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Abstract
This paper focuses on marginal regression models for correlated binary responses when estimation
of the association structure is of primary interest. A new estimating function approach based on
orthogonalized residuals is proposed. A special case of the proposed procedure allows a new
representation of the alternating logistic regressions method through marginal residuals. The
connections between second-order generalized estimating equations, alternating logistic
regressions, pseudo-likelihood and other methods are explored. Eficiency comparisons are
presented, with emphasis on variable cluster size and on the role of higher-order assumptions. The
new method is illustrated with an analysis of data on impaired pulmonary function.
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1. Introduction
This paper focuses on marginal regression models for correlated binary responses when
estimation of the association structure is of primary interest. Throughout, all vectors are
column vectors. Suppose data are available on K independent subjects, families, pedigrees
or clusters. Let i identify a cluster and j and k index observations within a cluster. The triple
index ijk references observations j and k of cluster i, 1 ≤ j < k ≤ ni, where ni is the cluster
sample size.

For cluster i, the response vector is Yi = (Yi1, …, Yini)
⊤, where each Yij is a Bernoulli

random variable with mean μij = pr(Yij = 1). Define also μijk = E[YijYik] = pr(Yij = Yik =
1). The dependence or association between Yij and Yik can be represented by the odds ratio
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the correlation coefficient, ρijk = corr(Yij, Yik), or by other measures such as the kappa
coefficient.

Dependence of the mean on covariates is modeled through a link function ,
where xij is a covariate p-vector associated with Yij and the components of β are the mean
parameters. Dependence of the pairwise association on covariates is modeled through a

second link function , where zijk is a covariate q-vector associated
with the pair (Yij, Yik) and the components of α are the association parameters. Common
choices for link functions include logit and probit for the mean structure and log odds ratio
and Fisher’s z-transformation of the correlation coefficient for the association structure.
Finally, define θ be the (p + q)-vector (β⊤, α⊤)⊤ and note that the covariance matrix Σi =
cov(Yi) is completely determined by θ.

The regression model described above is a marginal model because the expectations
involved in μij and μijk are not conditional on other responses or on latent random effects.
Differences in interpretation and applicability of marginal, conditional and random-effects
models have been elaborated by Zeger et al. (1988), Neuhaus et al. (1991) and Heagerty &
Zeger (2000). For ni > 2, the marginal model parameters θ do not fully specify the joint
distribution of Yi so that maximum-likelihood estimation is not possible without further
assumptions. Because the joint distribution of Yi is determined by 2ni probabilities, except
for small ni, computation of maximum-likelihood estimates becomes very demanding.

To reduce this burden, second-order generalized estimating equations were developed
(Liang et al., 1992) for estimation of θ with minimal further assumptions. The basic idea is
to append to Yi the mi = ni(ni − 1)/2 products Wijk = YijYik, then develop an estimating
equation based on the extended vector. The second-order generalized estimating equations
are

(1)

where Wi = (Wi12, ···, Wi;ni−1;ni)
⊤, δi = E[Wi], Di = ∂μi/∂β, Ai = ∂δi/∂β, Ci =∂δi/∂α and

. The matrix  involves third- and fourth-order cross-moments not

specified by the marginal model. A working version of  is obtained by assuming that
third- and fourth-order logistic contrasts are zero (Liang et al., 1992). Prentice & Zhao
(1990) presented an alternative formulation to (1) for maximum likelihood estimation under
a quadratic exponential model based on fixing higher-order moments.

For future reference we define the first-order generalized estimating equations for β (Liang
& Zeger, 1986),

(2)
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where

σijj = var(Yij) = μij(1 − μij) and Ri = corr(Yi).

A practical difficulty in implementing (1) for large clusters is that the computational effort
grows very quickly with ni. Computing (1) requires solving a linear system in ni(ni + 1)/2

unknowns with effort  floating point operations. Besides computational complexity,
another reason for seeking alternatives to second-order generalized estimating equations is
the sensitivity of the β estimates to misspecification of the association model.

Several alternatives to (1) combine Uβ;GEE1 with a pairwise kernel, κijk, whose sum over all
pairs defines the cluster’s contribution to the estimating function for α,

(3)

Prentice (1988) suggested the pairwise kernel

(4)

where

The resulting estimating function will be denoted Uα;P.

