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Abstract

This paper focuses on marginal regression models for correlated binary responses when estimation
of the association structure is of primary interest. A new estimating function approach based on
orthogonalized residuals is proposed. A special case of the proposed procedure allows a new
representation of the alternating logistic regressions method through marginal residuals. The
connections between second-order generalized estimating equations, alternating logistic
regressions, pseudo-likelihood and other methods are explored. Eficiency comparisons are
presented, with emphasis on variable cluster size and on the role of higher-order assumptions. The
new method is illustrated with an analysis of data on impaired pulmonary function.
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1. Introduction

This paper focuses on marginal regression models for correlated binary responses when
estimation of the association structure is of primary interest. Throughout, all vectors are
column vectors. Suppose data are available on Kindependent subjects, families, pedigrees
or clusters. Let 7identify a cluster and jand & index observations within a cluster. The triple
index /jk references observations jand kof cluster /, 1 < j < k< n;, where n;is the cluster
sample size.

For cluster / the response vector is Y;= (Y, ..., Y,-,,,)T, where each Yj;is a Bernoulli
random variable with mean ;= pr(Yj;= 1). Define also w k= ] YjYiel = pr( Y= Y=
1). The dependence or association between Yj;and Yj can be represented by the odds ratio
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the correlation coefficient, ;i = corr(Yj;, Yj), or by other measures such as the kappa
coefficient.

Dependence of the mean on covariates is modeled through a link function g1, gl(,uij)=xl-Tj,3,
where x;;is a covariate p-vector associated with Yj;and the components of S are the mean
parameters. Dependence of the pairwise association on covariates is modeled through a

second link function &2, gZ(llij,/lij,IJijk):Z;jr-ka, where Zzj; is a covariate g-vector associated
with the pair (Y, Yj) and the components of a are the association parameters. Common
choices for link functions include logit and probit for the mean structure and log odds ratio
and Fisher’s ztransformation of the correlation coefficient for the association structure.
Finally, define @be the (o + g)-vector (8T, aT)T and note that the covariance matrix X; =
cov(Y)) is completely determined by 6.

The regression model described above is a marginal model because the expectations
involved in s j7and e are not conditional on other responses or on latent random effects.
Differences in interpretation and applicability of marginal, conditional and random-effects
models have been elaborated by Zeger et al. (1988), Neuhaus et al. (1991) and Heagerty &
Zeger (2000). For n;>2, the marginal model parameters 6 do not fully specify the joint
distribution of Y7 so that maximum-likelihood estimation is not possible without further
assumptions. Because the joint distribution of Y;is determined by 27/ probabilities, except
for small nj;, computation of maximum-likelihood estimates becomes very demanding.

To reduce this burden, second-order generalized estimating equations were developed
(Liang et al., 1992) for estimation of &with minimal further assumptions. The basic idea is
to append to Yjthe m;= n{n;— 1)/2 products Wjj = Yj;Yjx then develop an estimating
equation based on the extended vector. The second-order generalized estimating equations
are

K T - ]
UQGEEz:Z( fj Coi ) (Z) 1( v):/li—ﬁgi ) 1)

i=1
where W;= (Wn_z, sy M//','n,‘—l;n,)—r: 8= E[l/l/,], Dj= d;t/c?ﬁ, Aj= d&/dﬁ, C,-=z95/(5'a and
Zi =cov((¥;, W), The matrix Zi involves third- and fourth-order cross-moments not

specified by the marginal model. A working version of Zi is obtained by assuming that
third- and fourth-order logistic contrasts are zero (Liang et al., 1992). Prentice & Zhao
(1990) presented an alternative formulation to (1) for maximum likelihood estimation under
a quadratic exponential model based on fixing higher-order moments.

For future reference we define the first-order generalized estimating equations for g (Liang
& Zeger, 1986),

K
-1
U/j,(;h‘/-_w:ZD;rZi (Yi—u;)=0, 2)
i=1
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where

L . 5
ij.j)Rl-dlag((rl;.j),

Zizcov(Y,-)zdiag(O'

ojjj=var(Yj) = pi{l - njp) and R;= corr(Y).
A practical difficulty in implementing (1) for large clusters is that the computational effort
grows very quickly with 1, Computing (1) requires solving a linear system in n{n;+ 1)/2

unknowns with effort O(nf.’) floating point operations. Besides computational complexity,
another reason for seeking alternatives to second-order generalized estimating equations is
the sensitivity of the g estimates to misspecification of the association model.

