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Abstract

North Carolina is the second leading state in pork production in the United States, with over 10 

million swine. Swine manure in NC is typically collected and stored in open-pit lagoons before the 

liquid waste is sprayed onto agricultural fields for disposal. Components of this waste may be able 

to impact surface water quality with the potential for human exposure. This study examined 

viruses of public health concern in creeks adjacent to swine concentrated animal feeding operation 

(CAFO) spray fields. Surface water samples (n = 154) were collected from public access waters in 

proximity to swine CAFO spray fields for six months and were tested for hepatitis E virus (HEV) 

and coliphages. HEV was detected in one sample. Somatic coliphages were detected in 98% of 

samples (geometric mean 24 ± 4.1 PFU per 100 ml), and F+ coliphages were detected in 85% of 

samples (geometric mean 6.8 ± 5.0 PFU per 100 ml). Only 3% (21) of the F+ coliphage isolates 

were RNA phage, and all of the F+ RNA coliphages belonged to genogroup I. Although the 

pervasiveness of swine CAFOs in this area prevented a comparison with samples from un-

impacted sites, the near ubiquity of coliphages, as well as the presence of HEV, suggests that 

current waste management practices may be associated with the dissemination of viruses of public 

health concern in waters proximal to CAFO spray fields.
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1. Introduction

North Carolina is the second leading state in national pork production with over 10 million 

swine (Edwards and Ladd, 2000). Five adjacent counties in eastern NC (Bladen, Duplin, 

Greene, Sampson, and Wayne) were estimated to have a population of over 7.5 million 

swine in 2002 (USGAO, 2008). This number of swine can produce up to 15.5 million tons 

of manure annually (USGAO, 2008). Swine manure in NC is typically collected and stored 

in open-pit lagoons before the liquid waste is sprayed onto agricultural fields for disposal. 

As a result of runoff and percolation events, components of manure, including zoonotic and 

human pathogens, may impact surface water quality proximal to swine concentrated animal 

feeding operations (CAFOs) (Anderson and Sobsey, 2006; Campagnolo et al., 2002; Sayah 

et al., 2005; Thurston-Enriquez et al., 2005). Pathogens potentially present include 

Salmonella, Campylobacter, Listeria, enteropathogenic Escherichia coli, Cryptosporidium, 

Giardia, and viruses such as enteric calicivirus, rotavirus, and hepatitis E virus (HEV).

In industrialized countries, little is known about possible sources and transmission routes for 

endemic human HEV infections. Research is often impeded by the rare detection of 

outbreaks, occurrence of asymptomatic infections, and a long and variable incubation period 

for the pathogen (Lewis et al., 2010). However, previous research has suggested the 

possibility of zoonotic transmission routes for HEV (Meng, 2009; Pavio et al., 2008). A 

systematic review found that in industrialized countries, specifically Europe, zoonotic 

transmission seemed likely (Lewis et al., 2010), and a meta-analysis found a significant 

association between occupational exposure to swine and human HEV IgG seropositivity 

(Wilhelm et al., 2011).

The potential dissemination of HEV in association with swine waste has not been well 

characterized. Studies in NC have documented HEV in swine wastes including swine feces 

and liquid wastes from lagoons (Kase et al., 2009), however nearby surface waters were not 

tested. A study from the Midwestern US evaluated surface waters for HEV but all samples 
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were negative (Kasorndorkbua et al., 2005). Separately, a report from Slovenia has 

documented waterborne HEV in the vicinity of a pig farm (Steyer et al., 2011).