Lipsitz et al. (1991) developed an estimating function, here denoted Uα;L, using the kernel

(5)

As an alternative to generalized estimating equations, since the joint distribution of any pair
(Yij, Yik) is completely determined by θ, it is possible to define a log pseudo-likelihood for
the i-th cluster as li(θ) = Σj<k lijk(θ), where lijk(θ) = log pr(Yij = yij, Yik = yik; θ). Kuk &
Nott (2000) suggested the kernel κijk = ∂lijk/∂α while le Cessie & van Houwelingen (1994)
suggested a weighted version, κijk = {1/(ni − 1)} ∂lijk/∂α. We denote these estimating
functions as Uα;KN and Uα;CH, respectively. Both Kuk & Nott (2000) and le Cessie & van
Houwelingen (1994) suggested
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for estimation of β. Based on efficiency studies with ni ≤ 6, Geys et al. (1998) seem to favor
Uα;KN over Uα;CH.

One final method, along with Uβ;ALR = Uβ;GEE1, defines Uα;ALR using a pairwise kernel in
(3) based on conditional residuals

(6)

where

σijk = cov(Yij, Yik) = μijk − μijμik, Mijk = Yij −ζijk, and Sijk = var(Yij|Yik) = ζijk(1− ζijk).
The original formulation of Uα;ALR, known as alternating logistic regressions (Carey et al.,
1993), models pairwise associations in terms of g2(ψijk) = log(ψijk). In what follows, let Mi
denote the vector with components Mijk and Si denote the diagonal matrix with diagonal
elements Sijk.

Note that the matrix Si is stochastic and does not consist of the diagonal elements of any
genuine covariance matrix; clearly var(Mijk) ≠ ζijk(1− ζijk). Stochastic covariance matrices
in estimating equations are feasible (Heyde 1997, section 2.6) in the context of nested sigma
fields leading to a martingale structure, but that is not the case with (6). An important
consequence is that it is not clear how to allow a non-diagonal Si in order to improve
efficiency. Further, the stochastic nature of Si and ∂ζi/∂α makes theoretical investigation of
(6) through standard estimating equation theory not possible. Another point is that while
Uα;ALR is invariant to permutations of the Yi vector (Kuk, 2004) the associated robust
variance estimator is not. In SAS version 9.2, the robust variance estimator is averaged over
estimators obtained from the original yi and a reversed version of yi (personal
communication with Vincent Carey and with Gordon Johnston at SAS Institute).

Asymptotic efficiency calculations reported by Carey et al. (1993) show Uα;ALR to be nearly
as efficient as Uα;GEE2. The calculations were limited to equal size clusters, ni = 4, with a
common covariate pattern used for all clusters. Lipsitz & Fitzmaurice (1996), who modeled
pairwise associations in terms of ρijk, found that Uα;ALR is more efficient than methods that
rely on (4) or (5), especially when the pairwise correlation is high or when cluster size is
variable. However, their efficiency calculations were limited to the case ni ≤ 3.

Before concluding this section, it is worth noting a connection among the methods. By
expressing lijk as lijk(θ) = log pr(Yik = yik; β)+log pr(Yij = yij|Yik = yik; β, α) and
differentiating with respect to α it becomes clear that Uα;KN is identical to Uα;ALR.
However, note that Uβ;ALR = Uβ;GEE1 ≠ Uβ;CH = Uβ;KN. Because of the relation of ALR to
pairwise likelihood, Kuk (2004, 2007) refers to ALR as a hybrid pairwise likelihood.
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2. Orthogonalized residuals
The orthogonalized residuals approach is based on two ideas. First, pairwise residuals are
developed via a projection argument. Second, a weighted combination of these residuals is
formed using an approximate covariance matrix that is still computationally feasible for
larger clusters. Let

(7)

where RiWW = corr(Wi) and RiY W has elements of the form corr(Yij′, Wijk). It is natural to
expect elements with j′ = j or j′ = k to be largest in magnitude. To eliminate these
correlations, the orthogonalized residuals approach utilizes the residuals from the linear
regressions of the Wijk on Yij and Yik. Specifically,

