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Abstract

In recent years, the technology of constructing chimeric mice with humanized immune systems 

has markedly improved. Multiple lineages of human immune cells develop in immunodeficient 

mice that have been transplanted with human hematopoietic stem cells. More importantly, these 

mice mount functional humoral and cellular immune responses upon immunization and microbial 

infection. Human immunodeficiency virus type I (HIV-1) can establish an infection in humanized 

mice, resulting in CD4+ T-cell depletion and an accompanying nonspecific immune activation, 

which mimics the immunopathology in HIV-1-infected human patients. This makes humanized 

mice an optimal model for studying the mechanisms of HIV-1 immunopathogenesis and for 

developing novel immune-based therapies.

INTRODUCTION

Human immunodeficiency virus type I (HIV-1) infection is characterized by progressive 

CD4+ T-cell depletion and acquired immunodeficiency syndrome (AIDS). Approximately 

60 million people have been infected with HIV-1, and half of them have died from AIDS-

related diseases.1 After more than 30 years of extensive research, the precise mechanism by 

which HIV-1 infection leads to immunodeficiency is still poorly understood, mainly as a 

result of the lack of robust small animal models. The recent development of humanized mice 

with functional humanized immune systems may help to improve our understanding of 

HIV-1 pathogenesis and lead to new treatments.

A BRIEF HISTORY OF THE HUMANIZED MOUSE MODEL

In this review, humanized mice are defined as immunodeficient mice that have been 

transplanted with human hematopoietic stem cells (HSCs), lymphoid tissue or peripheral 

blood cells. Early attempts to reconstitute the human immune system in nude mice (which 

lack T cells) were unsuccessful because of the significant rejection mediated by the 
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remaining mouse B and natural killer (NK) cells.2 The first breakthrough in this field came 

with the development of CB17-SCID (SCID) mice,3 which lack both T and B lymphocytes. 

Human peripheral blood leukocytes (SCID-hu PBL)4 and human fetal liver and thymus 

tissue (SCID-hu Thy/Liv)5 were successfully reconstituted in SCID mice. Non-obese 

diabetic (NOD)/SCID mice exhibit additional defects in T, B, NK cell and macrophage 

function6 and thus are superior to SCID mice at accommodating human peripheral 

mononuclear cells (PBMCs)7 and HSCs.8 However, these early models have limitations. 

The SCID-hu PBL mice lack human lymphoid organs and develop severe graft-versus-host 

disease mediated by xeno-reactive donor T cells. In contrast, the SCID-hu Thy/Liv mice 

have very low levels of human cells in the blood and peripheral organs. Collectively, the 

lack of human cells in the peripheral lymphoid organs and the inability to mount functional 

immune responses limit the applicability of these early humanized models.

RECENT PROGRESS IN HUMANIZED MOUSE MODELS

It was reported that depletion of NK cells by antibody treatment significantly increases 

human HSC engraftment efficiency in NOD/SCID mice.9 This finding encouraged the 

generation of mice that are completely devoid of T, B and NK cells (reviewed by Ito et al.10 

and Shultz et al.11). These newly developed immunodeficient mice allowed much better 

human HSC reconstitution and significant improvements in human immune function. In 

addition to the development of novel immunodeficient mouse strains, more efforts have 

been made to enhance engraftment, such as by introducing human cytokines,12–14 by using 

human leukocyte antigen (HLA) transgenics,15 and by inhibiting mouse macrophage 

function.16

Mice lacking T, B and NK cells

The interleukin-2 (IL-2) receptor gamma chain (IL2Rγ) is a common signaling component 

of IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 signaling. The absence of IL2Rγ blocks NK cell 

development as a result of the ablation of IL-7 and IL-15 signaling. Efficient multilineage 

hematopoiesis was first reported in NOD/Shi-scid Il2rgnull (NOG) mice after human HSC 

transplantation (NOG-hu HSC),17 and a subsequent study showed similar human immune 

cell differentiation in rag2−/− Il2rgnull mice (DKO-hu HSC). More importantly, functional 

human immune responses were observed in DKO-hu HSC mice, including antigen-specific 

T cells and antibody production in respond to immunization and microbial infection.18,19 

