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Abstract

The ability to withstand mitochondrial damage is especially critical for cells such as neurons that

survive long-term. We report that cytochrome c (cyt c), a key trigger of apoptosis that is released

upon mitochondrial permeabilization, is targeted for proteasome-mediated degradation in

postmitotic neurons but not in normal proliferating cells. Importantly, an unbiased siRNA screen

identifiedp53 associated Parkin-like cytoplasmic protein (PARC/CUL9) as an E3 ligase that

targets cyt c for degradation. PARC/CUL9 levels were markedly elevated with neuronal

differentiation and over expression of PARC/CUL9 was sufficient to promote cyt c degradation.

Conversely, PARC/CUL9 deficiency made neurons more vulnerable to mitochondrial damage,

compromising their ability to survive long-term. Degradation of cyt c by an identical mechanism
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was also seen in brain tumor cells, highlighting this as an important strategy engaged by neurons

and cancer cells to ensure optimal long-term survival.

Keywords

apoptosis; cytochrome c; PARC; CUL9; ubiquitin; Apaf-1; neurons; cancer; mitochondria;
proteasome; Parkin

Introduction

Mitochondrial permeabilization and cyt c release are key events that trigger caspase

activation and apoptosis in mammalian cells (1). Indeed, mitochondrial release of cyt c has

been considered the point of commitment to death for most mitotic cells (2, 3). However,

postmitotic cells such as neurons can restrict apoptosis even after cyt c release. Strictly

regulating apoptosis after the point of cyt c release is particularly important for neurons so

that they can recover from any mitochondrial damage and survive long-term (4). Neurons

have been shown to strictly inhibit caspases by the X-linked Inhibitor of Apoptosis Protein

(XIAP) and by the maintenance of a highly reduced cellular environment that prevents cyt c

oxidation and restricts its pro-apoptotic activity (5, 6). Importantly, sympathetic neurons

have the ability to recover from mitochondrial permeabilization if caspase activation is

restricted (7, 8). However, the exact fate of cytosolic cyt c in these situations when

mitochondria are permeabilized but the cells survive remains unknown.

Several factors have been identified to regulate cyt c-mediated caspase activation. For

example, physiological levels of potassium (9), nucleotides (10), and tRNA (11) can inhibit

apoptosome formation. Additionally, various proteins including PHAPI, TUCAN, and Aven

can modulate apoptosome-mediated caspase activation (12). Oxidation (13) and

nitrosylation (14) have also been reported to increase the proapoptotic activity of cyt c.

Apoptosis inhibition is also a fundamental hallmark of cancer cells (15). Indeed, a strict

regulation of apoptosis post-cyt c release appears to be adapted by cancer cells for their

survival (3, 4, 12). For example, like neurons, many cancer cells are resistant to cytosolic cyt

c (6). In addition, both neurons and cancer cells utilize glucose extensively and engage the

pentose phosphate pathway to generate a highly reducing cellular environment that limits

the ability of cyt c to activate caspases and induce apoptosis (6). These results have brought

into focus the possibility that the multiple mechanisms evolved by neurons to restrict

apoptosis may be similar to those adapted by mitotic cells during cancer progression.

Here, we describe a novel mechanism in which mitochondrially-released cyt c is targeted for

rapid degradation in postmitotic neurons and cancer cells when apoptosis is restricted.

Importantly, we discovered that cytosolic cyt c is targeted for degradation by PARC/CUL9,

an E3 ligase closely related to Parkin. These results highlight cyt c degradation as an

important survival mechanism engaged by both neurons and cancer cells and identify a

novel function of PARC/CUL9 in maintaining cell survival after mitochondrial damage.
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Results

Cytosolic cyt c is targeted for proteasome-mediated degradation in neurons

To examine the status of cytoplasmic cyt c that is released from the mitochondria but unable

to engage apoptosis, we injected neurons and fibroblasts with tBID, which induces

mitochondrial permeabilization, in the presence of a caspase inhibitor. As expected, after

release from mitochondria, cyt c accumulated in the cytosol of fibroblasts. In neurons,

however, cyt c released from the mitochondria was targeted for degradation (Fig. 1A).

Degradation of cytosolic cyt c was also observed in neurons when cyt c release was induced

by physiological stimuli, such as nerve growth factor (NGF) deprivation (Figure 1B,

Supplementary Fig. S1A). This degradation was proteasome dependent as addition of the

proteasome inhibitors lactacystin or bortezomib completely prevented the degradation of cyt

c and resulted in its accumulation in the cytosol (Fig. 1B-D and Supplementary Fig. S1B).

The degradation of cyt c is likely an important mechanism for neuronal survival as it would

allow neurons to withstand mitochondrial damage and decrease any risk of apoptosis caused

by the accidental release of cyt c.

Low Apaf-1 levels are a key determining factor for cyt c degradation

We next examined whether the degradation of cyt c was also seen in other postmitotic cells.