(8)

where bijk:j = μijk(1 − μik)( μik − μijk)/dijk, bijk:k = μijk(1 − μij)( μij − μijk)/dijk,

. It follows that corr(Yij, Qijk) = corr(Yik, Qijk) = 0, so this definition of Qijk
introduces ni − 1 zeros into each row of the matrix RiY Q which has elements of the form
corr(Yij′, Qijk), where Qi is an mi-vector with elements Qijk taking the place of Wi in (7). In
addition, we have observed that this construction tends to reduce the magnitude of the other
entries in RiY Q as compared to RiY W, and also the magnitude of the off-diagonal elements
in RiQQ = corr(Qi) as compared RiWW. A numerical example is given below.

The second aspect of the orthogonalized residuals approach is to approximate RiQQ by an
exchangeable working correlation matrix

(9)

where λ is a nuisance parameter to be estimated, I is the identity matrix and J is a matrix of
1’s, both of order mi × mi. Thus cov(Qi) is approximated by

where

With the above definitions of Qi and Pi, the orthogonalized residuals estimating equation for
the marginal association parameters is
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(10)

where Ci is as defined in (1). The estimating equation for β is Uβ;ORTH = Uβ;GEE1. The
computational advantage of the exchangeable structure in (9) is that a simple explicit inverse
exists, and matrices of dimension mi × mi need never be formed in computer memory. The
computational effort is virtually identical to that for (4), (5) and (6). Details are given in the
Supplementary Appendix.

Computation proceeds by iteratively reweighted least squares with the estimate of λ updated
in each iteration. A simple moment estimator of λ is

(11)

Following arguments similar to Prentice (1988) and Liang & Zeger (1986), the asymptotic

distribution of  is multivariate Gaussian with mean zero and covariance matrix
consistently estimated by KL−1ΛL−⊤ where L and Λ consist of the following blocks

where hats denote evaluation at (θ○, λ̂(θ̂)), ~cov(Yi) = (Yi − μ̂i)(Yi − μ̂i)⊤,

 and . The requirement is that λ̂ is a -consistent
estimator of λ*, the limiting value of the average off-diagonal element of RiQQ, assumed to
exist. It is clear from (8) that Qijk = Qikj which implies that both Uα;ORTH and its associated
robust variance estimator, KL−1ΛL−⊤, are invariant to permutations of the data yi.

A special case, to be denoted Uα;ORTH0, ensues if λ in (10) is not estimated, but rather fixed
at zero, so that Pi becomes a diagonal matrix. It is shown in Appendix 1 that, for any pair of
link functions (g1, g2), this special case is equivalent to Uα;ALR. However, the formulation
of (10) offers the advantage that it follows a standard estimating equation approach. Thus it
resolves the difficulties mentioned above with the formulation of alternating logistic
regressions and offers insight into their efficiency behaviour. A practical advantage of
Uα;ORTH0 is that the associated robust variance estimator is invariant to permutations of yi.
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By et al. (2011) describe software for Uβ;GEE1 in combination with Uα;ORTH or Uα;ORTH0
for both R (By et al., 2008) and SAS (macro available at http://www.bios.unc.edu/~qaqish/
software.htm).

The effectiveness of orthogonalization is illustrated using data from the 6-City Study (Ware
et al. 1984). The response vector Yi consists of ni = 4 binary observations per child,
indicating respiratory illness at ages 7–10. Only data from the 350 children with non-
smoking mothers are used. The data are summarized in Table 1. The 16 observed
proportions, (237/350, ···, 11/350), are used as the true distribution under which the
correlation matrices presented below are calculated.

The correlation between the residuals Yi − μi and Wi − δi is

The largest entries, bolded, are those of the type corr(Yij′, Wijk) where j′ = j or k with an
average of 0.63. The average of the remaining correlations is 0.39. In contrast, the
correlation between Yi − μi and the orthogonalized residuals Qi is

The construction of Qi introduces ni − 1 = 3 zeros into each row of RiY Q. Remarkably, the
other correlations have gone down considerably; from an average of 0.39 to 0.10. Overall,
the average entry has gone down from 0.51 to 0.05. This shows that orthogonalization is
quite effective in achieving approximate orthogonality between the two sets of residuals. An
added benefit occurs in RiQQ. The matrix RiWW has off-diagonal elements ranging from
0.47 to 0.72, and averaging 0.62. By comparison, for RiQQ, the range is 0.15 to 0.44, and the
average is 0.30. Finally, the estimated value of λ from (11) is λ̂ = 0.2805.

