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Abstract
Multivariate failure time data arise frequently in survival analysis. A commonly used technique is
the working independence estimator for marginal hazard models. Two natural questions are how to
improve the efficiency of the working independence estimator and how to identify the situations
under which such an estimator has high statistical efficiency. In this paper, three weighted estimators
are proposed based on three different optimal criteria in terms of the asymptotic covariance of
weighted estimators. Simplified close-form solutions are found, which always outperform the
working independence estimator. We also prove that the working independence estimator has high
statistical efficiency, when asymptotic covariance of derivatives of partial log-likelihood functions
is nearly exchangeable or diagonal. Simulations are conducted to compare the performance of the
weighted estimator and working independence estimator. A data set from Busselton population health
surveys is analyzed using the proposed estimators.
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1 Introduction
Statistical estimation and inference for the marginal hazard models for multivariate failure time
data are vital in survival analysis. Multivariate failure time data arise frequently in biomedical
research and financial credit risk analysis. For example, such data could arise when related
subjects in clusters are at risk of a failure time event or study subjects are at risk of recurrence
of the same event. Another example is that default of a firm can have contagious effect on the
default time of other firms, particularly for those in the same sector or industry. A key feature
of this type of data is that the failure times may be dependent. When there is at most one event
for each subject and these subjects are mutually independent, the Cox (1972) proportional
hazards model has commonly been used to assess the effects of covariates on failure times.

The Cox model is a simple and mathematically convenient way to study and explain covariate
effects. However, in many biomedical studies, the covariate effects from cluster or recurrent
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data can be more complicated than the specified structure and new analytic challenges arise in
assessing covariate effects in correlated multivariate survival data. Beyond the traditional
independence model, there are infinitely many possibilities to model the dependence among
the clusters of survival data. Depending on the background of studies, one often chooses a
specific form that reasonably explains the objective of the study. For example, the effect of
covariate variables and confounding correlation on the hazard risk may vary with the level of
clusters. This leads naturally to consider the following Cox (1972) type marginal hazard model:

(1)

for the jth failure type of the ith subject(i = 1, 2, ···, n, j = 1, 2, ···, Ji), and λj0(t) is an unspecified
“baseline” hazard function pertaining to the jth failure type, and β is an unknown parameter
with dimension p. The model also accommodates the cluster data with different baseline hazard
functions for different clusters by regarding j as the index of cluster and i as the subject within
the j-th index. Considerable efforts have been made on the marginal hazard model (1). See, for
example, Wei, Lin, and Weissfeld (1989), Cai and Prentice (1995, 1997), Spiekerman and Lin
(1998), and Cai (1999) for parametric covariate effect studies and Cai et al. (2007) and Cai et
al. (2007, 2008) for nonparametric covariate effect models.

The most commonly used analysis for model (1) is the working independence analysis in which
the dependence of the data is ignored when estimating the unknown parameters. Applying a
standard Cox procedure will produce consistent estimators but the standard error estimators
need to be computed differently to reflect the possible dependence of the multivariate failure
time. Lee and Kapadia (1992) showed how standard error estimates should be computed under
the independence assumption. Wei et al. (1989),Cai and Prentice (1995,1997) and Spiekerman
and Lin (1998) also proposed procedures for calculating the standard errors. In many
applications, ignoring dependence structure presented in data cannot result in efficient
estimators for the unknown parameters. Similarly to estimating equations considered by Liang
and Zeger (1986), we can introduce weighted estimating equations to improve the efficiency
of such estimators. Liang and Zeger (1986) pointed out that the use of working independence
correlation structures may result in a notable loss of efficiency in the generalized linear model,
when the correlation coefficient is large, or the non-homogeneity in covariate is large. One
hopes naturally to identify the situations under which ignoring the dependence is statistically
acceptable in estimating unknown parameters in the marginal hazards model. This will be the
subject of Section 4.

