition, it
was found that chaetocin inhibited thioredoxin reductase
[70]. Like other members of the epidithiodiketopiperazine

class [71], chaetocin is cytotoxic. Despite its cytotoxicity,
it was reported that chaetocin-treated Drosophila SL-2 cells
at an inhibitor concentration of 0.5 mM showed marked
reduction in cellular levels of di- and trimethylated
H3K9 with no apparent changes in cellular levels of
methylation of other lysines (H3K27, H3K36, H3K79, and
H3K4) [67].

Discovery of BIX01294, the first selective small mol-
ecule inhibitor for G9a and GLP, by Jenuwein and
co-workers [72] was an important advance in the PKMT
inhibitor discovery field, as this compound was the first
PKMT inhibitor that blocks protein–protein interactions
[73]. BIX01294 had good in vitro potency against G9a and
GLP and was selective over other H3K9 PKMTs
(SUV39H1 and SETDB1), H3K4 PKMT SET7/9 [73].
Unfortunately BIX01294 was toxic in cellular assays at
concentrations above 4.1 mM. Mechanistically, unlike chae-
tocin, BIX01294 did not inhibit G9a in a SAM-competitive

Figure 2 Structures of select PKMT inhibitors
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manner but rather occupied the histone peptide binding
pocket, as evidenced by the X-ray crystal structure of
BIX01294 and GLP in the presence of SAH
(S-adenosyl-L-homocysteine) [73,74]. This crystal structure
revealed that BIX01294 did not bind in the SAM-binding
site nor did it interact with the lysine binding channel [73].

By elaborating the 7-methoxy moiety of the quinazoline
template, it was discovered that a series of new analogs
interacted with the lysine-binding channel, including
UNC0224, a 7-fold more potent G9a inhibitor (IC50 ¼

15 nM) in the G9a ThioGlo assay when compared with
BIX01294 (IC50 ¼ 106 nM) [75,76]. A high-resolution
(1.7 Å) X-ray co-crystal structure of G9a and UNC0224
(PDB: 3K5K) showed that the 7-dimethylamino propoxy
side chain of UNC0224 only partially occupied the lysine
binding channel of G9a [73,76], and thus space remained
to accommodate a longer side chain or larger amino-
capping group. The most potent G9a inhibitor to date,
UNC0321 was a result of further side chain manipulations
[77]. Because UNC0321 likely reached the detection limits
of the biochemical assays, Morrison Ki values were deter-
mined using an endoproteinase-coupled microfluidic capil-
lary electrophoresis assay [78]. UNC0321 (Morrison Ki ¼

63 pM) was about 40-fold more potent than UNC0224
(Morrison Ki ¼ 2.6 nM) and 250-fold more potent than
BIX01294 (Morrison Ki ¼ 16 nM) [77].

While highly potent in biochemical assays, UNC0321
was less potent in cellular assays in comparison with
BIX01294, prompting the development of analogs with
higher cellular potency. UNC0638, specifically designed to
increase lipophilicity and cell membrane permeability
while maintaining high in vitro potency, was indeed found
to have excellent in vitro potency (Morrison Ki G9a ¼
3.7 nM; Ki ¼ 3.0 nM) and was .100-fold selective over a
wide range of epigenetic and non-epigenetic targets [79].
Mechanism of action studies revealed that UNC0638 was
competitive with the peptide substrate and non-competitive
with the co-factor SAM. The MOA findings were con-
firmed by X-ray crystal structure of the G9a–UNC0638–
SAH complex (2.56 Å resolution; PDB: 3RJW). The
combination of high potency, excellent selectivity, low cell
toxicity and robust on-target activities in cells makes
UNC0638 an excellent chemical probe of G9a/GLP for
cellular studies. Most recently, UNC0646 and UNC0631,
close analogs of UNC0638, were reported to have compar-
able cellular potency and toxicity and could serve as alter-
native tool compounds for investigating specific cellular
systems [80]. For example, UNC0646 had an outstanding
toxicity/function ratio in MCF7 (470), 22RV1 (510), and
IMR90 (360) cells, making this compound potentially
more useful for studying G9a biology in these specific cell
lines [80].

Chang et al. [81] also developed a potent G9a and GLP
inhibitor E72 based on the quinazoline template with
binding affinities determined by isothermal titration
calorimetry (Kd GLP ¼ 136 nM; G9a ¼ 164 nM). A brief
selectivity study showed E72 was inactive against
SUV39H2 with no inhibition at 5 mM [81]. The X-ray
co-crystal structure of the GLP–E72 complex in the pres-
ence of SAH (2.19 Å, PDB: 3MO5) showed that E72
analogous to UNC0224 with G9a occupies both the
surface of the peptide binding groove and the lysine
binding channel [81]. In three separate cell types, E72 was
significantly less toxic than BIX01294 at compound con-
centrations of 10 mM and was able to reactivate
K-ras-mediated epigenetic silencing of the Fas gene in NIH
3T3 cells [81].