Several other mutant mouse strains with an Il2rg gene knockout have been successfully 

developed, such as NOD/LtSZ-scid Il2rgnull (NSG),19,20 NOD-rag1−/−Il2rgnull (NRG)21 

and rag1−/− Il2rgnull mice.22 It is worth noting that NSG mice have been shown to support 

increased human cell engraftment over the other strains.22–24

Inhibition of mouse macrophages

In addition to T, B and NK cells, macrophages also contribute to xenograft rejection. Signal 

regulatory protein alpha (SIRPα) is an inhibitory receptor that is highly expressed on 

myeloid cells, whereas its ligand CD47 is expressed on all cell types. Ligation of SIRPα by 

CD47 inhibits macrophage phagocytosis, which contributes to the recognition of self and 

non-self by innate immunity.25 Additionally, this CD47–SIRPα interaction also plays an 
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important role in macrophage-mediated xenograft rejection in humanized mice. The SIRPα 

of NOD mice shows enhanced binding to human CD47, which results in reduced rejection 

and improved human cell reconstitution.26 These polymorphisms of the sirpa gene may at 

least partially explain why NSG mice are more efficient than DKO mice in supporting 

human HSC transplant.22,27 It was recently reported that HSC transduction with mouse 

CD47 by a lentiviral vector led to increased engraftment in humanized mice.28 Meanwhile, 

human sirpa gene-transgenic DKO mice support improved human cell reconstitution and a 

stronger antigen-specific immune response.16

Improvement of graft efficiency by introducing human cytokines

Many mouse cytokines are poorly crossreactive with their human receptors, so 

supplementing human cytokines in trans can improve the development and differentiation of 

certain cell lineages in humanized mice: such cytokines include IL-7 for T cells,29 IL-15 for 

NK cells,12,30 erythropoietin for erythrocytes, and granulocyte-macrophage colony-

stimulating factor (GM-CSF) IL-4 and macrophage colony-stimulating factor (M-CSF) for 

monocytes/macrophages.12,31

Recently, progress has been made by knock-in replacement of mouse cytokines with their 

human counterparts.32 Because transcription of the knock-in genes is controlled by mouse 

regulatory elements, the genes are expressed at the correct time, in the correct location and 

at physiological levels. Moreover, the replacements lead to defects in the targeted mouse 

cells, thus providing a competitive advantage to human cells. Three mouse strains have been 

developed with this technology to produce human thrombopoietin,14 human IL-3/GM-

CSF13 and M-CSF.33 The thrombopoietin replacement results in better maintenance of 

human HSC and higher levels of human cell engraftment.14 The human IL-3/GM-CSF13 and 

M-CSF33 knock-in genes dramatically improve myeloid cell differentiation and function.

Human HLA transgenic mice

In humanized mice, human T cells are educated in the mouse thymus by both mouse thymic 

epithelial cells and human bone marrow-derived cells.18,19 The T-cell receptor affinity and 

specificity may be different from those in humans with matched MHC types.34 Transgenic 

expression of human HLA-A2 (MHC I) significantly improves human CD8+ T-cell 

responses to both Epstein–Barr virus (EBV)34,35 and dengue virus36 in infected mice. 

Interestingly, EBV-infected humanized mice with the HLA-A2 transgene generate antigen-

specific T cells to lytic EBV antigens that predominate over T cells specific to latent 

antigens, which is similar to the T-cell response in human EBV carriers.34 Significantly 

increased human cell reconstitution and better immune responses, including 

immunoglobulin class switching and elevated human IgG responses, were also observed in 

HLA-DR4 (MHC II) transgenic mice.37,38

Other factors affecting human cell engraftment

In addition to the mouse genetic background, there are other factors that may affect human 

cell reconstitution. First, co-transplant of human fetal thymus with autologous HSC will 

significantly increase human immune reconstitution and function in NOD/SCID mice.39,40 

Mice transplanted with human fetal thymus and liver tissue in addition to HSC are called 
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BLT mice.39,40 BLT mice have been constructed on both NOD/SCID and NSG 

backgrounds, and the reconstitution of NSG-BLT has proved to be better than NOD/SCID-

BLT.24 It has also been demonstrated that newborn mice (less than 3 days) support higher 

transplant efficiency.18,19,27,41 Mouse gender was found to play a role in accommodating 

human HSC grafts because engraftment of human hematopoietic stem cells was more 

efficient in female NSG recipient mice than in male mice.23,42

HIV-1 INFECTION IN HUMANIZED MICE

Early generations of humanized mice were developed to study HIV-1 infection,43,44 and the 