Cai and Prentice (1995, 1997) introduced a weighted approach to estimate the regression
parameter β in the distinguished baseline marginal hazard model (1). The weighting matrix is
allowed to depend on survival time and unknown parameters. The asymptotic properties they
established apply to general weight matrix safisfying their specified condition and they
considered using the inverse of the estimated correlation matrix as the weight matrix in detail.
However, they did not consider the problem of finding the optimal weight. Gray and Li
(2002) developed an algorithm for choosing the optimal weights, but this method cannot be
applied to multiple covariate. Recently, Cai et al (2007, CFZZ) proposed a weighted estimation
method for marginal Cox models with varying-coefficients for multivariate failure time data.
The weight was selected by minimizing the asymptotic variance of the estimator of varying-
coefficients. Glidden (2007) suggested a copula method to capture dependence for clustered
failure-time data. Yu and Lin (2008) studied marginal proportional hazards model with the
effect of covariates modelled nonparametrically for correlated failure time data. Chen, Chen
and Ying (2008, CCY) proposed an estimator for regression parameter in marginal Cox model
for multivariate failure time data by linear combination of martingale residuals.
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The procedure proposed in this paper is different from the above approaches. The proposed
weighted estimators of parameters are to select “optimal” weight by combination of the score
functions of the partial likelihood instead of linear combination of martingale residuals or
minimizing (CCY) the asymptotic variance of estimator of varying-coefficients (CFZZ).
Unlike Glidden (2007), we do not assume any particular structure for the dependence. Our aim
is to give a simple weighting scheme that outperforms the procedure based on the working
independence. Through mathematical simplifications, our optimal weighting schemes admit
closed form. This makes practical implementations very simple and stable.

In a different setting, Heyde (1997) proposed a method for combining estimating equations to
improve efficiency, which is in the same spirit of the general method of moments of Hensen
(1982). The optimal weighting matrix can be explicitly found. This method is more general
and more efficient. However, a serious drawback of such an approach is the need for calculation
of the inverse of a large estimated covariance matrix of the score functions of the partial
likelihood. Because of estimation in high-dimensionality, the implementation of such an
approach is often unstable and inaccurate. The efficiency gain cannot always be materialized
due to noise accumulation in the estimated large covariance matrix, which contains many
elements. This motivated us to consider other weighting schemes, too. To overcome these
difficulties, various working correlation were proposed, such as Zeger and Liang (1985) and
Liang and Zeger (1986). On the other hand, when the dimensionality is small, the method can
be viable. See related research in Andersen (2004), Schaubel and Cai (2005), Larocque et al
(2007), and Kuk (2007). We will extend the method of Heyde (1997) to the correlated censored
data and compare with other schemes.

The paper is organized as follows. Section 2 summarizes the results for marginal partial
likelihood method and introduces a simple weighting scheme for combining correlated
likelihood. In section 3, we introduce simple strategies for selecting weights that will improve
the working independence estimator. The setting under which the working independence is
nearly optimal will be discussed in Section 4. Simulation results and real data applications are
given in Section 5. Concluding remarks is provided in Section 6.

2 Summary of marginal partial likelihood
2.1 Estimation with working independence

Suppose that there is a random sample of size n from an underlying population. Let i denote
the individual and j denote the type of failure one might experience. For individual i and failure
type j, let Tij (i = 1, 2, ···, n, j = 1, 2, ···, Ji) denote the failure time, Cij the censoring time, and
Xij = min(Tij, Cij) the observed event time with censoring indicator Δij. We assume that the
censoring times are independent of the failure times given the covariates, i.e. the censoring is
noninformative. The observed data structure is

where Zij = (Zij1, ···, Zijp)T is a p×1 vector of covariates.

Let Nij(t) = I(Xij ≤ t, Δij = 1) denote the counting process for failure and Yij(t) = I(Xij ≥ t) denote
the at risk process. A commonly used marginal model that links the covariate with failure time
is postulated in (1).