Several alternatives to (1) combine Ug.geg With a pairwise kernel, x;j, whose sum over all
pairs defines the cluster’s contribution to the estimating function for a,

K
U":ZZKUI" ©)]

i=1 j<k

Prentice (1988) suggested the pairwise kernel

oo T T @
= _ok
Y Oa  var(Ti)
where
(Yij—pi ) (Yie—ptin)
=T Pijk-

1
(04T i) 2

The resulting estimating function will be denoted U, .p.

Lipsitz et al. (1991) developed an estimating function, here denoted U, 4, using the kernel

a(sijkT WUL_aUL

Kijfe=—— .
= e var(Wir)

®)

As an alternative to generalized estimating equations, since the joint distribution of any pair
(Yj Yik) is completely determined by 6, it is possible to define a log pseudo-likelihood for
the £th cluster as /{6) = X< /j{ 6), where /{6) = 1og pr( Y= Vi Yik= Vik 6). Kuk &
Nott (2000) suggested the kernel ;i = dljj/ da while le Cessie & van Houwelingen (1994)
suggested a weighted version, = {1/(n;— 1)} dlj/ da. We denote these estimating
functions as U, -xyand U, -cn, respectively. Both Kuk & Nott (2000) and le Cessie & van
Houwelingen (1994) suggested
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K

1 Ol
=1 7 j<k

for estimation of 8. Based on efficiency studies with 77;< 6, Geys et al. (1998) seem to favor
Ua,’KN over Ua_,’CH-

One final method, along with Ug.a; = Up:cer1, defines Uy 4, 7 Using a pairwise kernel in
(3) based on conditional residuals

0™ My
Ja Sijk, ()

Kijk=

where
O'ijk
Cin=ELYij|Yul=pij+——(Yik—pir),
T ikk

ajjk = COV( Y YiK = mijk— ki Mijk = Yij=Cijks and Sjie= var(Yji Yie) = Ciil1= Cjin).-
The original formulation of U, .4  known as alternating logistic regressions (Carey et al.,
1993), models pairwise associations in terms of go( ) = log(wj)- In what follows, let A;
denote the vector with components Mjj and S;denote the diagonal matrix with diagonal
elements Sjj.

Note that the matrix S;is stochastic and does not consist of the diagonal elements of any
genuine covariance matrix; clearly var(Mji) # Cji(1- Gjjx)- Stochastic covariance matrices
in estimating equations are feasible (Heyde 1997, section 2.6) in the context of nested sigma
fields leading to a martingale structure, but that is not the case with (6). An important
consequence is that it is not clear how to allow a non-diagonal S;in order to improve
efficiency. Further, the stochastic nature of S;and d(/da makes theoretical investigation of
(6) through standard estimating equation theory not possible. Another point is that while

U, a1 ris invariant to permutations of the Yjvector (Kuk, 2004) the associated robust
variance estimator is not. In SAS version 9.2, the robust variance estimator is averaged over
estimators obtained from the original y;and a reversed version of y; (personal
communication with Vincent Carey and with Gordon Johnston at SAS Institute).

Asymptotic efficiency calculations reported by Carey et al. (1993) show U, .4, 7 to be nearly
as efficient as U, -geg. The calculations were limited to equal size clusters, 7;= 4, with a
common covariate pattern used for all clusters. Lipsitz & Fitzmaurice (1996), who modeled
pairwise associations in terms of pjj, found that U, .4, r is more efficient than methods that
rely on (4) or (5), especially when the pairwise correlation is high or when cluster size is
variable. However, their efficiency calculations were limited to the case n;< 3.