3. Efficiency Comparisons
The asymptotic efficiency of several estimating functions relative to UGEE2 is evaluated for
the simple model of a common mean and a common pairwise correlation and unequal
cluster size:

(12)

The model implies a common pairwise odds ratio ψ. The alternating logistic regressions
estimating equations are
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where  and Git = #{(j, k) : 1 ≤ j < k ≤ ni, Yij + Yik = t}. Note that the Git are

simple quadratic functions of cluster totals , Gi0 = (ni − yi.)(ni − yi. − 1)/2, Gi1 =
yi.(ni − yi. − 1) and Gi2 = yi.(yi. − 1)/2.

For example, Uρ;ALR = a0Gi0 + a1Gi1 + a2Gi2, where the coefficients (a0, a1, a2) are the
kernels for Uρ;ALR under model (12) given in Table 2. Hence, Uρ;ALR can be expressed as
Uρ;ALR = b0 + b1yi. + b2yi.

2, where the coefficients (b0, b1, b2) are functions of μ, ρ and ni.

Similarly, the Uμ component can be expressed in the form , with coefficients
depending on the specific procedure. For example, in Uμ;ALR, c0 = −niμ/{1 + ρ (ni − 1)}, c1
= 1/{1 + ρ (ni − 1)} and c2 = 0.

All the estimating functions discussed in this section have a similar structure, but with
different choices of the coefficients (b0, b1, b2). The estimating equations for orthogonalized

residuals are Uμ;ORTH = Uμ;ALR and . The pairwise log
pseudo-likelihood li(μ, ρ) = Gi0 log{(1 − μ)2 +ρμ (1− μ)}+Gi1 log{μ (1 − μ (1 − ρ)} + Gi2
log{μ2 + ρμ (1 − μ)} is used to derive the weighted estimating functions of le Cessie & van
Houwelingen (1994), Kuk & Nott (2000) and the unweighted version, UPL.

The shared structure of the estimating equations facilitates calculation of asymptotic
efficiencies. Efficiency in relation to estimation of the log odds ratio log(Ψ), which can be
expressed as a function of μ and ρ, is considered below; efficiency for estimation of β is
relegated to the Supplementary Appendix. Since (1) is the optimal quadratic estimating
function it will be used as the reference. For each estimation procedure, the asymptotic
variance matrix is computed as the inverse of the efficiency matrix (Morton, 1981) and used
to compute the relative efficiencies (additional details are provided in Appendix 2). Since all
estimating functions under consideration are quadratic in Yi:, the efficiency matrices must
involve third and fourth moments of Yi:. As these moments are not specified by the model
(12), additional assumptions are required. Efficiency calculations are done under three forms
for the distribution of Yi:. The first is the beta-binomial (Skellam, 1948)

where τ = ρ/(1 − ρ). The second form is the mixture (Morel & Neerchal, 1997)
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The third form is the mixture (Madsen, 1993)

All three distributions reduce to the binomial when ρ = 0. As an example, the table in the
Supplementary Appendix shows P(Yi: = t) for the binomial and the three distributions with
ni = 10, μ = 0.3, ρ = 0.3. Note that since we assume a constant μ, the upper bound on ρ is 1
(Chaganty & Joe, 2006).

Cluster size, ni, is taken to be a 1:1 mix of ni = 5 and ni = 25. The overall efficiency pattern
was similar for different values of μ, so only results for μ = 0.2 are presented.