For ease of presentation, we drop the dependence of covariates on time, with the understanding
that the methods and proofs in this paper are applicable to external time dependent covariates
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(Kalbfleisch and Prentice 2002). For a given failure type j, we define the following marginal
partial likelihood,

(2)

where nj is the number of individuals for the jth failure type, J = max{J1, ···, Jn}, and Rj(t) =
{i: Xij ≥ t} denotes the set of the individuals at risk for failure type j just prior to time t. If all
the failure times are independent, the partial likelihood function for inference of β in model
(1) is

(3)

To avoid the technicality of tail problems, frequently only the data up to certain time point τ
are used. From the partial likelihood (2), by multiplying a constant nj

−1, we have the following
marginal partial log-likelihood:

(4)

for j = 1, 2, ···, J. For the sake of simplicity, write ℓj(β) = ℓj(β, τ).

As in Cai and Prentice (1995), by introducing Xij = Tij = 0 if necessary, we can drop the
dependence of Ji on individual i, with the understanding that varying cluster size can be
accommodated. For the sake of simplicity, we assume that Ji = J, i = 1, 2, ···, n.

Marginal pseudo-partial log-likelihood under working independence is defined by

(5)

The working independence partial likelihood estimator β ̂I is obtained by maximizing the same
function as the partial likelihood for the Cox model with independent failure times. The
asymptotic normality of β ̂I can be demonstrated using a similar technique as in Andersen and
Gill (1982).

2.2 Asymptotic normality
In marginal models, the asymptotic normality of the pseudo-partial likelihood estimator has
been derived by Cai and Prentice (1995). For a vector a, we denote a⊗0 = 1, a⊗1 = a, and
a⊗2 = aaT. Let
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and sjk(β, u) be its asymptotic limits. Write

Set ej = sj1/sj0,  and

It has been shown by Cai and Prentice (1995) and Clegg et al.(2000) that under some regularity
assumptions, we have

where

in which  and , with

(6)

The unknown quantities in (6) can be estimated by the substitution method as follows. A natural
estimator to Dkl (β) = E{Π1k(β)Π1l (β)T} is

(7)

where
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(8)

We then estimate the covariance matrix Σm(β) by

Similarly, A(β) can be estimated by , where

(9)

Hence, the asymptotic covariance of the working independence estimator can be consistently
estimated by

2.3 Weighted partial likelihood approach
To utilize the dependence among subjects within a cluster or failure time of different types,
we consider the weighted partial likelihood. Specifically, instead of using ℓ(β) in (5), we
consider the following weighted partial likelihood function:

(10)

where ℓj(β) is defined as in (4) and {wj j = 1, ···, J} are unknown weights. For simplicity, write
W = (w1, ···, wJ)T. The proposed estimator is denoted by β ̂W that maximizes ℓW (β), which is
convex when all weights are nonnegative. Note that when wj = 1/J, the estimator is the working
independence estimator.

By similar arguments as in Cai and Prentice(1995), it can be shown that

which will be denoted by , where  and
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(11)

The asymptotic covariance can be estimated by using the substitution method as in Section
2.2.

Theorem 1—Under the assumptions of Cai and Prentice (1995), if β0 is the true value of β,
we have

3 Selection of Weights
It is difficult to find the optimal weights that minimize the asymptotic covariance matrix

, particularly when J is large. Hence, our goal reduces to choose viable weights with
close forms that outperform the working independence, which corresponds to the choice wj =
1/J for all failure types. For simplicity of the notation, we consider the population version. It
is understood that the unknown quantities will be estimated by using the substitution method.
We will consider the following three criteria.

3.1 Componentwise variance
This criterion attempts to choose the weight to minimize the variance of β ̂k, where βk is the

kth component of β. Such a choice depends on k. Let  denote the kth diagonal entry of

matrix Σj and  be defined similarly. Direct minimization of the k-th diagonal element of

 is not feasible or analytic. Hence, an approximation solution is sought.