Before concluding this section, it is worth noting a connection among the methods. By
expressing /i as /() = log pr(Yik= Vik )+log pr(Yji= ¥l Yik= Yik: B, a) and
differentiating with respect to a it becomes clear that U, . is identical to U, .4, 5.
However, note that Ug.a; r = Up:ceer # Ug:cr= UB:xn. Because of the relation of ALR to
pairwise likelihood, Kuk (2004, 2007) refers to ALR as a hybrid pairwise likelihood.
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2. Orthogonalized residuals

The orthogonalized residuals approach is based on two ideas. First, pairwise residuals are
developed via a projection argument. Second, a weighted combination of these residuals is
formed using an approximate covariance matrix that is still computationally feasible for
larger clusters. Let

corr ((YL.T, W;)T) - ( le_i IltiW )’ %
iw

iww

where Ry = corr(W)) and Ry p/has elements of the form corr( Y, Wjz). Itis natural to
expect elements with /' = jor j/ = kto be largest in magnitude. To eliminate these
correlations, the orthogonalized residuals approach utilizes the residuals from the linear
regressions of the Wjon Yjand Y Specifically,

Qiik=Wi—{ija+bijuc: j(Yij— i )+ e Yie—pin) Y, (8)

where b= ikl = i) pik = rid! s Oijkcie = 1LiikL = i g = peiied! Gk
dijk=(r,y70'ikk—0',-2jk. It follows that corr( Y7, @) = corr( Yk Qi) = 0, so this definition of Qi
introduces 77;— 1 zeros into each row of the matrix Ry o which has elements of the form
corr( Yy, Qjik), Where Qjis an /myvector with elements @y taking the place of Wjin (7). In
addition, we have observed that this construction tends to reduce the magnitude of the other
entries in Rjy pas compared to Rjy 114 and also the magnitude of the off-diagonal elements
in Rjop = corr(Q)) as compared Rjy. A numerical example is given below.

The second aspect of the orthogonalized residuals approach is to approximate Rjpo by an
exchangeable working correlation matrix

R (D=A+(1-DI, ()

where A is a nuisance parameter to be estimated, /is the identity matrix and Jis a matrix of
1’s, both of order m;x mj. Thus cov(Q)) is approximated by

1

Lo L
Pizdlag(vl.;.k R, (/l)dlag(v;k),

where

i (i =) (i —fijie) (L =g j—fhig+ijic)
Hijtiac(1—pi j+ﬂik+2,uijk)_/l?jk

vig=var(Qyjx)=

With the above definitions of Q;and £;, the orthogonalized residuals estimating equation for
the marginal association parameters is
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rr()RIH ZE[ aQ’ }P Qi= ZCTP, , Qi (10)

i=1

where Cjis as defined in (1). The estimating equation for Bis Ug.or7H= Up:cea- The
computational advantage of the exchangeable structure in (9) is that a simple explicit inverse
exists, and matrices of dimension m;x mjneed never be formed in computer memory. The
computational effort is virtually identical to that for (4), (5) and (6). Details are given in the
Supplementary Appendix.

Computation proceeds by iteratively reweighted least squares with the estimate of A updated
in each iteration. A simple moment estimator of A is

2
Qijk ,,k
2 {[Z/dc Uk ] Z/<A Vijk } an

Z,’;]mi(mi_l)

A=1(0)=

Following arguments similar to Prentice (1988) and Liang & Zeger (1986), the asymptotic

distribution of g3 @_g) is multivariate Gaussian with mean zero and covariance matrix
consistently estimated by KL™1AL~T where L and A consist of the following blocks

L]]—ZDT lDlv
Lia=0,
Lzlz—zlcjp;lE[%—Qﬁi],

i=

K _ . -
Lyp=Y C[P;'C,
i=1
K __ —_ L~
1=2D]Vcov(Y)V; ' Dy,
i=1

K _ —_~ -
A=Y DIV 'cov(Y,, Qi)P; ' Ci,

i=1
Aai=A],,

K __ —_
Ap=Y CIP;'cov(Q)P;'C;,
i=1

where hats denote evaluation at (80, A(8)), ~cov(Y) = (Y;— m)(Yi— )7,

cov(Yi, Qi)= (Y —11)0; and cov(Q;)=0,0; - The requirement is that A is a ,, 1-consistent
estimator of A", the limiting value of the average off-diagonal element oflfL?,QQ assumed to
exist. It is clear from (8) that Ollk Q,k/ which implies that both U, -op7and its associated
robust variance estimator, KL™IAL™T, are invariant to permutations of the data y;.