Indeed, we found that cardiomyocytes and myotubes also rapidly degrade cyt c after its

release from mitochondria (Supplementary Fig. S1C). To examine whether cellular

differentiation into a postmitotic state engages the pathway of cyt c degradation, we used the

rat pheochromocytoma PC12 cells, which can be maintained either in a mitotic

undifferentiated state or can be differentiated into neuronal-like cells in response to the

addition of NGF (16, 17). Undifferentiated or neuronally-differentiated PC12 cells were

treated with staurosporine to induce the release of cyt c from mitochondria and its status was

assessed by immunofluorescence. In contrast to the accumulation of cyt c in the cytosol seen

in undifferentiated PC12 cells, cytosolic cyt c was markedly degraded in the differentiated

PC12 cells (Fig. 2A and 2B). Degradation was not stimuli-specific as other apoptotic

stimuli, such as DNA damage also induced degradation of cytosolic cyt c in differentiated

but not mitotic PC12 cells (Fig. 2B).

To gain insight into the mechanism by which neuronal differentiation engages the pathway

for cyt c degradation, we focused on the key components of the apoptosome: mitochondrial-

released cyt c binds to Apaf-1 to promote caspase-9 and caspase-3 activation, which results

in cell death (1). We found that levels of Apaf-1 were selectively reduced in neurons and

differentiated PC12 cells while caspase-9 and caspase-3 levels remained unchanged (Fig.2C)

(17);Apaf-1 levels are also reduced in postmitotic cardiomyocytes and myotubes (18, 19).

Low Apaf-1 levels could leave cytosolic cyt c available as a target for degradation.

Therefore, we asked whether deletion of Apaf-1 could confer the ability to degrade cyt c in

mitotic fibroblasts (MEFs), which otherwise accumulate cytosolic cyt c. As expected,

staurosporine-induced release of mitochondrial cyt c in wild-type fibroblasts resulted in its

accumulation in the cytosol. In striking contrast, Apaf-1-deficient fibroblasts treated with

staurosporine readily degraded cytosolic cyt c; this degradation was mediated via the

ubiquitin proteasome pathway as it was inhibited by the proteasome inhibitor MG132 (Fig.

Gama et al. Page 3

Sci Signal. Author manuscript; available in PMC 2015 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2D, 2E, and Supplementary Fig. S2 A, S2B). Sub cellular fractionation of these cells also

showed the degradation of mitochondrially-released cyt c after staurosporine treatment and

its accumulation in the cytosol in the presence of the proteasome inhibitor MG132 (Fig. 2F).

These results reveal that the mechanism targeting cytosolic cyt c for degradation is not

unique to postmitotic cells and show that mitochondrial-released cyt c that is unable to bind

Apaf-1 is targeted for degradation by the proteasome.

We then examined the ubiquitination of cyt c using Apaf-1 deficient fibroblasts expressing

HA-tagged-Ubiquitin (Ub) and Flag-cyt c. Robust ubiquitination of mitochondrially-

released cyt c was detected in cells treated with staurosporine in the presence of proteasome

inhibitors (Fig.2G and Supplementary Fig. S2C). To rule out a possibility that the higher

molecular-weight bands were from cyt c-associated proteins rather than cyt c itself, the

protein mixture was first heated in the presence of 1% SDS to disassociate protein-protein

interactions before being subjected to immunoprecipitation. Our results show that these high

molecular-weight bands corresponded to ubiquitinated cyt c as they were detected even

under denaturing conditions (Fig.2G).

Neuroblastoma and glioblastoma cells degrade cytosolic cyt c

Our previous studies have shown that the apoptotic brake sengaged by neurons to ensure

their long-term survival have been adapted by many cancer cells to evade apoptosis (4, 6).

Inactivating cyt c could allow cancer cells to survive apoptotic stresses that result in

mitochondrial damage. To investigate this possibility we used neuroblastoma and

glioblastoma cell lines and subjected them to various apoptosis stressors and examined the

status of cytosolic cyt c in the absence or presence of proteasome inhibitors. Indeed, we

found that cyt c released from mitochondria is targeted for degradation via the ubiquitin-

proteasome pathway in glioblastoma (U87-MG) and neuroblastoma (SH-SY5Y) cell lines

(Fig.3A-C). Degradation of cytosolic cyt c in these cancer cells was seen in response to

multiple apoptotic stimuli including staurosporine, DNA damage by etoposide, and gamma

irradiation. Importantly, proteasome inhibition with lactacystin or MG132 or knockdown of

ubiquitin blocked the degradation of cytosolic cyt c (Fig.3A-D).