Figure 1 shows the efficiency for the pairwise log odds ratio. It shows that Uα;ORTH,
equation (10), is nearly fully efficient for all values of ρ. Figure 1 shows clearly that among
the remaining procedures, no single one uniformly dominates the others for all values of ρ.
It also shows that, by incorporating a weight matrix, Uα;ORTH gains considerable efficiency
over Uα;ALR. All procedures except Uα;CH and Uα;L are fully efficient at ρ = 0, but their
efficiencies drop precipitously for even moderate values of ρ. Procedure Uα;CH stands out
by not being fully efficient at ρ = 0. Its efficiency peaks quickly to drop again under the
beta-binomial and Madsen models, but it tracks Uα;ORTH closely for ρ > 0.4 under the
Morel-Neerchal model. A figure restricting ρ ∈ [0, 0.15] for better resolution is left to the
Supplementary Appendix.

One criticism of Figure 1 is that the value of λ that goes into Uα;ORTH depends on the true
distribution, which in practical applications is unknown. For this reason, Figure 2 shows the
efficiency curves for Uα;ORTH under the nine combinations of true and assumed models.
The three plots in the middle column correspond to the Morel-Neerchal working model.
Figure 2 shows that under that working model, Uα;ORTH achieves considerable efficiency
gains over Uα;ALR.

4. An Application
The orthogonalized residuals approach was applied to data from n = 407 parents and siblings
of subjects with chronic obstructive pulmonary disease (COPD) and their controls (Cohen,
1980). The binary outcome of interest is impaired pulmonary function and the number of
families is K = 184 with family size (ni) ranging from 1 to 10. The model for the marginal
mean is the same as that used in Qaqish & Liang (1992) and includes the covariates:
intercept, sex, race, age centered at 50, smoking status and an indicator as to whether the
subject was a relative of someone with COPD or a control. Associations are modeled
through log odds ratios with distinct parameters for each familial relationship: parent-parent
(αpp), sibling-sibling (αss) or parent-sibling (αps).

Table 3 shows within-cluster association parameter estimates obtained from GEE2 (Qaqish
& Liang, 1992), alternating logistic regressions from SAS GENMOD (SAS Institute, Inc.)
and orthogonalized residuals where λ is fixed at 0 or estimated using equation (11). Three
other estimation methods compute cluster-specific λi under various distributional
assumptions (Madsen, 1993; Morel & Neerchal, 1997; Skellam, 1948). For each of these
three estimators, the mean and correlation parameters for each cluster are estimated using
the averages of the cluster means μij or off-diagonal elements of corr(Yi), respectively.
Details for estimation of λ under different models are described in Appendix 3.
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Results for the parameter estimates for ALR from SAS GENMOD and ORTHALR are
identical by definition; however, the standard errors for αpp and αss are quite different due
to the approximation used within GENMOD. In general, there is a fair amount of variation
in a given parameter estimate across models, though the models ORTHMOMENT and
ORTHMAD have estimates that are very similar to each other as do ORTHBB and ORTHMN.
Further, there is no one model that has parameter estimates that are comparable to those in
GEE2, though some models show similarity for subsets of the parameters.

An explanation for the large standard errors may be due to the limited information in the
data to estimate association. There are 14 clusters with both parents present (for estimating
αpp), and 42 clusters with one parent present (a total of 56 clusters contributing to the
estimation of αps). Further, there are 86 clusters with only a single sibling, and these do not
contribute to the estimation of αss.

5. Conclusions
This paper addressed efficiency in estimation of association for binary responses. It was
shown that in a simple model with varying cluster sample sizes, alternating logistic
regressions can be fairly inefficient. This result contrasts sharply with that of Carey et al.
(1993) who found alternating logistic regressions to be nearly as efficient as second-order
generalized estimating equations, albeit in a special case of equal cluster sizes (ni = 4). A
new estimating equation based on orthogonalized residuals was developed and shown to
have appreciable efficiency gain over alternating logistic regressions in the presence of
unequal cluster sizes with minimal additional computational cost. This is an important
finding, since it is unlikely that cluster sizes will be equal in most practical applications.

The approach based on orthogonalized residuals has other important features. First, its
derivation follows a projection argument, and this provides insight into how the
methodology maintains efficiency for association parameters. Second, a special case of
orthogonalized residuals reformulates alternating logistic regressions into an estimating
function using marginal residuals with standard weighting (i.e., dependence on data only
through estimated parameters). This feature allows straightforward computation of the
robust covariance estimate, alleviating the need for the approximation currently in use in
popular software packages. Further, it opens the door for further developments of alternating
logistic regressions including computation in mind.