Similarly, only a few studies have documented the presence and subtypes of F+ RNA 

coliphage in surface waters surrounding agricultural areas (Brion et al., 2002; Cole et al., 

2003; Rahman et al., 2009; Thurston-Enriquez et al., 2005). F+ RNA coliphages are 

promising indicators for enteric viruses, due to their similarity in size, shape, structure, and 

genetic makeup to many human enteric viruses. A meta-analysis found that F+ coliphages, 

as well as coliphages as a whole, are positively correlated to multiple pathogens [odds ratio 

for total coliphage and F+ coliphage of 1.29 (95% CI = 0.82–2.05) and 1.27 (95% CI = 

0.48–3.35), respectively; Wu et al., 2011]. Moreover, genotyping of F+ RNA coli-phage 

may be used to predict the source of fecal pollution, as animal and human feces have been 

shown to contain different genogroups. Genogroups I and IV are generally associated with 

nonhuman animals, while genogroup II isolates are generally associated with human and pig 

feces, and genogroup III isolates are generally associated with human feces (Griffin et al., 

2001).

The goal of this study was to systematically evaluate surface waters adjacent to swine 

CAFO spray fields for the presence of HEV and coli-phages, potential indicators of enteric 

viruses.

2. Materials and methods

2.1. Study sites and sample collection

The study area is in Duplin County, North Carolina, USA, where there is a high density of 

swine CAFOs (Wing et al., 2000). To determine the impact of swine lagoon spray fields on 

adjacent water quality, sampling locations were situated in public access waters upstream 

(A) and downstream (B) of three spray fields (Sites 1–3, Fig. 1). Distances between the A 

and B sites were 1.3 km (Site 1), 1.7 km (Site 2), and 0.4 km (Site 3). Sites 4 and 5 were 

sampled as B locations only. Spray fields 1, 2, 3, 4, and 5 were approximately 0.3, 0.2, 0.03, 

0.3, and 0.2 km2 in size and, at their closest points, were within 42, 66, 15, 76, and 26 m of 

the receiving water bodies, respectively. Spray fields 1, 2, and 3 were within 9 km of each 

other, and all sites were within 20 km of each other (Fig. 1). Surface water samples were 

collected from sampling sites weekly from mid-February to mid-August 2010. Sterile 4-l 

polycarbonate bottles were used for sample collection, and the bottles were coded so sample 

processors were blinded to sample locations during analysis. Water samples were taken in 

the late morning or early afternoon and transported on ice to the laboratory.

Rainfall data was obtained through the State Climate Office of North Carolina from the 

Williamsdale Field Lab station (North Carolina Environment and Climate Observing 

Network) located in Wallace, North Carolina (Lat: 34.7658; Long: −78.10117). This station 

was between 25 and 36.5 km south of the sampling sites. Hourly increments of rainfall were 

combined to compare the amount of precipitation 24 and 48 h before sampling to microbial 

concentrations.
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2.2. Detection of hepatitis E virus

Viruses were concentrated using an adsorption–elution method described previously (Gentry 

et al., 2009), and viral concentrates were stored at −80 °C. RNA was extracted from 200 μl 

of viral concentrate using the QIAamp One-For-All Nucleic Acid kit (Qiagen, Valencia, 

CA), following the protocol for liquid transport media, to extract nucleic acids into 100-μl 

buffer AVE using a BioRobot Universal System (Qiagen). Nucleic acid samples were stored 

at −80 °C overnight. RNA was reverse-transcribed using the Applied Biosystems High 

Capacity cDNA Reverse Transcription Kit (Life Technologies, Carlsbad, CA). The cDNA 

synthesis mixture contained 5 μl nucleic acid, 1 mM of the specific reverse primer JVHEVR 

(Jothikumar et al., 2006), 10 mM dNTP mix, 2 μl 10× RT buffer, 1 μl MultiScribe reverse 

transcriptase, and nuclease-free water for a total reaction mixture of 20 μl. The reaction 

mixture was subjected to reverse transcription on an Applied Biosystems 7900 (Life 

Technologies) using the following conditions: 10 min at 25 °C, 120 min at 37 °C, and 5 min 

at 85 °C. The cDNA product was stored at −80 °C.