Assume that Σj(β) ≈ bj Σ for a given Σ and scale bj. For multivariate failure time data, this
assumption implies that the information matrix for different failure types has the same structure
and only differs by a multiple of a constant. This condition will be satisfied if the survival
probability for different failure types are proportional over time and the covariates considered
for different failure types follow the same distribution. Under assumption Σj(β) ≈ bjΣ, we try
to minimize the variance var(β ̂k) of the kth component of β. When Σj(β) ≈ bjΣ is true, the

variance  of β ̂ becomes

(12)

Since Σ−1 does not depend on W, one possibility is to minimize the matrix
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Focusing only on the kth diagnonal element of

we would like to find W to minimize

Thus our problem becomes to minimize

(13)

subject to , where D is a (J × J) symmetric matrix with diagonal elements 

and off-diagonal elements . By the Lagrange multiplier method, we can easily show that
the solution is given by

(14)

where b is a vector with elements being bj (j = 1, 2, ···, J).

Another possibility is to directly minimize the asymptotic variance of the kth component β ̂k of
β ̂. According to (12), this is given by

(15)

where  and  are the kth diagonal element of Σ−1ΣjΣ−1 and Σ−1DijΣ−1, respectively.

Estimating , the problem admits a similar solution to (14).
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Different choices of the vector b give different suboptimal solutions and our strategy is to take
the one with the smallest var(β ̂k). Here are several choices based on the assumption Σj(β) ≈
bjΣ:

1.
 (j = 1,···,J);

2. bj = tr(Σj(β)), (j = 1, ···, J), where tr is the trace of a matrix;

3. bj = 1 for all j.

With those three choices of b’s, we obtain their corresponding weighting vectors as in (14).
We now pick the best weighting scheme among the four weighting schemes: The three just
constructed and the working independence weight. The resulting weighting scheme always
improves the working independence estimator, in terms of the efficiency of estimating βk. This
method will be abbreviated as “CW”. Note that we can also get thee additional weighting
schemes from (15) using the same choice of the vector b, resulting in seven choices instead of
three choices of W. This would improve our estimation method further. Unfortunately, this
was not implemented in our numerical studies.

3.2 Total variance
The total variance method is to choose the weights to optimize the performance of all entries
of β simultaneously. It intends to solve the following optimization problem:

(16)

Again, the close-form solution cannot be found and a simplified version is sought.

Assume again that Σj(β) ≈ bjΣ. The optimization problem reduces to

subject to , where H is a symmetric matrix with diagonal elements tr(Σ−1ΣjΣ−1)

and off-diagonal elements tr(Σ−1 Dkl Σ−1). Extending the constraint to , by the
Lagrange multiplier method, the solution is explicitly given by

(17)

where b is a vector with elements being bj (j = 1, 2, ···, J). The unknown parameters tr
(Σ−1ΣjΣ−1) and tr(Σ−1 Dkl Σ−1) can be estimated respectively by tr(Σ̂−1 Σ̂j Σ̂−1) and tr(Σ̂−1

D ̂kl Σ̂−1), where .

Similar to the componentwise case, the following are two possible choices of bj.

1. bj = tr(Σ̂ j), (j = 1, ···, J), or
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2. bj’s always are 1.

Let the corresponding solution (17) be respectively W(A) and W(D).

Another simple and workable procedure is to simply take wj = [tr(Σj(β ̂)−1)]−1 as weights. The

intuition is that each failure type gives an estimate of β0, with covariance matrix , or overall

accuracy . More informative (about β) failure types are assigned with heavier weights.
The method to estimate parameter β from this weight will be denoted by W(d).

Counting the working independence weight W(I), we have four weighting schemes to choose:

W(A), W(D), W(d) and W(I). We will pick the one with the smallest total variance .
The method will be denoted by “WT”.