SCID-hu Thy/Liv model is still being used to test antiviral drugs (Table 1).45–47 However, 

these models are limited in the modeling of HIV-1 immunopathogenesis owing to the lack 

of a functional immune system. In the improved humanized mice, several HIV-1 strains 

have been successfully used for infection. These include CCR5-tropic (JR-CSF,48,49 Yu-2,50 

BAL,51,52 ADA53 and NFN-SX52,53), CXCR4-tropic (NL4-3)50,51 and dual-tropic (NL4-

R3A) viruses.48,54 HIV-1 infection can be established by inoculation through 

intraperitoneal,50,51,53,55 intravenous48,49 or mucosal routes.56 Sustained viral replication 

and CD4+ T-cell depletion were observed by all routes of infection. As is the case for HIV-1 

infected patients, CXCR4-tropic HIV-1 quickly depletes both CD45RA+ naive and 

CD45RA− effector/memory CD4+ T lymphocytes, whereas CCR5-tropic HIV-1 

preferentially depletes CD45RA−CD4+ T lymphocytes.57

Humanized mice have been used to study various aspects of HIV-1 infection (Table 1): the 

roles of regulatory T cells (Tregs)54 and plasmacytoid dendritic cells (pDCs)73 in HIV-1 

infection, the immunopathogenesis of HIV-1, viral evolution in vivo,58,59 new antiviral 

treatments,79–81,84,86 gene therapy,83,88 mucosal transmission56 and microbicide 

development.68,70 In the presence of antiviral drugs, latent infection can be established, 

making it a valuable model to study HIV-1 latency.61–63

Most importantly, the anti-HIV-1 immune responses were observed in the infected mice. 

These include anti-HIV-1 antibodies49,50,52,56 and HIV-1-specific T-cell responses.52 HIV-1 

infection resulted in increased CD8+ T cells in the blood, which were derived from CD45RA 

effector/memory T cells, not CD45RA+ naive T cells.60 The depletion of CD8+ T cells by 

antibody treatment resulted in increased viral load, robust immune cell activation and 

cytopathology in lymphoid tissues.89 These improvements make the new generation of 

humanized mice superior to the early models for studying HIV-1 immune responses and 

immunopathogenesis.

IMMUNE ACTIVATION AND HIV-1 PATHOGENESIS

Although HIV-1 infection kills target cells, the majority of CD4+ T-cell loss is not due to 

productive infection.90,91 It is widely accepted that chronic, generalized immune activation 

induced by HIV-1 infection is the major driving force of immunodeficiency.92–94 The level 

of T-cell activation (the percentage HLA-DR+CD38+ T cells out of all the CD8+ T cells) 

predicts disease progression independent of and more accurately than CD4+ T cell count.95 

Additionally, it was recently reported that anti-malarial drugs such as chloroquine96 and 

hydroxy-chloroquine97 inhibit immune activation in HIV-1-infected patients when used as a 
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monotherapy96 or in combination with antiviral treatment.97 The reduction in immune 

activation correlates with an increase in CD4+ T cells.97

Additional data supporting the hypothesis that immune activation drives AIDS development 

come from simian immunodeficiency virus (SIV)-infected monkeys. SIV-infected Asian 

monkeys (e.g., rhesus macaques, cynomolgus macaques and pigtail macaques) experience a 

dramatic increase in immune activation, rapid CD4+ T-cell loss and progression to AIDS. 

Conversely, infected natural African hosts (e.g., green monkeys, sooty mangabeys and 

mandrills) exhibit minimal T-cell activation and rarely progress to immunodeficiency 

despite a viral load comparable to pathogenic SIV infections.98–100 Moreover, experimental 

induction of immune activation by lipopolysaccharide (LPS) in SIV-infected African green 

monkeys has been shown to result in CD4+ T-cell loss.101 Interestingly, the transcriptomes 

of patients with preserved CD4+ T cell numbers in the presence of constant, high HIV-1 

viral loads are very similar to the transcriptomes of SIV-infected sooty mangabeys.102

Long-term immune activation can cause damage even in the absence of viral infection. For 

example, transgenic mice expressing CD70 develop chronic immune activation and lethal 

immunodeficiency.103 Moreover, treatment with Toll-like receptor (TLR) 9104 or TLR7105 

ligands in mice induces immune activation, lymphoid organ distraction and immune 

suppression.