Cyt c degradation is mediated by the E3 ligase PARC/CUL9

To identify the specific E3 ligase that ubiquitinates cytosolic cyt c, we took an unbiased

approach and screened a siRNA library of human E3 ligases (Supplementary Table 1). U87-

MG cells were reverse transfected with siRNAs and after a period of three days to allow for

the silencing of target genes, cells were treated with staurosporine (in the presence of a

caspase inhibitor) to induce the release of cyt c. Transfections were performed in 96-well

plates with each well having pools of 4 siRNAs targeting each gene. A siRNA against

ubiquitin, which blocks cyt c degradation, and a scrambled siRNA were included as positive

and negative controls in each plate in this screen. After 24 hours of staurosporine treatment

to allow for the release of cyt c from mitochondria, cyt c was stained by

immunofluorescence. The status of cytosolic cyt c (degraded or accumulated) in each of the

wells was then scored by two independent investigators to identify potential E3 ligases that,

when down regulated, caused the cytosolic accumulation of mitochondrially-released cyt c

(Fig. 4A). Following the primary screen and secondary validation (using three independent,
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non-pooled siRNAs), we identified PARC/CUL9 (p53 associated Parkin-like cytoplasmic

protein)as the only E3 ligase that targeted cyt c for degradation in this assay (Fig.4B).

PARC, also known as Cullin-9 (Cul9), belongs to the Cull in family of E3 ligases (20, 21).

Interestingly, PARC/CUL9 has high homology with the C-terminus of Parkin (21), an E3

ligase mutated in Parkinson’s disease (Fig. 4C)(22, 23). While Parkin is known to target

damaged mitochondria for degradation through mitophagy (24), the substrates of PARC/

CUL9had remained unknown. We examined whether cytosolic cyt c interacted with PARC/

CUL9in cells upon mitochondrial permeabilization. U87-MG cells were treated with

staurosporine in the presence of proteasome inhibitor, and PARC/CUL9 was then

immunoprecipitated from cytosolic fractions of these cells and probed for cyt c binding. Our

results show that cyt c, and PARC/CUL9 form a complex upon mitochondrial

permeabilization in these cells (Fig.4D).

To determine whether PARC/CUL9 was responsible for cyt c ubiquitination, we stably

knocked down PARC/CUL9 in U87-MG cells and assessed cyt c ubiquitination.

Ubiquitination of cyt c was markedly reduced in cells that were stably knocked-down for

PARC/CUL9 (Fig.4E). To confirm these results, we performed an in vitro ubiquitination

assay using immunoprecipitated PARC/CUL9 and recombinant cyt c and ubiquitin. These in

vitro ubiquitination experiments showed cyt c poly ubiquitination, which could be inhibited

by the addition of methylated ubiquitin (Fig.4F).

We next examined whether PARC/CUL9 also mediated the degradation of cytosolic cyt c in

the multiple cell types where cyt c degradation was observed. In U87-MG cells, knockdown

of PARC/CUL9 resulted in an increased cytosolic accumulation of cyt c in response to

staurosporine (Supplementary Fig. S3A). Importantly, knockdown of PARC/CUL9 in

Apaf-1 knockout MEFs also resulted in the accumulation of mitochondrial-released cyt c

(Supplementary Fig. S3B). Importantly, to determine whether cyt c degradation in neurons

was also mediated by PARC/CUL9, we microinjected neurons with scrambled siRNA or

siRNA to PARC/CUL9, and then deprived of NGF to induce the release of cyt c. While

neurons injected with control siRNA showed robust degradation of mitochondrial-released

cyt c, knockdown of PARC/CUL9 caused increased accumulation of cyt c in the cytosol

(Fig.5A).

PARC/CUL9 promotes cell survival after mitochondrial damage

We examined whether PARC/CUL9 was expressed at higher levels in cells that degraded

cytosolic cyt c. PARC/CUL9 levels were strikingly elevated in neurons and differentiated

PC12 cells (that degrade cyt c) as compared to fibroblasts and undifferentiated PC12 cells

(that do not degrade cyt c) (Fig.5B). Interestingly, Apaf-1 levels in the U87-MG and SH-

SY5Y cell lines that degrade cyt c were lower than in normal fibroblasts where as PARC/

CUL9 levels were comparable (Supplementary Fig. S4A). Thus, while basal PARC/CUL9

expression in the context of low Apaf-1 levels appears to be sufficient for cytosolic cyt c

degradation, neuronal differentiation is accompanied not only by a decrease in Apaf-1 but

also by a marked increase in PARC/CUL9.

Gama et al. Page 5

Sci Signal. Author manuscript; available in PMC 2015 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Next, we examined whether over expression of PARC/CUL9 could promote survival in cells

that were exposed to mitochondrial damage. We focused on cells that lacked the capability

of degrading mitochondrially-released cyt c. HeLa cells and wild-type MEFs were treated

with the Bax activator compound Bam7 (25) or the mitochondrial uncoupler FCCP to induce

mitochondrial damage and release of cyt c. We found that PARC/CUL9 over expression

enabled these cells to degrade cytosolic cyt c (Fig.5C). Importantly, PARC/CUL9 over

expression also conferred significant protection in response to mitochondrial damage in

these cells (Fig.5D, Supplementary Fig. S4B). Similar protection was also seen with PARC/

CUL9 over expression in undifferentiated PC12 cells (Supplementary Fig. S4C).