3.3 General scoring method
We now consider a general weighting scheme as in Heyde (1997), which combines J groups
of estimating equations for β from J failure types:

(18)

where W is a p × Jp weight matrix and  is a vector of

score functions, with the score of the marginal pseudo-partial likelihood function  defined
by the gradient vector of (4).

Suppose that our aim is to find the weighting matrix W such that the asymptotic covariance
matrix is minimized. Following the argument in Heyde (1997), the optimal weight matrix is
given by Wopt = E( )Σ−1, where  = ∂ /∂β is the first order derivative of (β), a (Jp) × p
matrix, and Σ is the asymptotic variance matrix of the score function (β), a (Jp) × (Jp) matrix.
See also Hensen (1982).

The weight Wopt depends on unknown β. This can be estimated by using a working
independence estimator. With weight Wopt being estimated, we can now solve (18) to obtain
a two-stage estimator. This method will be abbreviated as “WS”.

A drawback of this method is that it estimates a (Jp)×(Jp) matrix and another (Jp)×p matrix.
The elements in each of these two matrices are estimated with errors. When J or p is large, it
is not clear how close the estimate of Wopt is. In other words, the vector that we get Ŵopt and
the vector we want Wopt can be different. Hence, the efficiency gain is not always materialized.
This is why we introduce two simplified schemes in Sections 3.1 and 3.2. However, if Wopt
can be estimated correctly, the general scoring method with the optimal weight will provide
the lowest asymptotic variance of β ̂ compared to minimizing the trace of the variance or
choosing a specific b.

4 Optimality of the working independence estimator
We would like now to identify the situations under which the working independence gives a
nearly optimal solution. For those situations, there is no need to attempt to improve the working
independence estimator. This also helps us design simulation settings in which working
independence is not optimal.
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Let us consider the optimization (13) again. When covariance matrix of marginal score

functions  (j = 1, 2, ···, J) is dominated by diagonal block Σj (j = 1, 2 ···, J), then matrix
D is also dominated by its diagonal entries. If the matrix D is dominated by its diagonal
elements, then the solution (14) is the uniform weight which corresponds to the working
independence estimator. This can be seen by assuming ideally that D in (13) is a diagonal

element and  that makes the assumption Σ(β) ≈ bjΣ valid for the k-diagonal element

of the matrices. In other words, when the covariance matrix of the score functions  (j = 1,
2, ···, J) is dominated by diagonal blocks Σj (j = 1, 2 ···, J), it implies that dependencies between
the failure types in the same cluster are ignorable. Consequently, samples from different failure
types are approximately independent of each other and the working independence weight can
be reasonably applied in such a situation.

Another situation that the working independence is optimal is that the information contained
in failure types is exchangeable. By exchangeability, we mean that the partial likelihood from
each failure type plays a symmetric role: the blocks Dij (i, j = 1, 2, ···, J, i ≠ j) of covariance

matrix Σm of the score functions  (j = 1, 2, ···, J) are the same and Σj (j = 1, 2, ···, J) are
approximately equal. In this case, the optimization problem (13) becomes

subject to the constraint , where Σ(k) is the k-th diagonal element of the matrices
Σ and D(k) is the k-th diagonal element of the matrix D. This optimization problem is symmetric
in wj. By using the Lagrange multiplier method, one can easily show that the uniform weight
is the optimal choice. In other words, even if dependency between the clusters is very strong,
as long as they are exchangeable, the working independence estimator is still an optimal choice.

Using the total variance as the criterion, the results are the same as those of the componentwise
criterion. In fact, we have verified these properties in our simulations that the working
independence weight is the best when the asymptotic covariance is exchangeable or diagonal-
dominated matrix and data are balanced.

