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ABSTRACT

Nucleic acids are particularly amenable to structural characterization using chemical and enzymatic probes. Each individual
structure mapping experiment reveals specific information about the structure and/or dynamics of the nucleic acid. Currently,
there is no simple approach for making these data publically available in a standardized format. We therefore developed
a standard for reporting the results of single nucleotide resolution nucleic acid structure mapping experiments, or SNRNASMs.
We propose a schema for sharing nucleic acid chemical probing data that uses generic public servers for storing, retrieving, and
searching the data. We have also developed a consistent nomenclature (ontology) within the Ontology of Biomedical
Investigations (OBI), which provides unique identifiers (termed persistent URLs, or PURLs) for classifying the data. Links to
standardized data sets shared using our proposed format along with a tutorial and links to templates can be found at http://
snrnasm.bio.unc.edu.
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INTRODUCTION

Fields in which data standardization has allowed sharing
among many researchers, including sequence data in GenBank
(Benson et al. 2008; Wheeler et al. 2008) and structural data
in the Protein Data Bank (Bernstein et al. 1977), have
benefited enormously from the ability of investigators to
draw insights from the work of thousands of people
dispersed across the globe (Cannone et al. 2002; Griffiths-
Jones et al. 2003; Noy et al. 2003; Zhang et al. 2006; Elnitski
et al. 2007; Musen et al. 2008; Brown et al. 2009). At
present, there is currently no standard database for archiv-
ing and sharing nucleic acid structure mapping data,
despite the compelling opportunities to incorporate such
data in studies with direct relevance to human health

and to a wide range of scientific challenges (Russell and
Herschlag 2001; Tullius 2002; Schroeder et al. 2004; Takamoto
et al. 2004; Thirumalai and Hyeon 2005; Mortimer and Weeks
2007; Tijerina et al. 2007; Shcherbakova and Brenowitz
2008; Woodson 2008; Deigan et al. 2009). Chemical and
enzymatic structure mapping techniques are useful in the
field of nucleic acids and are commonly used to experi-
mentally validate and/or constrain structural predictions,
‘‘footprint’’ protein-binding sites, and characterize folding
reactions both kinetically and thermodynamically (Mathews
et al. 2004; Deigan et al. 2009; Quarrier et al. 2010; Weeks
2010). Recent developments allowing the analysis of chemical
mapping reactions in a quantitative and high-throughput
manner yield large amounts of high-quality data that re-
quire automated processing and annotation (Das et al. 2005;
Laederach et al. 2008; Mitra et al. 2008; Vasa et al. 2008;
Wilkinson et al. 2008; Deigan et al. 2009; Watts et al. 2009;
Underwood et al. 2010).

A standardized approach for making such data available
upon publication is needed to facilitate sharing and wider
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dissemination of these results. Figure 1A illustrates the
unfortunately common scenario in our laboratories when
structure-mapping data are collected. A laboratory col-
league carefully collects data and meticulously records this
work in a laboratory notebook. The data are then analyzed
and published in a thesis and a scientific journal as an
detailed multicolored diagram. Upon graduation, the thesis
and data are often misplaced (Fogarty 2002). As a result,
the primary data are lost and any attempt to reanalyze the
data in a new context requires manually extracting data
from a manuscript figure or from a PDF file in a manuscript
supplement. In this work, we seek to advocate for an alter-
native scenario that greatly diminishes the risk of data loss and
provides the data in a computer readable format (Fig. 1B).

We consider here the distinct types of structure mapping
data and organize them into an ontology that reveals the
relationships among various techniques. We then describe
a system that both allows diverse users to integrate their
nucleic acid probing data and facilitates the description of
new techniques as they are developed. This systematization
of knowledge and data will thus facilitate comparisons
among methods, meta-analyses combining many indepen-
dent lines of evidence about nucleic acid structure, and
automated retrieval of nucleic acids for which good struc-
tural data are available.

APPROACH

Classification of SNRNASM assays

An important first step in sharing data efficiently is accu-
rately defining the vocabulary used to describe an experi-

ment. This is particularly important if one of the goals of
sharing data is to facilitate meta-analyses using automated
tools. Ontologies are commonly used to define terms and
the relations between them in a precise way (Noy et al.
2003; Leontis et al. 2006; Brown et al. 2009). We therefore
describe single nucleotide resolution nucleic acid structure
mapping (SNRNASM) experiments in terms of an onto-
logical framework. We note that the use of the idiosyncratic
term SNRNASM is intentional. This term is unique to our
approach for archiving nucleic acid probing data and will
make it readily Internet searchable.