Conversely, we examined whether PARC/CUL9 deficiency made neurons more vulnerable

to mitochondrial damage. We obtained sympathetic neurons from PARC/CUL9-deficient

mice (26) and treated them with various insults that induced mitochondrial damage. Our

results show that PARC/CUL9-deficient neurons were more sensitive to mitochondrial

damage induced by NGF deprivation, etoposide or tBid injection when compared to wild-

type neurons (Fig.5E-G).

To critically determine whether cells expressing PARC/CUL9 are better equipped to recover

after mitochondrial damage, we examined long-term survival in both cancer cells and

neurons. We focused first on SH-SY5Y cells and determined the time point after apoptotic

treatment at which most cells had undergone mitochondrial outer membrane

permeabilization (MOMP) using the Smac (1–60)-mCherry construct (27) (Fig.6A). We

found that most cells had released Smac to the cytosol (an indicator of MOMP) after 3 hours

of staurosporine treatment (500 nM) (Fig.6B). Importantly, down regulation or over

expression of PARC/CUL9 had no effect on the release of Smac from mitochondria,

indicating that the kinetics of MOMP were not affected by PARC/CUL9 (Fig. 6B and

Supplementary Fig. S4D) Control or PARC/CUL9-deficient SH-SY5Y cells were treated

with staurosporine for 3 hours, washed extensively and assessed for survival 5 days later.

Our results show that PARC/CUL9-expressing cells had a significant growth advantage

compared to those that were knocked down for PARC/CUL9(Fig.6C).

To examine the importance of PARC/CUL9 on long-term survival after mitochondrial

damage in neurons, we isolated sympathetic neurons from wild-type and PARC/CUL9

knockout mice. Neurons were deprived of NGF for 18 hours, a period of time that was

previously shown to induce MOMP in these cells (8). Neurons were then rescued by

addition of NGF-containing media and left in culture for 7 additional days (Fig.6D). After 7

days of NGF re-addition, the rescued neurons were clearly identifiable with large and phase-

bright cell bodies, whereas the non-rescued neurons became atrophic and appeared

degenerated (Fig. 6E). Thus, after 7 days of NGF rescue, it was possible to unequivocally

distinguish between those cells that were rescued by NGF re-addition and those cells that

had already committed to die and were not able to recover with NGF re-addition. Our results

with this NGF rescue assay show that PARC/CUL9-deficient neurons were less capable of

recovery after mitochondrial damage (Fig. 6F).

Together, these results show that neurons and cancer cells can respond to mitochondrial

damage by degrading the mitochondrially-released cyt c and limiting the risk of apoptosis.
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Our results also identify PARC/CUL9 as an E3 ligase that targets cyt c degradation and

show that PARC/CUL9 can modulate cell survival and allow recovery from situations of

mitochondrial damage.

Discussion

Despite the central role of cyt c in activating apoptosis, the mechanism by which cyt c itself

is regulated in cells is poorly understood. In fact, the mitochondrial release of cyt c has been

considered to be the point-of-no-return in the apoptotic cascade because of the

mitochondrial damage incurred as a consequence of mitochondrial permeabilization

occurring prior to cyt c release in cells (3). Thus, a cell could die of mitochondrial

dysfunction and energetic failure even if caspase activation is blocked. However,

sympathetic neurons have been shown to maintain survival and recover even after

mitochondrial permeabilization and cyt c release (7, 8). Our results here show that neurons

that have released cyt c but are unable to activate caspases engage a mechanism to rapidly

degrade cyt c and eliminate any further risk of activating the apoptotic machinery.

A question that emerged was whether the ability to degrade cyt c was particular to

postmitotic cells such as neurons or whether the degradation machinery was present in all

cells but selectively engaged in postmitotic cells. Our results show that a key feature

common to multiple postmitotic cells where cyt c degradation was observed was that these

cells had low levels of Apaf-1. As Apaf-1 is the main protein cyt c binds to upon its release

from mitochondria, low Apaf-1 levels could leave an excess of cyt c available for

degradation. Also, since the interaction between Apaf-1 and cyt c is thought to be transient

(28), all cytosolic cyt c could become available for degradation if apoptosis is unable to

proceed. Our results show that Apaf-1 deficiency alone is able to confer the ability of

degrading cyt c to mitotic cells such as fibroblasts that otherwise do not degrade cytosolic

cyt c. These results are significant because they imply that the machinery that targets

cytosolic cyt c for degradation is not unique to postmitotic cells. Indeed, Apaf-1 deficient

neural precursor cells have also been shown to degrade cyt c (29, 30). Together, these results

point to Apaf-1 as a key factor that determines whether cyt c remains stable in the cytosol or

is targeted for degradation once it is released from the mitochondria.