TaqMan primers and probes, described in Jothikumar et al. (2006), were used to assay for 

HEV cDNA. The qPCR reaction mixture contained 2 μl cDNA, 400 nM of each primer, 100 

nM probe, 10 μl 2× Probe PCR Mix, 400 ng/μl BSA, 150 ng/μl T4 gene 32 protein, and 

nuclease-free water for a total reaction mixture of 20 μl (Qiagen Quantitect Probe PCR kit). 

The reaction mixture was subjected to qPCR on an Applied Biosystems 7900 using the 

following conditions: 1 min at 60 °C, 15 min at 95 °C, 45 cycles of 15 s at 94 °C and 1 min 

at 60 °C. All amplification reactions were carried out in duplicate. Samples that gave a 

positive result in either or both of the duplicate reactions were amplified by qPCR again. 

Only after a sample gave a second positive result was it counted as a presumptive positive.

To confirm the presence of HEV in samples, the original concentrated water sample was 

shipped, on dry ice, to a second laboratory at Johns Hopkins University (JHU) where it was 

analyzed for HEV using the RT-qPCR method described above. In both laboratories, 

conventional and nested RT-PCR protocols were utilized to amplify larger genome 

fragments for sequencing. At the University of North Carolina, nested RT-PCR protocols 

described in Kase et al. (2009) and Inoue et al. (2006) were utilized to amplify segments of 

ORF2 and ORF2/ORF3, respectively. At JHU, RT-PCR protocols described in Inoue et al. 

(2006) and Dong et al. (2011) were utilized to amplify segments of ORF2/ORF3 and ORF1, 

respectively.

2.3. Coliphage detection and isolation

Water samples were analyzed for somatic and F+ coliphage using the Single Agar Layer 

(SAL) Method (USEPA, 2001a). Up to 8 F+ coliphage plaques from each sample were 

isolated for characterization in 2 ml tryptic soy broth (TSB) and stored at −80 °C. Samples 

in which no coliphages were detected were assigned a concentration of <1 plaque forming 

unit (PFU) per 100 ml. For regression analyses, the qualified values of <1 and ‘too 

numerous to count (TNTC)’ were converted to 0.5 PFU and 1000 PFU per 100 ml (because 

the highest reported count was 766 PFU per 100 ml) in a manner similar to that of Levy et 

al. (2012).
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For samples in which no F+ coliphages were detected, an enrichment technique was used to 

detect F+ coliphages following USEPA Method 1601 (USEPA, 2001b). One plaque from 

each of three dilutions (300 ml, 30 ml, and 3 ml) was isolated for further characterization in 

2 ml TSB and stored at −80 °C.

To distinguish F+ RNA and F+ DNA coliphages, 5 μl of all F+ isolates was spotted on two 

plates, one containing E. coli Famp and one containing E. coli Famp plus 10 mg/ml RNase 

A. Plaque formation on the E. coli Famp and the E. coli Famp plus RNase plates indicated 

an F+ DNA coliphage. Plaque formation on the E. coli Famp plate but not the E. coli Famp 

plus RNase plate indicated an F+ RNA coliphage.

2.4. Typing of F+ RNA coliphage isolates

RNA was extracted from 200 μl of viral isolation or enrichment using the RNeasy Mini kit 

(Qiagen, Valencia, CA) to elute the RNA sample in 50-μl nuclease-free sterile water. The 

RNA was immediately subjected to RT-PCR according to Friedman et al. (2009) using a 

MasterCycler gradient (Eppendorf, Hauppauge, NY). Isolates were first classified into their 

respective genera, Levivirus or Allolevivirus, using the MJV82 forward and either the 

Levivirus JV41 reverse or the Allolevivirus JV81 reverse primer, respectively (Vinjé et al., 

2004). Each isolate was then assayed using genogroup specific primers (Friedman et al., 

2009). The prototype strains MS2 (GI), GA (GII), QB (GIII), and SP (GIV) were used as 

positive controls. Amplicons were separated by gel electrophoresis in 1.5% agarose, stained 

with ethidium bromide, and visualized under UV light.