A special case, to be denoted U, -op7H0, €nsues if A in (10) is not estimated, but rather fixed
at zero, so that P;becomes a diagonal matrix. It is shown in Appendix 1 that, for any pair of
link functions (g1, g»), this special case is equivalent to U, .4; s However, the formulation
of (10) offers the advantage that it follows a standard estimating equation approach. Thus it
resolves the difficulties mentioned above with the formulation of alternating logistic
regressions and offers insight into their efficiency behaviour. A practical advantage of
U,-orTHo is that the associated robust variance estimator is invariant to permutations of y;.

Scand Stat Theory Appl. Author manuscript; available in PMC 2013 September 01.
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By et al. (2011) describe software for Ug.geg in combination with Uy .07 0F Us 0rTHO
for both R (By et al., 2008) and SAS (macro available at http://www.bios.unc.edu/~gaqish/
software.htm).

The effectiveness of orthogonalization is illustrated using data from the 6-City Study (Ware
et al. 1984). The response vector Y;consists of 77;= 4 binary observations per child,
indicating respiratory illness at ages 7-10. Only data from the 350 children with non-
smoking mothers are used. The data are summarized in Table 1. The 16 observed
proportions, (237/350, -+, 11/350), are used as the true distribution under which the
correlation matrices presented below are calculated.

The correlation between the residuals Y;— pjand W;- &;is

0.62 058 053 035 036 0.33
0.65 044 038 0.68 0.56 0.38
w1041 062 039 0.69 042 0.60
038 042 068 040 068 0.72

The largest entries, bolded, are those of the type corr( Y}y, Wijj) where J =jor kwith an
average of 0.63. The average of the remaining correlations is 0.39. In contrast, the
correlation between Y;— u;and the orthogonalized residuals Q;is

0 0 0 0.08 0.09 0.08

_ 0 011 010 O 0 0.06
1 010 0 009 0 007 0
0.14 014 0 0.09 O 0

R

The construction of Q;introduces /7;— 1 = 3 zeros into each row of 7,y o. Remarkably, the
other correlations have gone down considerably; from an average of 0.39 to 0.10. Overall,
the average entry has gone down from 0.51 to 0.05. This shows that orthogonalization is
quite effective in achieving approximate orthogonality between the two sets of residuals. An
added benefit occurs in Rjgo. The matrix Rjyy has off-diagonal elements ranging from
0.47t0 0.72, and averaging 0.62. By comparison, for R0, the range is 0.15 to 0.44, and the
average is 0.30. Finally, the estimated value of A from (11) is A = 0.2805.

3. Efficiency Comparisons

The asymptotic efficiency of several estimating functions relative to Uggg, is evaluated for
the simple model of a common mean and a common pairwise correlation and unequal
cluster size:

ElYijl=p (1 <j<m),

cor(Yiy, Yi)=p (1< j<k <m). @2

The model implies a common pairwise odds ratio . The alternating logistic regressions
estimating equations are

Scand Stat Theory Appl. Author manuscript; available in PMC 2013 September 01.
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K
UMLR WGEE1 2 +p(n 1)(Y —t),

{Yij—u—p(Yae—)HYi—p}
;MLR ZUw ALR ™ Z Z Autp(Yie— {1 -pu—p(Yik—)}

Giop Gy in(1-p)
Z{ T—u(1-p) 1—p+1—(1—ﬂ)(1—p)}’

J— n;
where Yi:ZjZIYi.i/”i and G;y=#{(J, K : 1< j<k< n; Yji+ Y= . Note that the G are

simple quadratic functions of cluster totals YFZ,;] Y Gp=ni—yi)ni—-yi -2, Gy =
Yi(ni=yi.— 1) and Gp = y;(yi. - 1)/2.

For example, U,.a.r= &Gp + &Gy + & Gp, where the coefficients (4, a1, &) are the
kernels for U,,.a; r under model (12) given in Table 2. Hence, U,,.a; 7 Can be expressed as
Up:aLr= o + bry; + byy;2, where the coefficients (&, b1, ) are functions of u, pand 7;

Similarly, the U, component can be expressed in the form c0+c1y,,+C2y,~_, with coefficients
depending on the specific procedure. For example, in U, .as s ¢ = —npl{l + p(nj— 1)}, &1
=1{1+p(nj-1)}and o, =0.