Using an unbiased siRNA screen, we identified PARC/CUL9 as an E3 ligase that targets cyt

c, once released from the mitochondria, for degradation. While PARC/CUL9 has been

identified as an E3 ligase due the presence of RING and Cull in domains (21, 26, 31), our

results identify cyt c as its first known substrate. As cyt c degradation occurs only after its

release from mitochondria, any previous proteomic approach to identify the PARC/CUL9

substrates would have failed to detect cyt c as it would have remained in the mitochondria

under normal conditions. Our data show that PARC/Cul9 could ubiquitinate cyt c in vitro

and its knockdown increased the accumulation of cytosolic cyt c in cells (Fig. 4, 5).

However, a fraction of cells still degraded cyt c even in the absence of PARC/Cul9,

indicating that an alternative E3 ligase could also target cyt c for degradation.

The C-terminus of PARC/CUL9 is highly similar to Parkin, a known E3 ligase with

mutations that are associated with Parkinson’s disease (23). Parkin is well known to be

Gama et al. Page 7

Sci Signal. Author manuscript; available in PMC 2015 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



recruited to damaged mitochondria and promote its degradation (24). The high degree of

structural similarity between PARC/CUL9 and Parkin (Fig.5C) suggests that like Parkin,

PARC/CUL9 may also be important for promoting neuronal survival after mitochondria

injury. Consistent with this model, our results show thatPARC/CUL9-deficient neurons

were more vulnerable to multiple situations of mitochondrial damage. PARC/CUL9 over

expression was also sufficient to degrade cytosolic cyt c and promote survival in mitotic

cells exposed to mitochondrial damage. Importantly, we also examined the ability of PARC/

CUL9 to regulate neuronal recovery after mitochondrial damage by conducting a long-term

survival assay. Indeed, our results show that PARC/CUL9-deficient neurons were less

capable of recovery after mitochondrial damage and rescue (Fig.6). While PARC/CUL9 can

reduce the risk of apoptosis by targeting mitochondrially-released cyt c for degradation and

promoting neuronal recovery, it is important to point out that sympathetic neurons with

significant dysfunctional mitochondria cannot be maintained alive indefinitely. These

neurons are remarkably capable of maintaining mitochondrial membrane potential despite

the loss of cyt c for a period in part by maintaining ATP generation via glycolys is (8, 32,

33). Our results reiterate the notion that sympathetic neurons are not irreversibly committed

to die upon mitochondrial permeabilization and that PARC/CUL9 is important for optimal

neuronal rescue during this time period.

As in neurons, the ability to evade apoptosis is one of the hallmarks of cancer cells (15). In

previous reports, we identified the strict inhibition of caspases by XIAP and the reducing

cellular environment as two mechanisms by which apoptosis is selectively restricted in

neurons and cancer cells (4, 6). Neurons and cancer cells have also been shown to recover

from mitochondrial permeabilization if apoptosis is restricted (7, 8, 27). Here we find that

cytosolic cyt c is degraded in cancer cells just as observed in neurons, indicating that these

cells engage redundant mechanisms to ensure survival in situations of mitochondrial

damage. Degradation of cytosolic cyt c could also be important even if apoptosis is inhibited

as continued accumulation of cytosolic cyt c over a long period of time could be detrimental

to cells. For example, while the binding of cyt c to Apaf-1 via the WD40 domain has been

best studied (34–36), it is conceivable that cyt c may also interact with other WD40 domain-

containing proteins with negative consequences. The mechanism by which cyt c is degraded

in both neurons and cancer cells involves proteasomal targeting of cyt c by the same E3

ligase PARC/CUL9. An important implication of these results is that even though neurons

and cancer cells are markedly different cell types, they are strikingly similar with regards to

apoptosis restriction and that the survival mechanisms evolved by neurons may be co-opted

by cancer cells to evade apoptosis.

Materials and Methods

Sympathetic neuronal cultures

Primary sympathetic neurons were dissected from the superior cervical ganglia of postnatal

day 0–1 mice (P0–P1). Cells were plated on collagen coated dishes at a density of 60 000

cells per well for Western or RT-PCR analysis, or 10 000 cells per well for microinjection,

survival counts or immunofluorescence experiments. Sympathetic neurons were grown for

4–5 days in NGF-containing media before treating them with experimental conditions. For
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treatments, etoposide was used at a concentration of 20 uM. For NGF deprivation, cultures

were rinsed three times with medium lacking NGF, followed by the addition of goat anti-

NGF neutralizing antibody to this media in the presence of caspase inhibitors (QVD-OPH or

z-VAD-fmk). ICR outbreed mice (Harlan) were used for isolation of neurons in all

experiments.