The exact mechanism by which HIV infection leads to immune activation is not fully 

understood. It has been proposed that HIV-1 viral proteins, whole viral particles, infected 

cells and infection-induced cytokines contribute to immune cell activation.93 Other factors 

have also been proposed as the cause of immune activation, such as loss of tissue integrity 

during acute phase infection of gut-associated lymphoid tissue (GALT) and microbial 

products translocation,106 loss of Tregs,107,108 activation of pDCs,112 and production of type 

I interferons (IFN-I).109,110

GALT infection and intestinal bacteria translocation

HIV-1 infection causes massive depletion of T cells in GALT and breaks down the mucosal 

barrier, resulting in translocation of intestinal bacterial products (including LPS) and 

immune activation.106 Injection of LPS into SIV-infected African green monkeys resulted in 

increased immune activation and viral replication.101 It was recently reported that 

circulating LPS in the first years of chronic HIV-1 infection is a strong predictor of disease 

progression independent of CD4+ T-cell counts and HIV-1 viral load, so plasma LPS may 

serve as a candidate biomarker for HIV-1 monitoring and evaluation of treatments.111

IFN-I and pDC activation

IFN-I is a group of multifunctional cytokines that plays an essential role in antiviral 

immunity. pDCs constitute 0.2%–0.5% of human PBMCs, but they are capable of producing 

100 times more IFN-I than other cell types. They preferentially express TLR7 and TLR9, 

sensing viral RNA and DNA, respectively, during infection. Upon viral infection or other 

stimulation, pDCs produce large amounts of IFN-I and other inflammatory cytokines.112 

IFN-I play important roles in immune cell development and normal immune responses. 
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However, persistent expression of IFN-I induces immune dysfunction and may lead to 

autoimmune disease.113

Elevated expression of IFN-I has been documented in HIV-1-infected patients.114–116 

HIV-1 infection also stimulates IFN-I production in cultured human PBMCs or purified 

pDCs.117–119 As would be expected, both IFN-I120,121 and pDCs122 show the capacity to 

inhibit HIV-1 replication in vitro. pDCs are numerically decreased123–125 and functionally 

impaired in the peripheral blood of HIV-1-infected individuals. The decreased capacity of 

pDCs to produce IFN-I correlates with opportunistic infection independent of CD4+ T-cell 

counts.126–128 These observations suggest that pDCs and IFN-I are protective during HIV-1 

infection, which is similar to their role in other viral infections.

Paradoxically, the high levels of IFN-I in HIV-1-infected patients do not correlate with viral 

control; rather, they are predictive of HIV-1 disease progression and AIDS 

development.115,129,130 Additionally, IFN-I is induced during the acute phase of SIV 

infection in both pathogenic and non-pathogenic hosts, but is rapidly controlled during non-

pathogenic SIV infection. Only pathogenic SIV infection is characterized by sustained IFN-I 

production during a chronic infection, which correlates with immune activation and AIDS 

development.131–134 However, it is still not clear if pDCs are the major source of IFN-I 

during chronic HIV-1 infection because the IFN-I-producing cells in the spleens of HIV-1 

infected patients do not seem to express pDC-specific markers.135 The mechanisms of IFN-I 

production and pDC activation in HIV-1 pathogenesis are poorly understood. HIV-1 

infection can stimulate pDCs to express TNF-related apoptosis-inducing ligand, which may 

contribute to CD4+ T-cell depletion.136–138 However, the induction of CD4+ T-cell death by 

TNF-related apoptosis-inducing ligand-expressing pDCs remains controversial.139 These 

conflicting reports highlight that IFN-I and pDCs may play mixed roles in HIV-1 infection 

and immunopathogenesis.