All the estimating functions discussed in this section have a similar structure, but with
different choices of the coefficients (&, &1, &). The estimating equations for orthogonalized

K
residuals are U, or7r/= Uy arrand Usorn Z (1+(mi=1)A) "' U,, .0, The pairwise log
pseudo- I|keI|hood I{u, p) = Gp log{(1 - w)? +pu (1 wWGalog{u (- (1 -p3}+ Gp
log{u? + pu (1 - p)} is used to derive the weighted estimating functions of le Cessie & van
Houwelingen (1994), Kuk & Nott (2000) and the unweighted version, Up; .

The shared structure of the estimating equations facilitates calculation of asymptotic
efficiencies. Efficiency in relation to estimation of the log odds ratio log("¥"), which can be
expressed as a function of w and p, is considered below; efficiency for estimation of gis
relegated to the Supplementary Appendix. Since (1) is the optimal quadratic estimating
function it will be used as the reference. For each estimation procedure, the asymptotic
variance matrix is computed as the inverse of the efficiency matrix (Morton, 1981) and used
to compute the relative efficiencies (additional details are provided in Appendix 2). Since all
estimating functions under consideration are quadratic in Y}, the efficiency matrices must
involve third and fourth moments of Y;. As these moments are not specified by the model
(12), additional assumptions are required. Efficiency calculations are done under three forms
for the distribution of Y;. The first is the beta-binomial (Skellam, 1948)

=1 ni—t—1 ni—1
pr(Yi.=r;u,p>=( b )]_[wm [T a=ueior] Ja+im,
J=0 J=0 =0

where 7= p/(1 - p). The second form is the mixture (Morel & Neerchal, 1997)

Vi~ Bin(n;, pz +,u(1—p2)) with probability p,
“7\ Bin(m;, u(1-p7)) with probability 1—.

Scand Stat Theory Appl. Author manuscript; available in PMC 2013 September 01.
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The third form is the mixture (Madsen, 1993)

v, Bin(n;, 1)  with probability 1—p,
! n; Bin(1, ) with probability p.

All three distributions reduce to the binomial when p = 0. As an example, the table in the
Supplementary Appendix shows A Y;-= {) for the binomial and the three distributions with
n;=10, 1 = 0.3, p=0.3. Note that since we assume a constant x, the upper bound on pis 1
(Chaganty & Joe, 2006).

Cluster size, nj, is taken to be a 1:1 mix of n;=5 and n;= 25. The overall efficiency pattern
was similar for different values of w, so only results for 2 = 0.2 are presented.

Figure 1 shows the efficiency for the pairwise log odds ratio. It shows that U, -op7w
equation (10), is nearly fully efficient for all values of p. Figure 1 shows clearly that among
the remaining procedures, no single one uniformly dominates the others for all values of p.
It also shows that, by incorporating a weight matrix, U, -op7 9ains considerable efficiency
over U, -4, p. All procedures except U, cyand U, are fully efficient at o = 0, but their
efficiencies drop precipitously for even moderate values of p. Procedure U, -c4 stands out
by not being fully efficient at o = 0. Its efficiency peaks quickly to drop again under the
beta-binomial and Madsen models, but it tracks U, .op7# closely for o >0.4 under the
Morel-Neerchal model. A figure restricting p € [0, 0.15] for better resolution is left to the
Supplementary Appendix.

One criticism of Figure 1 is that the value of A that goes into U, -or7# depends on the true
distribution, which in practical applications is unknown. For this reason, Figure 2 shows the
efficiency curves for U, -op7 under the nine combinations of true and assumed models.
The three plots in the middle column correspond to the Morel-Neerchal working model.
Figure 2 shows that under that working model, U, -or7# achieves considerable efficiency
gains over Ug.a1 .

4. An Application

The orthogonalized residuals approach was applied to data from 7= 407 parents and siblings
of subjects with chronic obstructive pulmonary disease (COPD) and their controls (Cohen,
1980). The binary outcome of interest is impaired pulmonary function and the number of
families is K= 184 with family size (7)) ranging from 1 to 10. The model for the marginal
mean is the same as that used in Qagish & Liang (1992) and includes the covariates:
intercept, sex, race, age centered at 50, smoking status and an indicator as to whether the
subject was a relative of someone with COPD or a control. Associations are modeled
through log odds ratios with distinct parameters for each familial relationship: parent-parent
(app), sibling-sibling (ass) or parent-sibling (as).