For the assessment of cell viability, sympathetic neurons were grown in NGF-containing

medium (AM50) for 4–5 d, and then either maintained in AM50 or treated with various

conditions. For NGF deprivation, cultures were rinsed twice with medium lacking NGF

(AM0: AM50 medium without NGF), followed by addition of AM0 containing goat anti–

NGF. For rescue experiments in which NGF was re-added to NGF-deprived cultures,

cultures were rinsed three times and incubated in the NGF-containing medium (AM50) for

seven additional days. After 7 days of NGF readdition, the rescued neurons were clearly

identifiable with large and phase-bright cell bodies, whereas the non-rescued neurons

became atrophic and appeared degenerated.

XIAP or PARC/CUL9 deficient neurons were isolated from XIAP or PARC/CUL9

knockout C57BL/6 mice, respectively; neurons from wild-type littermate controls were used

in those experiments. For isolation of Apaf-1 deficient knockout fibroblasts, Apaf-1

deficient C57BL/6mice were used; wild-type littermates were used as controls in these

experiments. Apaf-1deficient mice were generated by Joachim Herz (UT Southwestern) and

were kindly provided by the laboratory of Dr. Susan Ackerman (Jackson Laboratories).

siRNA transfections and screen

To identify the specific E3 ligase that targets cytosolic cyt c for degradation, we screened a

siRNA library of human E3 ligases from Dharmacon (Ref Seq database v5.0-8.0). All

transfections were performed with 50 nmol/L final concentration of siGENOME SMART

pools (4 siRNAs per gene). Each well had pools of 4 siRNAs that targeted individual genes

and 6 wells per gene were plated (for 3 untreated and 3 treated conditions) on each 96 well

plate. Each 96-well plate was analyzed in triplicate for a total of 9 independent untreated

control and 9 independent treated conditions. Each plate also had a scrambled siRNA as a

negative control and siRNA to ubiquitin as a positive control (again, 6 wells per plate in

triplicates). U87-MG cells were reverse transfected with the siRNAs and after a period of

three days to allow for the silencing of target genes, cells were either left untreated or treated

with staurosporine (for 24 hrs) to induce the release of cyt c. The status of cyt c was then

assessed by immunofluorescence to identify potential E3 ligases that, when down regulated,

caused the cytosolic accumulation of mitochondrial-released cyt c. A siRNA against

ubiquitin, which blocks cyt c degradation (in the presence of caspase inhibitors) and causes

cell death (in the absence of caspase inhibitors), was included as a positive control in the

screen. Reverse transfections were performed by mixing appropriate Dharmafect (Thermo

Fisher) with siRNA pools and incubating for 20 minutes followed by delivery of trypsin-

derived single-cell suspensions. Following the primary screen a secondary validation was

performed using three independent (not pooled) siRNAs (from Sigma) using the same assay

to determine the status of cytosolic cyt c.
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Immunofluorescence analysis

The status of cyt c (whether intact in the mitochondria or released) was examined by

immunostaining with cyt c antibodies. Briefly, sympathetic neurons were cultured for 4 days

after which they were either left untreated or deprived of NGF for various time points.

Neurons and other cell lines were fixed in 4% paraformaldehyde and incubated overnight in

anti-cyt c primary antibody (556432, BD Biosciences) followed by a 2 h incubation with

anti-mouse Cy3 secondary antibody (Jackson Labs). Nuclei were stained with Hoechst

33258 (Molecular Probes).

Microinjection and quantitation of cell survival

The method of microinjecting sympathetic neurons has been described previously (6, 37).

After injections, the number of viable cells injected was determined by counting rhodamine-

positive cells that had intact phase-bright bodies. The nucleus was injected with 200 ng/ml

of the plasmid DNA along with 50 ng/ml of EGFP-expressing DNA (Clonetech laboratories

Inc.) in microinjection buffer. After 24 h to allow for expression, GFP-expressing cells were

identified by fluorescence microscopy. The survival of these double-injected cells was

assessed by morphological criteria (38). For injection of siRNA, neurons were dissected

from postnatal day 2 mice, cultured for 3 days and microinjected with siRNA to PARC/

CUL9 (siPARC) or scrambled control (siSCR) in the presence of rhodamine.

For experiments in which neuronal survival was assessed in response to mitochondrial

damage, neurons were deprived of NGF in the presence of cycloheximide for 48 hours (to

relieve the XIAP inhibition of caspases) (5, 39) before microinjection with tBid peptide (8

mM) for 10 hours.

Image acquisition and processing

Images were acquired by an ORCA-ER digital B/W CCD camera (Hamamatsu) mounted on

a DMIRE2 inverted fluorescence microscope (Leica) using Metamorph version 7.6 software

(Molecular Devices). For most quantification experiments three-hundred cells were

analyzed in triplicate samples. The data presented in the figures show the percentage of

apoptosis ± SEM of three independent experiments. In the case of the siRNA screen, a high

content imaging scope was used to take 18 images of each of the wells of a 96 well plate

format, using a 20X /0.8 NA objective. The High Content Imaging instrument was the Array

Scan VTI HCS Reader (Thermo Scientific). Confocal images were taken on an Olympus

FV1000 confocal microscope.