We have added terms to the Ontology of Biomedical
Investigations (OBI) for 23 types of SNRNASM assays
(Brinkman et al. 2010). We chose to include terms de-
scribing SNRNASMs into OBI, which focuses specifically
on describing assays like structure mapping. We define two
types of SNRNASMs, chemical and enzymatic mapping
(Fig. 2). These two terms have corresponding OBI identi-
fiers, OBI:0001017 and OBI:0001014, respectively (Fig. 2).
The lines in Figure 2 represent ‘‘is a’’ relationships between
terms. One can therefore infer from our ontological classi-
fication that, for example, RNase T1 structure mapping is an
enzymatic-mapping assay, which is also a SNRNASM. Al-
though this may seem obvious to those familiar with the
field of RNA structure mapping, in the larger context of
integrating multiple data sets for meta-analyses, it is essential
to identify these elementary relationships explicitly. This
strategy greatly facilitates the implementation of automated
data meta-analyses algorithms (Leontis et al. 2006; Whetzel
et al. 2006; Moreira and Musen 2007).

Our ontological classification of SNRNASMs also cap-
tures the fact the chemical and enzymatic structure map-

ping experiments almost always use
a specific probe, which is generally an
enzyme or chemical compound. For
this reason, we have defined the ‘‘input’’
of structure-mapping assays as the chem-
ical or enzyme reagent used to probe
the nucleic acid (Table 1, Specific Input
column). Furthermore, we explicitly
identify these chemicals and enzymes
in their respective ontologies, Chemical
Entities of Biological Interest (CHEBI)
(Degtyarenko et al. 2008, 2009), and
Protein Ontology (PRO) (Natale et al.
2007, 2011). Additionally, for each en-
try, we have provided alternative names
(for example, NMIA structure mapping
is commonly known as SHAPE), and
corresponding primary references. The
SNRNASM classification is thus inte-
grated into the larger ontological frame-
work being developed for genomic an-
notations (Natale et al. 2007, 2011;
Degtyarenko et al. 2008, 2009).

FIGURE 1. Different possible scenarios for SNRNASM (single nucleotide resolution nucleic
acid structure mapping) data. (A) RNA chemical probing data is collected, recorded in
a laboratory notebook, and published in a manuscript as an elaborate, colorful figure. This
allows the graduate student who collected the data to graduate. Unfortunately, the raw data,
meticulously recorded in the laboratory notebook, becomes lost (Fogarty 2002). (B) Proposed
alternative in which the data is stored in a computer, uploaded to a publicly available server (in
the cloud), and made downloadable upon publication of the manuscript, allowing other
investigators access for new analyses.
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Accessing SNRNASM classifications

The field of nucleic acid structure mapping is continuously
evolving as new chemical and enzymatic probes are de-
veloped (Wilkinson et al. 2006; Mortimer and Weeks 2007;
Regulski and Breaker 2008; Shcherbakova and Brenowitz
2008). It is therefore important that any effort to classify
these experimental techniques also evolve to reflect the field
accurately. All SNRNASM terms to date have been sub-
mitted to OBI, and are therefore accessible in OWL and
OBO format (Moreira and Musen 2007) from http://obi-
ontology.org. Practically, the annotations are easily visual-
ized and edited in an ontology editor such as Protégé (Noy
et al. 2003; Supplemental Fig. 1). New annotations from the
community can be readily added and will appear in new
OBI releases. For example, some annotations (e.g., RNase I)
are ‘‘in process’’ and will therefore be added to OBI after
the publication of this manuscript (Fig. 2).

To facilitate access to our SNRNASM classification we
have developed a series of spreadsheets that provide
a straightforward framework for annotating a chemical or
enzymatic mapping experiment. Links to these spreadsheets
can be found at http://snrnasm.bio.unc.edu, which are hosted
in the ‘‘cloud,’’ currently Google Docs servers. ‘‘Cloud’’ servers
can be any publically available computer designed to store
and disseminate data. By placing these documents in the
cloud, no single lab is responsible for hosting these files
on their servers, and anyone can edit an archived file if
necessary. Our goal is to facilitate community involvement
in the annotation process and to enable the groups de-
veloping new structure-mapping techniques to specify the
terms that best describe their techniques.