Most recently, Daigle et al. [82] discovered a highly
potent and selective SAM-competitive DOT1L inhibitor
EPZ004777 (Ki ¼ 0.3 nM), which is a co-factor product
(SAH) mimic. EPZ004777 was.1000-fold selective for
DOT1L over CRM1, EHMT2, EZH1, EZH2, PRMT1s,
PRMT5, PRMT8, SETD7, and WHSC1, all of which are
SAM-utilizing methyltransferases. EPZ004777 was found
to selectively kill off cells bearing MLL translocation.
In addition, in vivo administrations of EPZ004777 led to
extension of survival in a mouse MLL xenograft model
[82]. Subsequently, Yao and co-workers showed that pro-
tecting the N6 position in SAH does not affect binding to
DOT1L, but seems to instill selectivity against CARM1,
PRMT1, G9a, and SUV39H2. The best compound in their
series, compound 1 had an IC50 of 0.11 mM against
DOT1L and was proposed to be capable of covalently
binding to the histone [83].

Recently Ferguson et al. [84] described a potent inhibi-
tor of SMYD2, AZ505 (Ki ¼ 0.30 mM) identified by high-
throughput screening. As seen from its crystal structure in
complex with SMYD2, AZ505 occupies the peptide
binding groove and is peptide substrate competitive.
Furthermore, this compound was shown to be.83
fold selective for SMYD2 over a panel of PKMTs
(SMYD3, DOT1L, EZH2, GLP, G9a, and SET7/9) [84].
Given the broad roles of SMYD2 in cancers, it will be
interesting to test the effect of this inhibitor and its analogs
in cancer cells.

PKDM Inhibitors

Several groups have investigated polyamine analogs for
their ability to inhibit recombinant LSD1 in vitro and in
vivo. Among these compounds, the best were polyamines 2
and 3 (Fig. 3), which inhibited LSD1 activity by 85% and
82%, respectively, at 10 mM [85,86]. Subsequently, Huang
et al. [87] investigated polyamines, such as PG11150
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(IC50 ¼ 5 mM), as inhibitors of LSD1. It was found that
colorectal cancer cells treated with polyamine PG11150
display re-expression of multiple aberrantly silenced tumor
suppressor genes. In addition, PG-11144 the trans isomer
of PG11150, displays a marked decrease in tumor growth
and increases H3K4me2 levels in the mouse xenograft
model, without significant overall toxicity, when adminis-
tered in combination treatments alongside a known DNMT
inhibitor 5-azacytidine. Interestingly, when used alone
PG-11144 displayed antitumor activity, while polyamine 2
did not produce a similar effect without the accompanying
DNMT inhibitor. However, selectivity of these inhibitors
for LSD1 over monoamine oxidase (MAO)-A, MAO-B
and the newly discovered LSD2 is yet to be addressed.

A high degree of homology exists between the catalytic
sites of MAO-A, B, and LSD1; thus, one might reasonably
expect that many of the existing monoamine oxidase inhi-
bitors could inhibit LSD1. Recognizing this, researchers
tested a known non-selective MAO inhibitor PCPA
(trans-2-phenylcyclopyropylamine) and indeed found it to
have LSD1 inhibitory activity (Ki ¼ 357 mM; LSD1)
[88,89]. MAO and LSD inhibition is fairly insensitive
to stereochemistry as has been shown [90,91]; thus
(+)-racemates of trans tranylcypromine and its derivatives
are commonly used for testing and in the clinic [89].
Inhibition of LSD1 by tranylcypromine has been shown to
proceed via ring-opening of the cyclopropyl moiety fol-
lowed by formation of a covalent adduct with the C(4) of

Figure 3 Structures of select PKDM inhibitors
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the FAD co-factor. PCPA displays no apparent selectivity
for LSD1 over MAO-A, or MAO-B, which prompted a
number of groups to investigate LSD1-selective derivatives
based on its core structure. Inhibitors based on the tranyl-
cypromine scaffold include compound 4 (Ki ¼ 8 mM) dis-
covered in 2008 [92], S2101 (Ki ¼ 0.6 mM, LSD1; Ki ¼

110 mM, MAO-A; Ki ¼ 17 mM, MAO-B) in 2010 [93],
compound 5 (Ki ¼ 1.9 mM, LSD1; Ki ¼ 290 mM,
MAO-A) in 2009 [94], and compound 6 (Ki ¼ 6 mM,
LSD1) in 2010 [90]. These inhibitors affect histone H3K9
and H3K4 methylation levels in cells, mediated by the in-
hibition of LSD1-catalyzed demethylation.

Culhane et al. incorporated tranylcypromine, propargy-
lamine, cis- and trans-chlorovinyl, and hydrazine func-
tionalities as warheads in their peptide scaffold
(compounds 7–11) to study LSD1 inhibition by H3 pep-
tides. Through their studies it has been determined that
chlorovinyl-H3 (compound 8) is a mechanism-based
LSD1 inactivator, while endo-cyclopropylamine-H3 (com-
pound 7) did not show time-dependent inactivation. The
best suicide inhibitor hydrazine-H3 (compound 11,
Ki(inact) ¼ 4.35 nM, GST-LSD1) was 20-fold more potent
than the propargylamine-H3 derivatives [88].