5 Numerical studies
5.1 Simulations

Simulation studies are used to evaluate the performance of the proposed estimation methods.
Multivariate failure times are generated from a multivariate extension of the model of Clayton
and Cuzick (1985) in which the joint survival function of (T1, ···, TJ) given (Z1, ···, ZJ) is:

(19)

where Sj(t) is the marginal survival probability for the jth member, depending on covariates
Zj, and θ is a parameter that controls the degree of dependence among survival times. The
relationship between Kendall’s tau and θ is τ = 1/(2θ + 1). The marginal distribution of Tj,
given the covariate Zj, is governed by the following hazard rate:
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(20)

The multivariate survival times can be generated from the above specifications via the
following conditional relation:

(21)

That is, for each draw, we first generate T1 from model (20), then generate T2 using (21) after
getting T1 = t1, simulate T3 after getting T1 = t1 and T2 = t2, and so on.

In our simulation studies, we take J = 3, , corresponding to the exponential
distribution, and θ = 0.05, 0.5 and 2, which represent strong, moderate and weak positive
dependence, respectively. Censoring times Cij are generated independently from uniform
distribution over (0, c), where c is a constant which controls the censoring rate. In all simulation
studies, c = 1 is taken, which results in different censoring rates for different settings. The
number of simulations are 500.

In the first simulated example, we take β = (−0.05, 0.2, −1.5)T and . We
now describe how the covariate vector Zj = (Zj1, Zj2, Zj3)T (j = 1, 2, 3) is simulated for each
draw. Z11 is a binary random variable with probability 0.5 taking values 0 or 1, respectively,
and Z12 is a normal random variable with mean 1 and standard deviation 1, Z13 = 0.8(Ui − 0.5)
for the standard uniform random variable, and these three random variables are independent.
For j = 2 and 3, in order to generate dependent covariates, we take covariates by Zj1 = Z11 and

where (δ2, δ3) is generated from the multivariate normal distribution with mean 0, standard
deviation 1 and correlation coefficient 0.5, and εjk is generated from independent standard
normal distribution. The censoring rate for c = 1 is approximately 53%.

Table 1 summarizes the simulation results for the pseudo-partial likelihood estimator of β with
3 event types for each individual, while Table 2 summarizes the results with 30% of event type
2 missing and 50% of event type 3 missing. The averages, among 500 simulations, of Kendall’s
τ and Pearson correlation coefficients ρ summarize the degree of dependence among three
survival times (before they are censored). They are summarized as (a1, a2, a3), representing
the correlation between the failure types 1 and 2, 1 and 3, and 2 and 3, respectively. They give
us an idea of the degree of dependence among the survival times. The columns β ̂j show the
averages of the estimate among 500 simulations and the columns “SE” give the averages of
the estimated standard errors. The empirical standard errors of the 500 estimates are given in
the columns “SD”, and the coverage rates of the 95% confidence intervals are summarized in
the column “CR”. The columns “Ratio” show the percentage of variance reduction by using
the weighted estimator in comparison with the working independence estimator.

First of all, all estimators are approximately unbiased and columns SE are close to the columns
SD for all estimators, which indicates good performance of the standard error formulas in the
presence of strong or modest dependency. The coverage rates of the 95% confidence intervals
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are close to the nominal level for those cases. The variance reduction of the weighted method
is clearly shown in the columns “Ratio”. The stronger the dependence among the correlated
events, the more the reduction of the variance by using the weighted estimator. In other words,
the more efficiency gain.

In the second example, we take the coefficient paramter β = (0, − log(2)/4, 0.05)T, and
. The generation of covariate vector is as follows. We first generate the

covariate vector Z1 = (Z11, Z12, Z13)T from a multivariate normal distribution with marginal
mean of 0, standard deviation being 1, and the correlation between Z1l and Z1k of 2−|l −k|. Then,
for j = 2 and 3, we take Zj = jZ1 + 0.5ej, where ej is generated from the trivariate standard
normal distribution. We conduct the simulation with the same combination of event types and
obtain similar results. In fact, the efficiency improvement by the weighted estimator is even
more dramatic. We omit the details.