Data sharing using the ISA-Tab format

The ontological framework we described above allows us
to define structure-mapping experiments precisely. From

a practical perspective, by associating an OBI term with
each type of structure-mapping experiment (Fig. 2), it is
possible to specify uniquely the type of experiment that was
carried out on a nucleic acid. Although this represents
a significant advantage in terms of being able to search for
specific data sets, additional experimental information is
required to be able to compare data sets effectively. For
example, experimental conditions such as monovalent and
divalent ion concentrations significantly affect RNA fold-
ing; it is essential to specify these conditions when un-
dertaking comparative data analysis (Deras et al. 2000;
Heilman-Miller et al. 2001a; Uchida et al. 2003; Das et al.
2008; Quarrier et al. 2010). Furthermore, SNRNASM data
can be collected in different ways (using direct labeling of
the RNA and gel electrophoresis, or reverse transcription
followed by cDNA fragment analysis on a capillary se-
quencer (Mitra et al. 2008; Vasa et al. 2008). It is therefore
important to capture, at minimum, the defining charac-
teristics of experimental details in an annotation.

Defining best practices for experimental annotation of
data is a nuanced challenge (Griffiths-Jones et al. 2005;
Whetzel et al. 2006; Brown et al. 2009). On one hand,
capturing as much detail as possible is ideal from a future
analysis perspective. However, excessive annotation require-
ments are burdensome for the individual trying to share
data, and can significantly decrease the overall amount of
data shared. We therefore chose to require minimal anno-
tations and developed a flexible format for sharing data that
allows the user to decide which annotations to provide.
Furthermore, we use a simple format that is easily edited in
a spreadsheet program (including Excel and OpenOffice).
We base our standard on the ISA-Tab (Investigation/Study/
Assay) format, which is sufficiently extensible to allow easy
SNRNASM annotation, is well established, and is widely
used for biomedical data sets (Rocca-Serra et al. 2010).

The SNRNASM ISA-Tab format is based on the con-
cept of a multi-tabular spreadsheet. It includes three

FIGURE 2. Graphical representation of the different terms we added to OBI (the Ontology of Biomedical Investigations) used to describe single
nucleotide resolution nucleic acid structure mapping (SNRNASM) experiments. Each term is assigned a unique identifier (e.g., OBI:0001014) and
organized by a series of hierarchical relationships. We used ‘‘is a’’ relationships in this case. For example DNAse I structure mapping (OBI:0001016)
‘‘is an’’ enzymatic mapping (OBI:0001014) experiment, which ‘‘is an’’ SNRNASM (OBI:0000807). In organizing our description of structure
mapping experiments in this way, it becomes possible to design algorithms that will automatically identify relationships between different data sets.
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tabs: ‘‘Investigation,’’ ‘‘Study-Assay,’’ and ‘‘Data Matrix.’’
The Investigation tab contains bibliographical references,
authorship, dates, and protocol-related information. In
general, a single ISA-Tab file will communicate all data
presented in one manuscript. An assay is defined as
a mapping experiment using one probe on one nucleic
acid, and each row in the Study-Assay tab (Supplemental
Fig. 2) corresponds to one such experiment. The actual
data is stored in the third Data Matrix tab where each
column corresponds to one assay (Supplemental Fig. 2).
There is therefore an implicit one-to-one correspon-
dence between rows in the Assays tab and the columns
in the Data Matrix tabs. This correspondence is explicitly
coded in the Study-Assay tab by a column with Assay

Names that correspond to the first row of the Data-Matrix
tab.

The Assays tab is where the ontological classification
outlined above is used. The Term Accession Number
column corresponds to the OBI accession number specify-
ing the type of chemical or enzymatic mapping experiment.
Furthermore, other variables (such as monovalent and
divalent salt concentration and type) are specified in
additional columns in the Assays tab. In principle, any
number of experimental conditions can be specified in this
way; in practice, only those experimental variables that
change (for example, MgCl2 concentration) are recorded.
In this way, the most important variables in the experiment
are captured systematically.