2.5. Statistical analyses

All statistical analyses were conducted in SAS 9.1 (SAS Inc., Cary, NC) statistical software. 

To test the significance of difference between coli-phage concentrations in the A and B 

sampling locations at sites 1, 2, and 3, the Mann–Whitney U test was performed. To test the 

significance of differences in coliphage concentrations between seasons, Kruskal–Wallis 

one-way ANOVAs were used. Relationships were determined to be significant at p < 0.05. 

The association between coliphage concentrations and rainfall amount was determined using 

fixed effects linear models. The results of the models determine whether a 1-unit increase in 

the dependent variable (coliphage concentration) is associated with a coefficient change in 

the independent variable (rainfall). The relationship of F+ RNA coliphages to antecedent 

rainfall was determined using generalized logistic regressions.

3. Results

A total of 154 samples were collected for this study. Samples were collected from site 1 

thirteen times at both A and B locations, and from sites 2 and 3 twenty-six times at both A 

and B locations. Site 1 became too dry to obtain samples after early June 2010 so sites 4 and 

5 were added on June 8, 2010 as B locations only and were sampled 12 times each.

3.1. Hepatitis E virus

HEV was detected once during the study period at site 3A in March, 2010. The presence of 

HEV in this sample was confirmed at JHU. Unfortunately, larger fragments of the HEV 
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genome could not be amplified in either laboratory, a problem that has been reported in 

previous studies examining HEV in environmental samples (Steyer et al., 2011), so the 

strain could not be genotyped. For the one sample positive for HEV, no precipitation was 

recorded during the 48 h preceding sample collection. The somatic coliphage concentration 

within the HEV-positive sample was ‘too numerous to count.’ This sample and a water 

sample from site 3B on the same date were the only 2 samples that had a somatic coliphage 

concentration so high that they could not be confidently enumerated. The F+ coliphage 

concentration within the HEV-positive sample was 5 PFU/ml.

3.2. Coliphages

98% of samples were positive for somatic coliphages, with a range of 1 to 1000 PFU per 

100 ml, and 85% of samples were positive for F+ coliphages, with a range of 1 to 99 PFU 

per 100 ml (Table 1). Of the 660 F+ coliphages isolated and subjected to RNase testing, 21 

isolates (3%) were RNA phage. Genotyping revealed that all of the F+ RNA coliphages 

belonged to genogroup I.

3.2.1. Comparison by sample location—There was no significant difference in the 

somatic or F-specific coliphage concentrations between the A and B locations at site 1, 2, or 

3. F+ RNA coliphage isolates were detected at least once at all sites examined except site 

4B. The largest percentage of F+ RNA coliphages was isolated in samples from site 3A 

(24%).

3.2.2. Temporal and seasonal distribution—Somatic coliphage concentrations were 

similar for the 3 seasons examined (winter, spring, and summer; Fig. 2). F+ coliphage 

concentrations were higher in the summer (July–September) than in the winter or spring (p < 

0.0001; Fig. 2). All F+ RNA coliphages were isolated from sampling time-points in 

February, April, and August 2010, and 65% were isolated from coliphage enrichments in 

February 2010.

3.2.3. Correlation to rainfall—Very little rainfall occurred during the study period, on 

average less than 0.1 in. a day (Fig. 3). Somatic and F+ coliphage concentrations were not 

associated with rainfall across all sites combined or at individual sites. Additionally, 

generalized logistic regressions revealed that the presence of F+ RNA coliphages was not 

correlated to antecedent rainfall.