Tregs

Human CD4+CD25+FoxP3+ Tregs are central players in balancing the induction and 

suppression of immune activation.140,141 During HIV infection, Tregs could be either 

beneficial, by inhibiting immune activation, or detrimental, by suppressing virus-specific T-

cell responses.107,142 It has been reported that, during HIV infection, the absolute Treg 

count decreases and that Treg loss correlates with immune activation and disease 

progression.143,144 However, other studies have shown that Treg numbers are elevated in 

both the PBMCs145,146 and the GALT147 of HIV-1-infected patients, independently of 

immunological and virological status.145,146 One study in SIV-infected rhesus macaques 

demonstrated that Tregs are depleted from the GALT but accumulate in PBMCs and 

lymphoid organs.148 These conflicting reports underscore the complex role of Tregs in HIV 

infection and immune activation.
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STUDYING THE MECHANISMS OF HIV-1 PATHOGENESIS IN HUMANIZED 

MOUSE MODELS

HIV-1 infection in humanized mice results in sustained viral replication and significant 

CD4+ T-cell depletion in the peripheral blood and lymphoid organs.48,50,51,53,55,56 Viral 

antigens have been observed in T cells, CD68+ macrophages50,56 and pDCs.73 Importantly, 

HIV-1 infection results in T-cell activation in the humanized mice, and the immune 

activation correlates with viral load74 and T-cell depletion.73 Several experiments to 

delineate the mechanisms of HIV-1 immunopathogenesis have been carried out in 

humanized mice and will be summarized in this section.

GALT infection and gut bacteria translocation

NOD/SCID-BLT or NSG-BLT mice support human cell reconstitution in the gut and 

virginal tissues through mucosal inoculation.24,56 These mice have been used to study 

microbicides and the prevention of HIV-1 mucosal transmission.24,68,70,71 DKO-hu HSC 

mice show very limited levels of human cells in the gut mucosa65 and whether these mice 

can support mucosal infection remains controversial.64,65 Application of dextran sodium 

sulfate induces bacterial endotoxin translocation in DKO-hu HSC mice but does not result in 

elevated plasma LPS levels unless phagocytic cells are depleted with clodronate liposomes 

or impaired by HIV-1 infection.72 This finding highlights the role of macrophages in 

modulating microbial translocation and immune activation.

pDCs and IFN-I in HIV-1 pathogenesis

Human pDCs in these chimeric mice phenotypically resemble their counterparts from 

human PBMCs in their expression of specific surface markers such as blood dendritic cell 

antigen 2, CD123, HLA-DR and CD4.18,52,73 Moreover, they function similarly to human 

pDCs by producing IFN-I and other inflammatory cytokines upon influenza virus or herpes 

simplex virus infection.18,52,73 HIV-1 infection in humanized mice can also activate pDCs 

to produce IFN-I and other cytokines. Importantly, the activation of pDCs positively 

correlates with immune activation and CD4+ T-cell depletion in infected mice.73 It has also 

been shown that IFN-I application to NSG-BLT mice causes immune activation similar to 

that induced by HIV-1 infection.74

It was recently reported that chloroquine118 and rapamycin151,152 inhibit IFN-I production 

by pDCs in vitro. Meanwhile, clinical studies show that chloroquine,96 

hydroxychloroquine97 and rapamycin149,150 could reduce immune activation and inhibit 

pathogenesis in HIV-1-infected patients. Whether these drugs function through inhibiting 

pDCs in vivo needs to be examined further. Humanized mice provide a robust in vivo model 

for these studies and other hypothesis-driven experiments that test the roles of pDCs and 

IFN-I in HIV-1 pathogenesis.

Roles of Tregs in HIV-1 infection and pathogenesis

Tregs were observed in different organs of humanized mice, and purified Tregs have 

suppressive functions that are similar to those of their human PBMC-derived 

equivalents.54,153 During the acute phase of infection, CD4+FoxP3+ Tregs are preferentially 
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infected and depleted by a pathogenic HIV-1 isolate in infected DKO-hu HSC mice. When 

Tregs are depleted with an IL-2-toxin fusion protein (denileukin diftitox, trade name Ontak), 

HIV-1 replication is significantly impaired in infected mice. This is observed in the reduced 

number of infected cells in lymphoid organs and lower plasma viremia.54 Notably, Ontak 

does not efficiently deplete Tregs in monkeys,101 which highlights the advantage of 

humanized mouse models.

AIDS-related neurological disorders

Neurocognitive disorders are common causes of morbidity in HIV-1-infected patients.154 

SIV-infected rhesus macaques have been developed to study HIV-1-related neurological 

disorders.155 However, species specificity and high costs preclude their widespread usage. 