TABLE 1. SNRNASM assays currently in OBI along with their corresponding inputs (probes)

Assay name Alternative name Specific input (probe) Input identifier Reference

DMS structure mapping assay Dimethyl sulfate CHEBI:59050 (Peattie and Gilbert 1980;
Ehresmann et al. 1987)

DEPC structure mapping assay Diethylpyrocarbonate CHEBI:59051 (Peattie and Gilbert 1980;
Johnston and Rich 1985;
Ehresmann et al. 1987),

Kethoxal structure mapping assay Kethoxal (1,1-Dihydroxy-
3-ethoxy-2-butanone)

CHEBI:59052 (Danesh et al. 1986;
Ehresmann et al. 1987)

CMCT structure mapping assay 1-cyclohexyl-(2-
morpholinoethyl)carbodiimide
metho-p-toluene sulfonate

CHEBI:59053 (Danesh et al. 1986;
Ehresmann et al. 1987)

NMIA RNA structure mapping assay SHAPE mapping
assay

N-methylisatoic anhydride CHEBI:59054 (Merino et al. 2005)

Fe-BABE RNA structure mapping
assay

Fe(II)-BABE (iron(S)-1-
(p-bromoacetamidobenzyl)
ethylenediaminetetraacetate)

CHEBI:59055 (Heilek et al. 1995)

MPE-Fe(II) structure mapping assay Methidiumpropyl-EDTA.Fe(II) CHEBI:59056 (Vary and Vournakis 1984a)
ENU structure mapping assay Ethylnitrosourea CHEBI:23995 (Vlassov et al. 1980;

Ehresmann et al. 1987)
Lead structure mapping assay Lead CHEBI:27889 (Gornicki et al. 1989)
Rhodium DNA structure mapping

assay
Rhodium CHEBI:33359 (Kirshenbaum et al. 1988)

Ruthenium DNA structure mapping
assay

Ruthenium CHEBI:30682 (Barton 1986)

Terbium RNA structure mapping
assay

Terbium CHEBI:33376 (Walter et al. 2000)

DNAse I structure mapping assay DNAse
footprinting

DNAse I PRO:000006592 (Galas and Schmitz 1978;
Brenowitz et al. 1986)

RNAse CL3 structure mapping assay RNAse CL3 PRO:000025478 (Florentz et al. 1982)
Nuclease S1 structure mapping assay Nuclease S1 PRO:000025471 (Wurst et al. 1978)
RNAse T1 structure mapping assay RNAse T1 PRO:000025467 (Wrede et al. 1979)
RNAse T2 structure mapping assay RNAse T2 PRO:000014060 (Vary and Vournakis 1984b)
RNAse U2 structure mapping assay RNAse U2 PRO:000025475 (Mougel et al. 1987)
RNAse V1 structure mapping assay RNASE V1 PRO:000025477 (Lockard and Kumar 1981)
OH-radical structure mapping assay OH footprinting

assay; MOHCA
OH-radical CHEBI:29191 (Latham and Cech 1989)

Inline Probing Inline Probing No added
chemical
probe

(Soukup and Breaker
1999; Regulski and
Breaker 2008)

1M7 RNA structure mapping assay SHAPE mapping
assay

1-methyl-7-nitroisatoic
anhydride (1M7)

CHEBI:60343 (Mortimer and Weeks 2007)

RNAse I RNAse I PRO:000014042 (Tranguch et al. 1994)

Data format for nucleic acid structure mapping
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Creating and sharing an ISA-Tab file

Given that an ISA-Tab file is simply a spreadsheet, special-
ized software is not required. To simplify the process of
creating the appropriate file, we have developed a tutorial
document, provided in the supplement of this manuscript
and also at the SNRNASM website (http://snrnasm.bio.unc.
edu/SNRNASM_Tutorial.pdf). Additionally, links to tem-
plate ISA-Tab files and example data sets are also available
online. Column and row headers are colored in green and
yellow, indicating fields that require user input or not,
respectively. In practice, most users will simply download
an example ISA-Tab file and modify it according to their
needs. In most cases, data can be simply pasted into the
template to produce a new ISA-Tab file, greatly reducing
the burden of data sharing. Alternatively, ISAcreator
(http://isatab.sourceforge.net/isacreator.html) used in com-
bination with dedicated configurations (http://tinyurl.com/
69r7au3) can provide the necessary support for managing
structure mapping data locally prior to release. It is an easy
to use tool that automatically helps create and populate
ISA-Tab files as well as organize data in the lab. Controlled
vocabularies ease data reporting while reducing annotation
ambiguity. The capability to save ISA-Tab reports as
Google spreadsheets directly from ISAcreator tool is cur-
rently being developed and will facilitate sharing.