Table 3 shows within-cluster association parameter estimates obtained from GEE2 (Qagish
& Liang, 1992), alternating logistic regressions from SAS GENMOD (SAS Institute, Inc.)
and orthogonalized residuals where A is fixed at 0 or estimated using equation (11). Three
other estimation methods compute cluster-specific A, under various distributional
assumptions (Madsen, 1993; Morel & Neerchal, 1997; Skellam, 1948). For each of these
three estimators, the mean and correlation parameters for each cluster are estimated using
the averages of the cluster means . or off-diagonal elements of corr( Y7), respectively.
Details for estimation of A under different models are described in Appendix 3.

Scand Stat Theory Appl. Author manuscript; available in PMC 2013 September 01.
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Results for the parameter estimates for ALR from SAS GENMOD and ORTH 4, p are
identical by definition; however, the standard errors for a,, and agsare quite different due
to the approximation used within GENMOD. In general, there is a fair amount of variation
in a given parameter estimate across models, though the models ORTH psopen7and

ORTH p4p have estimates that are very similar to each other as do ORTH ggand ORTH s
Further, there is no one model that has parameter estimates that are comparable to those in
GEE2, though some models show similarity for subsets of the parameters.

An explanation for the large standard errors may be due to the limited information in the
data to estimate association. There are 14 clusters with both parents present (for estimating
app), and 42 clusters with one parent present (a total of 56 clusters contributing to the
estimation of ay). Further, there are 86 clusters with only a single sibling, and these do not
contribute to the estimation of a,

5. Conclusions

This paper addressed efficiency in estimation of association for binary responses. It was
shown that in a simple model with varying cluster sample sizes, alternating logistic
regressions can be fairly inefficient. This result contrasts sharply with that of Carey et al.
(1993) who found alternating logistic regressions to be nearly as efficient as second-order
generalized estimating equations, albeit in a special case of equal cluster sizes (n7;=4). A
new estimating equation based on orthogonalized residuals was developed and shown to
have appreciable efficiency gain over alternating logistic regressions in the presence of
unequal cluster sizes with minimal additional computational cost. This is an important
finding, since it is unlikely that cluster sizes will be equal in most practical applications.

The approach based on orthogonalized residuals has other important features. First, its
derivation follows a projection argument, and this provides insight into how the
methodology maintains efficiency for association parameters. Second, a special case of
orthogonalized residuals reformulates alternating logistic regressions into an estimating
function using marginal residuals with standard weighting (i.e., dependence on data only
through estimated parameters). This feature allows straightforward computation of the
robust covariance estimate, alleviating the need for the approximation currently in use in
popular software packages. Further, it opens the door for further developments of alternating
logistic regressions including computation in mind.

For estimation of association parameters, efficiency will depend on higher moments, and no
single procedure that is based only on the first two moments will be uniformly more
efficient. As the true distribution will not be known, we currently suggest using
orthogonalized residuals with A computed according to the moment estimator (11) or a
Morel-Neerchal working model. An attractive property of (11) is that it is a consistent
estimator of A under any true model while Morel-Neerchal was shown to be robust to
misspecification of higher order moments in our efficiency calculations. However, it is
important to check the sensitivity of results to other assumed models. A simulation study
reported elsewhere (Zink, 2003) was undertaken to investigate the finite sample
performance (K= 100) of ORTH with A estimated as in (11), ALR (U, .0r7H0) and pseudo-
likelihood methods for marginal mean and association models that contain observation and
cluster-level covariates. Correlated binary data were generated for unequal cluster sizes (1)
that ranged in a systematic way from 2 to 20 (or 2 to 50). Overall, the methods examined
performed similarly with percent relative bias for within-cluster association parameter
estimates being low (though tending to be negative), and coverage probabilities being close
to the nominal level of 0.95 (though tending to undercoverage). Orthogonal residuals
estimating A as in (11) had greater finite sample efficiency (based on ratio of estimated
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mean squared errors) than ALR, but it also tended to estimate association parameters with
slightly more bias. Further research is needed to understand this phenomenon. Replacing (9)
with more complex structures and extending A to a vector parameter may improve finite
sample performance. One particular structure of interest would have two correlation
parameters; one for pairs (j, K and (', ) that share an index and another for the case where
the indices are distinct. Finally, the ORTH procedures reported in this paper based on
distributional assumptions allowing cluster-specific A;warrant further study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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1. Proof that the orthogonalized residuals estimating equation with A = 0 is equivalent
to alternating logistic regressions. Since Ugis the same for both approaches, it
suffices to show that U, -a; p = Uq-0p7H0 Where