We have also conducted various experiments to verify the claims in Section 4. If we generate
the covariate Zj independently with the same distribution, then the score functions are
exchangeable. In this case, no matter how small the dependent parameter θ is (i.e. how strong
the dependence of the failure times is), our simulation results show that both weighted methods
in Sections 3.1 and 3.2 have approximately the same efficiency, as expected from Section 4.
See Table 3.

In the third example, we consider the simplest example with p = 1 and β = 0. This avoids the
impact of the dependence of covariates on the dependence of the survival times. The baseline
hazard is taken as . The covariate (Z1, Z2, Z3) for each type of failure are
generated as follows. The covariate Z1 in failure type 1 is generated from standard normal
distribution, and Zj = jZ1 + 0.5 εj for j = 2, 3, in which εj is also generated from the standard
normal distribution. The percent of censoring for c = 1 is about 63%. The results are
summarized in Tables 4 and 5. The improvements of the weighted estimators are now even
more pronounced.

5.2 Busselton Population Health Surveys
We illustrate the proposed method by analyzing a data set from the Busselton Population Health
Surveys. The Busselton Population Health Surveys are a series of cross-sectional health
surveys conducted in the town of Busselton in Western Australia. Every 3 years from 1966 to
1981, general health information for adult participants were collected by means of
questionnaire and clinical visit. Details of the study are described in Cullen (1972) and
Knuiman et al. (1994). Data for several cardiovascular risk factors are available for 2202
persons who make up 619 families. In this analysis we are interested in investigating the effect
of cardiovascular risk factors on the risk of death due to cardivascular disease (CVD) based
on these family data. Since the death times of the family members might be correlated due to
genetic factors and cohabitation, we are dealing with multivariate failure time data.

The risk factors we considered here includes age, gender, SBP, DBP, body mass index (bmi),
serum cholesterol level (chol), and smoking status. Participant’s age was measured in years.
Serum cholesterol was determined from a blood sample and the unit used in this analysis is
mmol/L. Body mass index was derived as weight (kg) divided by the square of height (m).
Smoking status is coded as 1 for current smoker and 0 otherwise.

If a person took part in more than one of the Busselton surveys, only one record from the survey
at which that person’s age was closest to 45 years is included. Forty-eight percent of the
participants are males (gender=0 for male and 1 for female). The average age in the data
analyzed is 41.7 years, ranging from 16.3 to 89.0 years old. The average cholesterol reading
was 5.65 mmol/L. The average body mass index was 24.8 kg/m2. The prevalence of the never-
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smokers, ex-smokers, and current smokers are 49 %, 17 %, and 34%, respectively. Of the 619
families, there are 154 families with one event, 28 families with two events, and 3 families
with more than two events. There are 219 observed events in all. The censorship is very heavy,
93.73% of data are censored in this data set.

For this analysis, we are interested in investigating the effect of the risk factors on hazard rate
of death. We consider the following model:

where j = 1 and 2 denote the parents and the children of the family, respectively.

For this data and this model, we perform the proposed estimating procedures to estimate the
coefficients. The procedure includes the working independence (WI), componentwise (CW),
trace (TW), and generalized score methods (WS). The estimated coefficients are summarized
in Table 6. The results are very similar among those four methods, with the generalized score
method having slightly smaller SEs. This is probably due to the heavy censoring of the data,
which makes working independence more attractive.

6 Concluding Remarks
We have proposed several weighted estimators based on different criteria for estimating
regression coefficients in Cox model with failure time data. Our aim is to come up with a simple
weighting scheme that performs at least as good as the working independence estimator. We
identify the situations under which the working independence estimators are in fact effective.
Specifically, when the covariance matrix of the score functions of the partial likelihood function
for each failure types or clusters are nearly block diagonal or exchangeable, the working
independence is indeed nearly optimal. The generalized score method, which efficiently
combines the estimating equations, is an efficient method. However, the efficiency cannot
always be realized, particularly when J and p are both large.
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