Ubiquitination Assays

Cells were transfected with 2 ug of Flag-Cyt c and HA-ubiquitin constructs. Twenty-four

hours later, cells were treated with staurosporine in the presence or absence of MG132 for

16 hours. Cells were then lysed in RIPA buffer containing protease inhibitors and NEM. For

denaturing conditions, cells were lysed in 1% SDS and boiled for 10 minutes. Samples were

then diluted with 0.5% NP40 and subjected to immunoprecipitation. One milligram of total

protein was incubated with EZ-view Flag beads overnight. After stringent washes, 30 ul of

Laemmli sample buffer containing 2% (v/v) β-mercaptoethanol was added to samples.
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Samples were then boiled for 5 min and Western blot analysis was performed using an HRP-

conjugated-anti-HA antibody (Roche).

For the in vitro ubiquitination assays, PARC/CUL9 was immunoprecipitated from U87-MG

cells, washed 5 times with high salt buffer (containing 500 mM NaCl) and followed by 5

washes with PBS. The in vitro reaction was then set up as follows: Reaction volumes of 40

ul containing 3.5 mM Mg ATP (Boston Biochem), 3.5 mM of Energy Regeneration solution

(Boston Biochem), 40 nM human ubiquitin activating enzyme, 150 nM HsUbc7, 500 nM

recombinant cyt c, were incubated for 2 h at 37°C in the presence of 10 uM unlabeled

ubiquitin (wild type or mutant). Reactions were quenched with 15 ul of Laemmli sample

buffer containing 2% (v/v) B-mercaptoethanol and boiled for 5 min. Ubiquitination was

detected by Western blot.

Long-term survival in SY5Y control and shPARC/CUL9 cells

Relative cell numbers after treatment were determined by fixing and staining the colonies

with methylene blue (Sigma-Aldrich) dissolved in 50% methanol. Color extraction was

performed using 0.5 M hydrochloric acid, and the staining (which is proportional to cell

number) was quantitated by measuring absorbance at 595 nM. All experiments were

conducted three times in duplicate.

Statistical Analysis

p values for the differences in means were calculated with an unpaired, two-tailed Student’s

t test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) Fibroblasts and sympathetic neurons were injected with tBid-GFP (+zVAD-FMK, 50

µM) (arrows). After 12-24 hrs, cells were immunostained for cyt c. (B) Neurons were either

maintained in NGF (+NGF), deprived of NGF for 48h without lactacystin (−NGF), or with

lactacystin (10 µM)(−NGF+Lact), in the presence of QVD-fmk (25 µM) and the status of cyt

c was assessed by immunocytochemistry. Quantification of (B) shown as percentage of cells

with mitochondrial (Mito) or degraded (Deg) cyt c. Data are presented as mean ± SEM of

three experiments. (C) Neurons were treated as shown and the status of cyt c was assessed
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by Western blots. Data are representative of three experiments. (D) Neurons were injected

with tBid-GFP (arrows) in the presence of lactacystin (10 µM) and the status of cyt c was

assessed by immunocytochemistry. Scale bars, 50µm. All images are representative of three

or four independent experiments.
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Figure 2.
(A) Undifferentiated or differentiated PC12 cells were treated with STS (1µM) in the

presence of QVD-fmk (25 µM) for 18 hours followed by immunofluorescence for cyt c. (B)

Quantification of cells that have released and degraded cyt c in the cytosol (Etoposide: 10

µM for 18 hours). Data are presented as mean ± SEM of three experiments. (C) Comparison

of apoptotic proteins between fibroblasts (Fibro) and neurons (Neu) and between

undifferentiated (Undiff) and differentiated (Diff) PC12 cells. Data are representative of

three experiments. (D) MEFs isolated from either wild-type (WT) or Apaf-1 deficient
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(Apaf-1 KO) mice were left untreated or treated with staurosporine (STS, 1 µM) for 24 hrs

and the status of cyt c was examined by immunocytochemistry (D) or Western blot analysis

(E). Wild-type MEFs were treated with QVD-OPH (25 µM) to prevent caspase activation.

MG132 (10 µM) was added for 24 hrs. (F) Apaf-1 KO MEFs were treated with STS or STS

plus MG132. Subcellular fractions (M, mitochondrial; C, cytosolic) were analyzed by

Western blots for cyt c or the cytosolic marker lactate dehydrogenase (LDH). (G) Apaf-1

knockout MEFs were transfected with Flag-cyt c and HA-Ub-wt constructs. Cells were

treated with staurosporine (STS; 1 µM) and MG132 (10 µM) for 16 hours. A subset of

samples (Denat) were first heated in the presence of 1% SDS to disassociate protein-protein

interactions before being subjected to immunoprecipitation. Immunoprecipitates with Flag

antibody (cyt c) were probed for HA-Ub by Western blot. Scale bars, 50µm. All Western

blot images are representative of three independent experiments.