K K
a{ijk—r Yij_gtjk 5/1,']7(T Qljk
Uiz ZZ Z ——— — and U, orrio= Z Z B

e O Li(1=Lir) e da v

Further, it suffices to show that the contributions from each (j;, &) pair are equal.
1
Note that yy, = juu+pij (o) 2 @Nd

Tijk 1 (Yae—pin)
Lijk=Hij+ O__ik(yik —Hik) =i j ik (T jjj Tig ) 2 ————.

ikk

Writing

i _ Opijk O __ Opijic L (Yie—pix)
Sijk _ ZF ik _ PO T W Sl S .74
o da Bp,:,-k o (O-UJO-ZU‘) Tikk
_ 9oijk Ottijre Yig=ptin) _ Oij (Yie—pin)
da dpijk  Tikk oo o

it follows that the contributions are equal if
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Yi—pa Yij=Gie Qi

gk L(1=i)  vi

Straightforward, but tedious, algebra shows that the above equality is true for each
of the four possible patterns of (Yj; Yj), thatis, for (Y, Yi) € {(0, 0), (0, 1), (1,
0), (1, 1)}.

Details of asymptotic efficiency calculations. For all the estimating functions under
study, the two components of the estimating function for (., p) are sums of cluster
contributions. The /th cluster contributes the 2x1 vector

Ui=(co+cryi+cay?, b0+b1yl-.+b2yl.2.)T, where the coefficients are known functions of
(nj, w1, p). The form of the coefficients depends on the specific procedure.

K
The estimating function is the 2-vector Z,.lei. Define D;= E[dU{J6] and V=
cov(U). The efficiency matrix (Morton, 1981) is (X; D) T(%; V)~1(Z; D)) and the
asymptotic covariance matrix of (u, p) ' is its inverse. Clearly, D; involves the first
two moments of Y}, which are completely determined by 6. However, V;involves
the third and fourth moments of Y;, which involve additional parameters. Those
third and fourth moments were computed depending on the specific model for Y;.
Numerically, since U, being a function of Y}, is a discrete random vector,
computing Vjcan be done via a simple sum over the range of Y}, i.e. 0to n; The
form of A'Y;-= y;) depends on the specific distribution of Y.

We note that GEE2 is the optimal quadratic estimating function, and hence is given

-1
K _ -1
by ZileiTVi 'Ui and its asymptotic variance is (Z,-DiTVi Di) . Efficiency of
the various procedures was computed relative to GEE2, with the form of the GEE2
estimating equations in (1) determined by the true model.

The transformation from the asymptotic covariance matrix of (i, p) T to the
asymptotic covariance matrix of (i, log )T is done via the delta method. This is
straightforward since the odds ratio, y, is easily expressed as an explicit function of
pand p. Code for calculating and plotting efficiencies is available at http://
www.bios.unc.edu/~gagish/software.htm).

Calculation of A, The asymptotic efficiency calculations in Section 3 rely on the

fact that A,is, by definition, the average correlation among the /7; residuals { Qjj, /
< k}. Under model (12), all @jj have the same variance, i.e. the v;;’s are all equal,
say vjix= v, where vis a function of 1 and p only (the general expression for v

2— .
is given in Section 2). Let 7i =Var (Z_,<leJ’<). Hence, t?==mv{1+(m—1)A;}.
Because X« Qjjkis a discrete random variable, being a (quadratic) function of Y7,

T[2 is computed via a simple summation over the range of Y;. Then A;is computed
as Li={r} /(miv)=1}/(m;=1).