As mentioned above, we propose a distributed approach
to storing ISA-Tab files. Therefore, we have not created
a central server where such data are to be uploaded. Instead
users may choose to upload their ISA-Tab files to their own
servers, or alternatively make them publically available
through a free cloud service like Google Docs. Instructions
on how to make data public are provided in the tutorial.
One advantage of making data available in the cloud is that it
allows us to leverage web search engines to find SNRNASM
data. Links to the SNRNASM data from pages that are
already indexed will facilitate discovery by automated Internet
crawling engines. We therefore encourage users to link to
their data from their homepages, as well as from the primary
publication. Additionally, we link to any SNRNASM data
submitted to http://snrnasm.bio.unc.edu. We have also cre-
ated an automated ISA-Tab validation tool for SNRNASM
data at http://rmdb.stanford.edu/repository/tools/validate/
that will identify inconsistencies in a file.

APPLICATIONS

Example use cases

The most likely SNRNASM use case is also the most
straightforward in terms of implementation. An investiga-
tor reads a paper in which structure-mapping data was
collected and wishes to reanalyze these data in a new con-
text. Rather than having to extract the data from a pdf in
the supplement, the original SNRNASM data can be

obtained in a format that is easily parsed (Fig. 1B). Alter-
natively, the user can search for SNRNASM data and the
names of the authors.

As mentioned above, solution conditions (especially
monovalent and divalent cation concentration) signifi-
cantly alter the three-dimensional (3D) conformation of
RNA (Heilman-Miller et al. 2001a; Takamoto et al. 2002,
2004; Koculi et al. 2007). Chemical and enzymatic probes
are often used to study the effects of solution conditions on
the structure of RNA (Vary and Vournakis 1984b; Celander
and Cech 1991; Mathews et al. 1997; Uchida et al. 2003;
Takamoto et al. 2004).

To illustrate the value of sharing chemical and enzymatic
mapping data, we performed a simple meta-analysis of the
effects of solution conditions on the DMS (OBI:0001015)
accessibilities of functional RNA residues. Specifically, we
wanted to find DMS structure mapping data that were
collected under similar divalent solution conditions for
different RNAs. We therefore searched for SNRNASM files
containing the terms OBI:0001015 and CHEBI:6636
(MgCl2), and identified two studies where DMS chemical
mapping data were collected on RNA in the absence and in
the presence of 10 mM MgCl2. In the first study, DMS
chemical mapping data were collected on sequence variants
of the SRP (Signal Recognition Particle) domain IV motif
(Das et al. 2010), while in the second study, data was col-
lected on the P4–P6 subdomain of the L-21 Tetrahymena
thermophila group I intron (Quarrier et al. 2010). SNRNASM
classification therefore facilitated identification of similar
data sets for meta-analysis.

Because SNRNASM data files provide easy access to the
data, rapidly generating new visualizations is greatly sim-
plified. We used a tool to project structure mapping data
on an RNA secondary structure diagram provided with the
SAFA software (Das et al. 2005) to visualize the DMS data
from these experiments on two-dimensional (2D) repre-
sentations of the RNA (Fig. 3). What is immediately
apparent from our visualization of the DMS mapping data
is that the addition of 10 mM MgCl2 results in significant
changes in the overall DMS reactivity for P4–P6 (Fig. 3A)
and, to a lesser degree, for the SRP domain IV motif (Fig.
3B). The effects of this structural change are visible when
comparing the no-Mg2+ and plus-Mg2+ data sets for the
P4P6 domain (Fig. 3A), which includes significant tertiary
contact formation upon folding (Deras et al. 2000; Doherty
and Doudna 2001; Russell et al. 2002, 2006).

Interestingly, subtle effects in DMS reactivity are also
observed upon Mg2+ addition to the SRP domain IV hairpin
(Fig. 3B). No tertiary contacts are present in this RNA, so
one might expect the DMS reactivity to be identical in both
solution conditions. This domain was chosen for study
because it is composed of a series of noncanonical base
pairs (indicated using the Leontis-Westhof nomenclature in
Figure 3B (Leontis and Westhof 2003). The relationships
between 3D structure and chemical reactivity are not simple,

Rocca-Serra et al.
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but the availability of large numbers of quantitative data sets
like the two we analyzed here will allow us to better analyze
these relationships in a quantitative and predictive manner
(Woodson 2000; Heilman-Miller et al. 2001b; Koculi et al.
2006; Laederach et al. 2007).