4. Discussion

In this study we investigated surface waters proximal to swine CAFO lagoon waste spray 

fields for the presence of hepatitis E virus (HEV), and for coliphages, potential indicators of 

enteric viruses. HEV was detected only once during the study period. Previous studies have 

detected HEV in swine (Choi et al., 2003; Dell’Amico et al., 2011; Huang et al., 2002; Kase 

et al., 2008; Takahashi et al., 2003) and swine lagoons (Kasorndorkbua et al., 2005; 

McCreary et al., 2008; Pina et al., 2000), but few studies have examined CAFO-impacted 

surface waters for HEV (Karetnyi et al., 1999; Kasorndorkbua et al., 2005; Steyer et al., 

2011). One conference abstract (Karetnyi et al., 1999) reported detecting HEV in a tile outlet 

draining a field to which manure had been applied in the Midwestern United States and a 
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report from Slovenia detected HEV in the vicinity of a pig farm (Steyer et al., 2011). 

Because HEV in developed countries is thought to be predominantly of zoonotic origin 

(when travel to developing countries can be ruled out) (Nelson et al., 2011), HEV in our 

study may have originated from swine. However, without knowing the genotype of the HEV 

strain, we cannot infer whether the HEV isolate is more closely related to swine or human 

HEV. Thus, the presence of HEV in surface waters adjacent to a swine CAFO spray field is 

intriguing, but additional studies are required to determine if HEV present in swine waste is 

transmitted to CAFO spray fields and adjacent surface waters.

The low prevalence of HEV in our study is similar to results from previous studies 

(Kasorndorkbua et al., 2005; Steyer et al., 2011), and may be related to challenges in 

detecting HEV (and viruses in general) in environmental samples, including low virus 

concentrations, low virus recovery, matrix effects, and the presence of PCR inhibitors 

(Julian and Schwab, 2012). With these challenges in mind, this study also examined water 

samples for the presence of F+ RNA coliphages, potential indicators for human enteric 

viruses. Of 660 F+ isolates, only 21 (3%) were F+ RNA coliphage. This low prevalence was 

not surprising, given that a previous study examining surface waters impacted by swine 

feces found that F+ RNA coliphages represented only 18% of F+ coliphage isolates (Cole et 

al., 2003). The low percentage of F+ RNA coliphages may be due to higher inactivation 

rates of F+ RNA than F+ DNA coliphages; previous studies have documented higher 

inactivation rates of F+ RNA coliphages than F+ DNA at warmer temperatures (Cole et al., 

2003; Rahman et al., 2009). The majority of our samples were collected during the spring 

and summer months, and 65% of F+ RNA coliphages were isolated in February 2010.

All of the F+ RNA isolates belonged to genogroup I (GI), indicating an animal source of 

fecal pollution (Osawa et al., 1981). In contrast to this, previous studies have found GI F+ 

RNA coliphages to represent only 19–60% of F+ RNA isolates in swine wastewaters (Cole 

et al., 2003; Lee et al., 2009) and 0% (0 of 3) of F+ RNA isolates in surface waters impacted 

by swine feces (Cole et al., 2003). In addition to the impact of swine waste in the creeks, the 

higher percentage of GI in our water samples than previous studies could be a product of the 

enhanced persistence of GI over other genogroups at higher temperatures (Brion et al., 2002; 

Long and Sobsey, 2004; Schaper et al., 2002) or a factor of selective enrichment. Genogroup 

I has a larger burst size and produces more progeny during enrichment (Furuse, 1987), 

which can result in an overestimation of the frequency of that group when isolating and 

typing individual plaques from low dilutions (Sobsey et al., 2006). 65% of the F+ RNA 

coliphages were detected in coliphage enrichments.

F+ RNA coliphages were not detected in the HEV-positive water sample nor were F+ 

coliphage concentrations elevated in this water sample. Conversely, the HEV-positive 

sample did contain the highest concentration of somatic coliphage in this study. Previous 

studies have found correlations between somatic coliphages and adenoviruses (Aw and Gin, 