The mathematical expressions for A;are quite lengthy, except in the beta-binomial case, for

_ 2p(2+p+np)
 (mi+1)(1+p)(1+2p)

i
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In the beta-binomial model, 1;=0 if p = 0; A;approaches (n;+ 3)/{3(n;+ 1)} if n;is fixed
and p — 1; approaches 1/3 as p — 1 and 7; gets large. Modeling software that includes
computations for A;under BB, MN, and MAD models (e.g., Table 3) as well as for A as in
equation (11) is available at http://www.bios.unc.edu/~gagish/software.htm).
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Distribution
Beta-Binomial Madsen

Morel-Neerchal

080,

Efficiency

ono:

Figure 1.

Asymptotic efficiency of estimating equations for pairwise log odds ratio implied by model
(12) relative to second-order generalized estimating equations under three higher-order
model assumptions. x = 0.2, 1:1 mix of 7;=5 and 7= 25. U,,.0r7#50lid, Up.a1 = Up:kn
dashed, U, ¢y dotted, U, dotdash, U,,»dotdotdash.
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Working Model

1
1
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Figure2.

Asymptotic efficiency of orthogonalized residuals and alternating logistic regressions
relative to second-order generalized estimating equations for estimation of the pairwise log
odds ratio under different true and working models. Rows are indexed by the true model,
and columns by the working model. U,,.or7# s0lid, U4,  dashed.

Scand Stat Theory Appl. Author manuscript; available in PMC 2013 September 01.

fenwoug-e;

uespeny
19O enay

[eyIReN-BION



1X31-)ewiarems 1Xa1-)ew1a1ems

1Xa1-)1ewa1ems

Table 1

QAQISH et al.

-
o «
—
o
-
o «
- o
o
-
o
-« o
7]
[<5]
E |o o
o
o
5 |« «
Oo
Ll
2
Q [+ o
[{e]
Y=
O |o o
)
1S
o
£
= EENEEN
wn

3

i —
i
— ™
— N
— <
— N
— N
— ™
— o
—
o [Te}
o ~
o (32}
o [Te}
—
o ©
o ©
o <
N
o ~
(3¢}
N
—
=
3
N
= O

Scand Stat Theory Appl. Author manuscript; available in PMC 2013 September 01.

Page 17



1X31-)ewiarems 1Xa1-)ew1a1ems

1Xa1-)1ewa1ems

QAQISH et al.

Table 2

Pairwise kernels based on (y;;, yi) for estimating p in model (12)

Estimating function Yi*Yw=0 Vit V=1 Y+ Yix=2
Upiarr (rt+p? ~1-p (r+o*
Upp r-p “l-p yi-p
Upit @A+ pyY) -1t py ) 1-pH1+pyY)

K
_ -1
Note that Up kN = Up-ALR: Up.CH_Z~: (ni—1) Ui.p,ALR, Up-pis from (4), Up-L is from (5),
P (2 i=1 (2 (2
K
-1
Uy o= (1+0m=DD U, seand 5= it - o).
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Log Pairwise Odds Ratio Association Parameter Estimates and Empirical Standard Errors

Par ent-Par ent(a,)

Table 3

Sibling-Sibling(as)  Parent-Sibling(aps)

Model

GEE2 -1.090 (1.090)
SAS GENMOD ALR ~ -1.177 (1.385)
ORTH4. 2 -1.177 (1.138)
ORTH poment -1.264 (1.185)
ORTHpgg -1.184 (1.131)
ORTHw -1.178 (1.129)
ORTHpsap -1.275 (1.134)

0.873 (0.565) 0.984 (0.519)
1.108 (0.603) 0.986 (0.717)
1.108 (0.764) 0.986 (0.673)
0.795 (0.502) 0.782 (0.661)
0.887 (0.570) 0.842 (0.627)
0.911 (0.578) 0.868 (0.640)
0.788 (0.493) 0.761 (0.657)
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Values are estimate (standard error). ORTH 47 passumes A = 0. ORTHAJOMENT estimates A using (11), which for these data equals 0.2060.
ORTH methods BB, MN and MAD estimates cluster-specific A jassuming the clusters were generated from beta-binomial, Morel-Neerchal and
Madsen distributions, respectively. GEE2 results from Qagish & Liang, 1992.
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