Gama et al. Page 16

Sci Signal. Author manuscript; available in PMC 2015 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
(A) U87-MG cells were treated with staurosporine (STS, 1 µM) in the presence or absence

of the proteasome inhibitor lactacystin (plus the caspase inhibitor QVD-OPH (25 µM)) for

24 hours. Cells were immunostained for cyt c(red). Hoechst was used to label the nuclei.

Representative image shows that cyt c degradation is blocked by addition of lactacystin

(Lact). (B) U87-MG cells were transfected with siRNA to ubiquitin (siUb) or scrambled

siRNA (siSCR) as control. 72 hours later, cells were treated with staurosporine (STS) for 24

hours in the presence of caspase inhibitors. Cells were then immunostained using cyt c
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antibody (red). Representative images show that ubiquitin is required for cyt c degradation.

(C) SH-SY5Y cells were irradiated with 30 Gyor treated with 10 µM etoposide (Etop)and

cultured for 24 hrs in the presence of the caspase inhibitor QVD-OPH. The status of cyt c

(red) was assessed by immunostaining. Hoechst was used to label the nuclei. All images are

representative of three independent experiments.
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Figure 4.
(A) Flow diagram of the siRNA screen used for the identification of E3 ligases that target

cyt c for degradation. (B) U87-MG cells were transfected with control scrambled (siSCR),

ubiquitin (siUb)or PARC (siPARC) siRNAs and treated with staurosporine (1 µM) in the

presence of QVD-fmk (25 µM) (see methods). The status of cyt c was assessed by

immunostaining. (C) Schematic of PARC and Parkin proteins showing homologous regions.

(D) Immunoprecipitation using cytosolic fractions demonstrates cyt c and PARC binding in

U87-MG cells treated with staurosporine (STS) and MG132. (E) Ubiquitination assay using
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U87-MG control and shPARC knockdown cells transfected with Flag-cyt c and HA-

ubiquitin, and then treated with staurosporine. Immunoprecipitates with Flag antibody (cyt

c) were probed for HA-Ub by Western blot. (F) In vitro ubiquitination assay using

immunoprecipitated PARC, recombinant cyt c and recombinant ubiquitin, either wild type

(WT) or mutant. Recombinant mutant of ubiquitin (Met: Methylated ubiquitin-unable to

form poly ubiquitin chains) was used as negative control. Data are representative of three

experiments.
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Figure 5.
(A) One day after micro-injection with siSCR or siPARC, sympathetic neurons were

deprived of NGF for 24 hours in the presence of QVD-fmk (25 µM) and status of cyt c was

determined by immunofluorescence and quantified. Error bars represent ± SD for triplicate

experiments. (B) Western blot analysis comparing the levels of PARC between MEFs and

sympathetic neurons as well as between undifferentiated (Undiff) and differentiated (Diff)

PC12 cells. (C, D) HeLa cells were transfected with pCDNA3 empty vector or pCDNA3-

HA-PARC and pEGFP. Three days later cells were treated with Bam7 or FCCP for 10 hours
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and the status of cyt c was determined by immunostaining (C) and cell death was quantified

by nuclear morphology using Hoechst staining (D). (E) PARC knockout and wild-type

neurons were deprived of NGF for 10 hours or treated with 10 µM Etoposide for 96 hours

(F). Death was measured by the vital dyes Sytox Green or Propidium Iodide. Error bars

represent ± SD for triplicate experiments. (G) PARC knockout and wild-type neurons were

deprived of NGF in the presence of cycloheximide for 48 hours and then microinjected with

tBid (8 mM). Death was measured by Sytox Green. Error bars represent ± SD for triplicate

experiments.
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Figure 6.
(A) Flow diagram of the assessment of long-term survival of wild type and PARC-

knockdown SY5Y cells. (B) Images of shControl and shPARC SY5Y cells transfected with

Smac-cherry and treated with STS for 3hrs. The percentage of cells that have released

mitochondrial Smac and undergone mitochondrial outer membrane permeabilization

(MOMP) was quantified. Error bars represent ± SD for triplicate experiments (Right panel).

(C) After 3 hours of STS treatment cells were washed several times and complete media was

re-added to the STS-treated cultures and 5 days later, relative growth was determined by
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fixating and staining the colonies with methylene blue (as described in material and

methods). (D) Flow diagram of the NGF deprivation and rescue (with NGF readdition)

assay used to determine the long-term survival of wild type and PARC-deficient

sympathetic neurons. (E) Images of the exact same field of neurons taken before treatment,

4 days after recovery and 7 days after recovery. (F) Quantification of the percent survival

after 18 hrs of NGF deprivation and 7 days of NGF rescue. Error bars represent ± SD for

triplicate experiments. All images are representative of three independent experiments. (G)

Proposed model for cyt c regulation after its release from mitochondria. Scale bars, 50µm
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