For estimation of association parameters, efficiency will depend on higher moments, and no
single procedure that is based only on the first two moments will be uniformly more
efficient. As the true distribution will not be known, we currently suggest using
orthogonalized residuals with λ computed according to the moment estimator (11) or a
Morel-Neerchal working model. An attractive property of (11) is that it is a consistent
estimator of λ under any true model while Morel-Neerchal was shown to be robust to
misspecification of higher order moments in our efficiency calculations. However, it is
important to check the sensitivity of results to other assumed models. A simulation study
reported elsewhere (Zink, 2003) was undertaken to investigate the finite sample
performance (K = 100) of ORTH with λ estimated as in (11), ALR (Uα;ORTH0) and pseudo-
likelihood methods for marginal mean and association models that contain observation and
cluster-level covariates. Correlated binary data were generated for unequal cluster sizes (ni)
that ranged in a systematic way from 2 to 20 (or 2 to 50). Overall, the methods examined
performed similarly with percent relative bias for within-cluster association parameter
estimates being low (though tending to be negative), and coverage probabilities being close
to the nominal level of 0.95 (though tending to undercoverage). Orthogonal residuals
estimating λ as in (11) had greater finite sample efficiency (based on ratio of estimated
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mean squared errors) than ALR, but it also tended to estimate association parameters with
slightly more bias. Further research is needed to understand this phenomenon. Replacing (9)
with more complex structures and extending λ to a vector parameter may improve finite
sample performance. One particular structure of interest would have two correlation
parameters; one for pairs (j, k) and (j′, k′) that share an index and another for the case where
the indices are distinct. Finally, the ORTH procedures reported in this paper based on
distributional assumptions allowing cluster-specific λi warrant further study.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
1. Proof that the orthogonalized residuals estimating equation with λ = 0 is equivalent

to alternating logistic regressions. Since Uβ is the same for both approaches, it
suffices to show that Uα;ALR = Uα;ORTH0 where

Further, it suffices to show that the contributions from each (j, k) pair are equal.

Note that  and

Writing

it follows that the contributions are equal if

QAQISH et al. Page 12

Scand Stat Theory Appl. Author manuscript; available in PMC 2013 September 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://www.sph.unc.edu/bios/theses_and_dissertations_836_6180.html
http://www.sph.unc.edu/bios/theses_and_dissertations_836_6180.html


Straightforward, but tedious, algebra shows that the above equality is true for each
of the four possible patterns of (Yij, Yik), that is, for (Yij, Yik) ∈ {(0, 0), (0, 1), (1,
0), (1, 1)}.

2. Details of asymptotic efficiency calculations. For all the estimating functions under
study, the two components of the estimating function for (μ, ρ) are sums of cluster
contributions. The i-th cluster contributes the 2×1 vector

, where the coefficients are known functions of
(ni, μ, ρ). The form of the coefficients depends on the specific procedure.

The estimating function is the 2-vector . Define Di = E[∂Ui/∂θ] and Vi =
cov(Ui). The efficiency matrix (Morton, 1981) is (Σi Di)⊤(Σi Vi)−1(Σi Di) and the
asymptotic covariance matrix of (μ̂, ρ̂)⊤ is its inverse. Clearly, Di involves the first
two moments of Yi:, which are completely determined by θ. However, Vi involves
the third and fourth moments of Yi:, which involve additional parameters. Those
third and fourth moments were computed depending on the specific model for Yi:.
Numerically, since Ui, being a function of Yi:, is a discrete random vector,
computing Vi can be done via a simple sum over the range of Yi:, i.e. 0 to ni. The
form of P(Yi: = yi:) depends on the specific distribution of Yi:.

We note that GEE2 is the optimal quadratic estimating function, and hence is given

by  and its asymptotic variance is . Efficiency of
the various procedures was computed relative to GEE2, with the form of the GEE2
estimating equations in (1) determined by the true model.