The functional interaction between LSD1 and HDAC has
been reported [95]. Lee et al. [95] found that LSD1 and
HDAC enhanced the activity of each other. Given the fact
that HDAC inhibitors have already been approved for cuta-
neous T-cell lymphoma treatment, this molecular mechan-
ism raises an interesting hypothesis that LSD1 and HDAC
inhibitors could cooperatively inhibit tumorigenesis.

JMJD2 demethylases are inhibited by analogs of the
co-factor 2-OG, including N-oxalylglycine (NOG), pyri-
dine dicarboxylate, and the related bipyridyl derivative 12.
Other chemotypes that are also presumed to bind to the
active site Fe(II) include catechols, hydroxamic acids, and
tri-carboxylic acid cycle intermediates, such as succinate
and fumarate [61,96,97]. Inhibitors 13 and 14, designed on
the basis of the crystal structure of NOG in complex with
JMJD2A (PDB ID 2OQ6), are equipped with an append-
age intended to engage a large subpocket adjacent to the
active site. Hamada et al. [98] have demonstrated inhibition
of JMJD2A, 2C and 2D activity by 14 and its analogs
in vitro and in vivo. Importantly, only the methyl ester
prodrug of 14 was active in cellular assays presumably due
to poor cell permeability of the free acid-containing
analogs. Rose et al. [99] produced a crystal structure of an
analog of their best inhibitor 13 in complex with JMJD2A
(PDB ID 2WWJ) confirming the predicted binding mode
for their N-oxalyl-D-tyrosinyl derivatives. Compound 13
exhibited some selectivity against prolyl hydroxylase
domain-containing protein 2 (PHD2) in biochemical
assays, while 14 appeared to inhibit other Fe(II)/
a-ketogluterate-dependent oxygenases indiscriminantly

[98]. Interestingly, while NOG itself selectively inhibits
PHD1/2 over JMJD2C/2A, its analog 15 is selective for
JMJD2C and JMJD2A [100]. This selectivity is presum-
ably due to the presence of a methylene group next to the
carbonyl of the hydroxamate moiety, and its affinity for
JMJD2 is dependent on the length of the linker leading to
the tertiary amino group. Another JMJD-selective inhibitor
was recently discovered [101]. Compound 16 was designed
to incorporate both a substrate mimic and a methyllysine
mimic. This inhibitor is more than 9000-fold selective for
the Jumonji C domain-containing enzymes over PHDs. Its
methyl ester prodrug methylstat is cell active and may have
potential for anticancer chemotherapy [101].

A high-throughput assay based on time-resolved fluores-
cence resonance energy transfer was reported recently to
screen the inhibitors for LSD1 and JMJD2c [102].
Numerous inhibitors for these two enzymes have been
identified through the assay. Because LSD1 and JMJD2c
cooperate in regulating the gene expression in prostate
cancer, these inhibitors will be extremely valuable for
testing the synergistic effects of co-inhibition of these two
enzymes in cancer. Because of the common mechanism
underlying the demethylation reaction of JmjC domain-
containing proteins, the specificity of these inhibitors needs
to be rigorously tested in the future.

Discussion

Given the critical roles of PKMTs and PKDMs in cancers,
it is very likely that inhibitors of these enzymes will move
forward into clinical trials. However, one must keep in
mind the caveat that a single PKMT or PKDM may target
multiple substrates as described above, potentially leading
to opposite biological effects depending on the context.
For example, LSD1 demethylates and inactivates p53 [19].
Further, LSD1 participates in Snail-mediated silencing of
E-cadherin [57], whose down-regulation generally corre-
lates with poor prognosis of tumor and metastasis. Both
these observations suggest that LSD1 could have an onco-
genic effect. However, another report showed that LSD1
could repress breast cancer metastasis by repressing
TGF-beta1 expression [59], indicating that LSD1 could
also behave as a tumor suppressor. In the same way, LSD1
demethylates and stabilizes E2F1, an apoptosis driver [25].
These results suggest that LSD1 could also have proapop-
totic function. Therefore, it is highly possible that the bio-
logical effect of inactivation of an enzyme is context
dependent. The same is true for G9a, GLP, and SUV39H1
as discussed above. In addition, it is worth noting that
some PKMTs or PKDMs are subunits of mega complexes.
For example, LSD1, G9a, and GLP are subunits of the
CtBP complex [56]. Inhibition of any component of this
mega complex may lead to unexpected side-effects.
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Therefore, caution needs to be taken when extrapolating in
vitro data to clinical practice. In addition, many of the
enzymes discussed earlier act not only on histone substrates
but also on non-histone proteins. However, to our best
knowledge, the interplay between histone and non-histone
methylations has not been effectively addressed in a well-
defined system. Nevertheless, inhibitors of PKMTs or
PKDMs, like HDAC and DNMT inhibitors, are bound to
eventually become a new generation of epigenetic drugs
for cancer treatment.
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