2010) and enteroviruses (Mocé-Llivina et al., 2005). However, as only one sample was 

positive for HEV in this study, additional studies are required to determine if a potential 

association between increased somatic coliphage concentrations and HEV exists.
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To determine the impact of individual swine lagoon spray fields on water quality in adjacent 

streams, coliphage concentrations were compared at the A and B locations. Our results 

indicated that, on average, somatic and F+ coliphage concentrations were not different at A 

and B sites. We suspect that these results are due to diffuse contamination of surface waters 

with swine waste due to the high density of CAFOs in this area. Sampling sites in this study 

are located in Duplin County, NC, with an estimated swine population of over 2 million 

according to the most recent available data (USDA, 2007). In fact, given the ubiquity of 

swine CAFOs in this area, we could not categorize our upstream, A, sites as un-impacted 

and thus we could not assess whether the microbial concentrations at these sites are different 

from those in un-impacted surface waters. However, it is also possible that other fecal 

sources could be responsible for the diffuse concentrations of coliphages. There are 

numerous poultry CAFOs and cattle grazing in open fields in this area, in addition to the 

ubiquitous swine CAFOs. Moreover, some rural homes in the area use septic systems for 

sewage disposal. Detailed information on the number of poultry CAFOs and cattle fields, the 

density of homes, the number of septic systems, and land use data in the sampling area was 

not collected at the time of the study. This limitation of our study restricts our ability to 

confidently state that coliphages primarily resulted from swine CAFO spray field runoff. 

Nevertheless, swine and poultry CAFOs are estimated to be the largest contributors to fecal 

waste in this area (Steve Wing, personal communication), and all of the F+ RNA coliphage 

isolates belong to genogroup I (GI), indicating an animal-source (e.g., pigs, cattle, sheep) of 

fecal pollution in the surface waters (Osawa et al., 1981). Similar concentrations of 

coliphages at A and B sites may also be due to low levels of rainfall during the study period. 

Precipitation levels exceeded 1 in. only three times during the study. The detection of HEV 

and coliphages in surface waters proximal to swine CAFOs warrants further investigation to 

address sources of fecal pollution in areas of high swine CAFO density.

In sum, the presence of HEV, as well as the near ubiquity of coli-phages, suggests that 

current CAFO waste management practices may be associated with the dissemination of 

viruses of public health concern in waters proximal to CAFO spray fields. Nevertheless, the 

ubiquity of swine CAFOs prevented us from being able to compare samples with those from 

un-impacted sites in this same area, and additional studies incorporating land use data are 

necessary to better understand the impact of spray fields on the presence of these viruses in 

adjacent surface waters.
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HIGHLIGHTS

• Hepatitis E virus was detected in one sample.

• Somatic coliphages were detected in 98% of samples.

• F+ coliphages were detected in 85% of samples.

• 21 F+ coliphage isolates (3%) were RNA phage, which all belonged to 

genogroup I.
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Fig. 1. 
Study area showing sampling points within public access waters upstream (A) and 

downstream (B) of 5 swine CAFO spray fields in Duplin County, NC (USA). Sampling 

points are overlaid onto the National Agricultural Imagery Program overlay, NAIP 2012 

GE. Creeks are indicated by blue lines, and permitted swine animal facilities by pink dots. 

Distances between the A and B sites were 1.3 km (Site 1), 1.7 km (Site 2), and 0.4 km (Site 

3). Sites 4 and 5 were sampled as B locations only. Spray fields 1, 2, and 3 were within 9 km 

of each other, and all sites were within 20 km of each other. The receiving water bodies 

were within 10–76 m of the edge of the land application fields. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 2. 
Box and whisker plot depicting the concentration (in PFU per 100 ml) of somatic (gray) and 

F+ coliphages (white) sorted by season. The lower boundary of the box indicates the 25th 

percentile, the line within the box represents the median, and the boundary of the box 

farthest from zero indicates the 75th percentile. Whiskers below and above the box indicate 

the 10th and 90th percentiles, respectively.
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Fig. 3. 
Concentration (in PFU per 100 ml) of somatic (circle) and F+ coliphages (triangle) at 

upstream (A) and downstream (B) sites in relation to levels of rainfall occurring in the 24 h 

before sample collection.
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