The transformation from the asymptotic covariance matrix of (μ̂, ρ̂)⊤ to the
asymptotic covariance matrix of (μ̂, log ψ̂)⊤ is done via the delta method. This is
straightforward since the odds ratio, ψ, is easily expressed as an explicit function of
μ and ρ. Code for calculating and plotting efficiencies is available at http://
www.bios.unc.edu/~qaqish/software.htm).

3. Calculation of λi. The asymptotic efficiency calculations in Section 3 rely on the
fact that λi is, by definition, the average correlation among the mi residuals {Qijk, j
< k}. Under model (12), all Qijk have the same variance, i.e. the νijk’s are all equal,
say νijk = ν, where ν is a function of μ and ρ only (the general expression for νijk

is given in Section 2). Let . Hence, .
Because Σj<k Qijk is a discrete random variable, being a (quadratic) function of Yi:,

 is computed via a simple summation over the range of Yi:. Then λi is computed

as .

The mathematical expressions for λi are quite lengthy, except in the beta-binomial case, for
which
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In the beta-binomial model, λi = 0 if ρ = 0; λi approaches (ni + 3)/{3(ni + 1)} if ni is fixed
and ρ → 1; approaches 1/3 as ρ → 1 and ni gets large. Modeling software that includes
computations for λi under BB, MN, and MAD models (e.g., Table 3) as well as for λ as in
equation (11) is available at http://www.bios.unc.edu/~qaqish/software.htm).

QAQISH et al. Page 14

Scand Stat Theory Appl. Author manuscript; available in PMC 2013 September 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://www.bios.unc.edu/~qaqish/software.htm


Figure 1.
Asymptotic efficiency of estimating equations for pairwise log odds ratio implied by model
(12) relative to second-order generalized estimating equations under three higher-order
model assumptions. μ = 0.2, 1:1 mix of ni = 5 and ni = 25. Uρ;ORTH solid, Uρ;ALR = Uρ;KN
dashed, Uρ;CH dotted, Uρ;L dotdash, Uρ;P dotdotdash.
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Figure 2.
Asymptotic efficiency of orthogonalized residuals and alternating logistic regressions
relative to second-order generalized estimating equations for estimation of the pairwise log
odds ratio under different true and working models. Rows are indexed by the true model,
and columns by the working model. Uρ;ORTH solid, Uρ;ALR dashed.
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Table 2

Pairwise kernels based on (yij, yik) for estimating ρ in model (12)

Estimating function yij + yik = 0 yij + yik = 1 yij + yik = 2

Uρ;ALR (γ−1 + ρ)−1 −(1 − ρ)−1 (γ + ρ)−1

Uρ;P γ − ρ −1 − ρ γ−1 − ρ

Uρ;L − μ2(1 + ργ−1) − μ2(1 + ργ−1) 1 − μ2(1 + ργ−1)

Note that Uρ;KN = Uρ;ALR, , Uρ;P is from (4), Uρ;L is from (5),

 and γ = μ/(1 − μ).
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Table 3

Log Pairwise Odds Ratio Association Parameter Estimates and Empirical Standard Errors

Parent-Parent(αpp) Sibling-Sibling(αss) Parent-Sibling(αps)

Model

GEE2 −1.090 (1.090) 0.873 (0.565) 0.984 (0.519)

SAS GENMOD ALR −1.177 (1.385) 1.108 (0.603) 0.986 (0.717)

ORTHALR −1.177 (1.138) 1.108 (0.764) 0.986 (0.673)

ORTHMOMENT −1.264 (1.185) 0.795 (0.502) 0.782 (0.661)

ORTHBB −1.184 (1.131) 0.887 (0.570) 0.842 (0.627)

ORTHMN −1.178 (1.129) 0.911 (0.578) 0.868 (0.640)

ORTHMAD −1.275 (1.134) 0.788 (0.493) 0.761 (0.657)

Values are estimate (standard error). ORTHALR assumes λ = 0. ORTHMOMENT estimates λ using (11), which for these data equals 0.2060.

ORTH methods BB, MN and MAD estimates cluster-specific λi assuming the clusters were generated from beta-binomial, Morel-Neerchal and

Madsen distributions, respectively. GEE2 results from Qaqish & Liang, 1992.
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