Recently, it was reported that HIV-1 infection in humanized mice induces 

neuroinflammatory responses, including leukocyte infiltration, microglial activation, 

meningitis and encephalitis.78 Structural changes in mouse cortical gray matter were also 

observed, evidenced by the loss of micro-tubule-associated protein 2, synaptophysin and 

neurofilament antigens.76 These reports suggest that humanized mice would be a valuable 

system for modeling AIDS-related neurodegeneration.

FUTURE DIRECTIONS

Substantial advances have been made in developing mice with humanized immune systems 

since the first report more than 20 years ago,5 although the functions of the human cells in 

these chimeric mice are still in need of further improvements.156,157 These mice have been 

shown to be invaluable for several aspects of HIV-1 research, especially for studying 

immune responses and immunopathogenesis.54,72,73 All of the human immune cell types 

that have been implicated in HIV-induced immune pathogenesis can be studied in 

humanized mice. Additionally, humanized mice can be genetically modified to test different 

hypotheses about immune activation and the underlying mechanisms. More importantly, 

data collected from humanized mice are readily translatable to clinical studies because the 

same agents can be used. In summary, humanized mouse models will increase our 

understanding of how HIV infection leads to AIDS and accelerate the development of 

therapeutic strategies.
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Table 1

HIV infection in current humanized mouse models

Research areas Models References

HIV-1 evolution DKO-hu HSC Ince et al.,58 2010

NOG-hu HSC Sato et al.,59 2010

Immune response NOG-hu HSC Nie et al.,57 2009

NOG-hu HSC Sato et al.,60 2010

NSG-BLT Brainard et al.,52 2009

NOD/SCID-BLT Brainard et al.,52 2009

Latency DKO-HSC Choudhary et al.,61 2012

NSG-BLT Denton et al.,62 2012

Marsden et al.,63 2012

Mucosal transmission and prevention DKO-hu HSC Berges et al.,64 2008

Hofer et al.,65 2008

Neff et al.,66 2010

Rag1−/− γC−/−-hu HSC Akkina et al.,67 2011

NSG-BLT Denton et al.,68 2011

Stoddart et al.,24 2011

Wheeler et al.,69 2011

NOD/SCID-BLT Sun et al.,56 2007

Denton et al.,70 2008

Denton et al.,71 2010

Denton et al.,68 2011

Stoddart et al.,24 2011

Immune activation and pathogenesis Tregs DKO-hu HSC Jiang et al.,54 2008

GALT and mucosal microbes DKO-hu HSC Hofer et al.,72 2010

pDCs DKO-hu HSC Zhang et al.,73 2011

Interferon-α NSG-BLT Long et al.,74 2012

Interferon-α SCID-hu Thy/Liv Stoddart et al.,75 2010

Neuropathology NSG-hu HSC Dash et al.,76 2011

Gong et al.,77 2011

Gorantla et al.,78 2010

Antiviral drug siRNA DKO-hu HSC Neff et al.,79 2011

Zhou et al.,80 2011

Ter Brake et al.,81 2009

NSG-hu HSC Kumar et al.,82 2008

Kim et al.,83 2010

NSG-BLT Wheeler et al.,69 2011

Small molecules DKO-hu HSC Choudhary et al.,84 2009

Sango et al.,85 2010

Sci China Life Sci. Author manuscript; available in PMC 2014 November 08.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Zhang and Su Page 19

Research areas Models References

SCID-hu Thy/Liv Stoddart et al.,46 2007

Stoddart et al.,47 2007

Peptides DKO-hu HSC van Duyne et al.,86 2008

SCID-hu Thy/Liv Stoddart et al.,45 2012

Gene Therapy shRNA NSG-BLT Shimizu et al.,87 2010

HIV-1 neutralizing antibody NSG-hu HSC Joseph et al.,88 2010

Abbreviations: BLT, human thymus and liver tissues and HSC; DKO, rag2−/− Il2rg tm1Sug/Jic; hu HSC, human CD34+ hematopoietic stem/
progenitor cells; hu Thy/Liv, human thymus and liver tissues; NOG, NOD. Cg-Prkdc scid Il2rg tm1Sug/Jic; NSG, NOD/LtSZ-scid Il2rgnull; 
pDCs, plasmacytoid dendritic cells; Tregs, regulatory T cells; shRNA, small hairpin RNA; siRNA, small interfering RNA.
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