DISCUSSION

Our objective in this work is to establish a simple and
robust standard that facilitates sharing of single nucleotide
resolution nucleic acid structure mapping (SNRNASM)
data. To achieve this objective, we:

1. Describe and classify common SNRNASM experiments
using a standardized (ontological) vocabulary.

2. Develop a standard format for report-
ing probing data that is easily read
both by humans and computers.

3. Provide a means by which to make
these data widely available.

Our SNRNASM classification depends
on several ontologies, including the
Ontology of Biomedical Investigations
(OBI) (Whetzel et al. 2006), the Chem-
ical Entities for Biomedical Investiga-
tions (CHEBI) (Degtyarenko et al. 2008,
2009), the Protein Ontology (PRO)
(Natale et al. 2007, 2011), and the RNA
Ontology (RNAO) (Leontis et al. 2006;
Brown et al. 2009; Hoehndorf et al.
2011). SNRNASM experiments are de-
scribed as assays in OBI, with the input
being the nucleic acid and the chemical
or enzymatic probe, while the output is
a measurement of reactivity. We have
added the chemical probes that were
not already in CHEBI (Table 1) to
uniquely identify the OBI inputs. Sim-
ilarly, for the nucleases used for enzy-
matic probing, we obtained unique Pro-
tein Ontology identifiers (Table 1). This
allows us to uniquely identify each
SNRNASM type and assign it an OBI
identifier (Fig. 2). The RNA Ontology
(RNAO) annotates crucial structural fea-
tures of RNA molecules extracted from
atomic-resolution 3D structures, includ-
ing all non-Watson–Crick base pairs
(Leontis et al. 2006; Brown et al. 2009;
Hoehndorf et al. 2011).

We sought to be as inclusive as
possible, and any omissions from the
SNRNASM techniques (described in
Fig. 2 and Table 1) are inadvertent.

These are publically available and can easily be updated
by community input (available at http://bit.ly/d51yNY);
thus, expanding the SNRNASM classification is straightfor-
ward. Our criteria for including an assay into our classifica-
tion require: a primary publication, that the assay either
modifies or cleaves a nucleic acid, that the data can be
interpreted structurally, and that the modification or cleav-
age is localized to a specific nucleotide. The list of
SNRNASM assays reported in Table 1 therefore represents
a starting point for the classification of these experimental
techniques and will evolve as new methods are developed.
We defined two broad classes of SNRNASMs, chemical
and enzymatic (Fig. 2). It is likely that new categories of
SNRNASM will be required in the future. Advances in deep
sequencing and other genome-wide techniques will lead to

FIGURE 3. Example meta-analysis of DMS (OBI:0001015) chemical mapping data from two
separate studies on RNA. For example, to visualize the effects of Mg2+ on the DMS reactivity of
nucleic acids, we searched for OBI:0001015 (DMS) and CHEBI:6636 (MgCl2) in ISA-Tab
(Rocca-Serra et al. 2010) files and identified two studies where RNA was probed with DMS in
the absence and presence of Mg2+. We then downloaded the two ISA-Tab files (https://
spreadsheets.google.com/ccc?key=0As58Pw6ZT3UtdGFveExsek9tdUJNS0xXbUFmRE1ZR0E&
hl=en#gid=1 and https://spreadsheets.google.com/ccc?key=0AvCayBYdTclldEJoQ3otbWE5R
Gx0VzdobmVjX2Q5b3c&hl=en#gid=0) and used a tool included in the SAFA software
(Simmons et al. 2009) to visualize the data on the RNA. (A) Secondary structure diagram
of the L-21 T. thermophila group I intron with DMS data mapped to its secondary structure
with (right) and without (left) Mg2+ present. (B) Secondary structure diagram of domain IV
of SRP with and without Mg2+ present.

Data format for nucleic acid structure mapping

www.rnajournal.org 1209



whole- or large-scale transcriptome analysis in a single
experiment (Kertesz et al. 2010; Mauger and Weeks 2010;
Underwood et al. 2010). These experiments generate large
amounts of data and will require a systematic approach
for documenting and distributing results accurately and
efficiently.

This standardization effort represents the beginning of a
community effort to make SNRNASM data widely accessible,
to facilitate quantitative comparative analysis, to establish
predictive relationships between nucleic acid structure and
chemical or enzymatic reactivity, and to provide the software
and algorithm development communities with essential data
for training and validation. By enabling large-scale meta-
analysis, it may become possible to discover new approaches
for interpreting the results of SNRNASM assays. We there-
fore strongly encourage laboratories carrying out these assays
to make their data available upon publication.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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