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ABSTRACT

RNA molecules with novel functions have revived interest in the accurate prediction of RNA three-dimensional (3D) structure
and folding dynamics. However, existing methods are inefficient in automated 3D structure prediction. Here, we report a robust
computational approach for rapid folding of RNA molecules. We develop a simplified RNA model for discrete molecular
dynamics (DMD) simulations, incorporating base-pairing and base-stacking interactions. We demonstrate correct folding of 150
structurally diverse RNA sequences. The majority of DMD-predicted 3D structures have <4 Å deviations from experimental
structures. The secondary structures corresponding to the predicted 3D structures consist of 94% native base-pair interactions.
Folding thermodynamics and kinetics of tRNAPhe, pseudoknots, and mRNA fragments in DMD simulations are in agreement with
previous experimental findings. Folding of RNA molecules features transient, non-native conformations, suggesting non-
hierarchical RNA folding. Our method allows rapid conformational sampling of RNA folding, with computational time increasing
linearly with RNA length. We envision this approach as a promising tool for RNA structural and functional analyses.
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INTRODUCTION

The central dogma of molecular biology ascribed funda-
mental importance to RNA molecules in transcription and
translation. Both coding and noncoding RNA molecules are
now known to possess much greater variety of biological
functions (Eddy 2001; Huttenhofer and Schattner 2006) than
what was suggested by the central dogma. During the last two
decades, significant developments have lead to new insights
in the importance of RNA in many post-transcriptional
and post-translational processes. Discoveries of ribozymes
and a variety of small RNAs with novel biological functions
have highlighted RNA as a ubiquitous molecule in cellular
processes (Doherty and Doudna 2001). To perform their
biological functions, many RNA molecules adopt well-
defined tertiary structures. The RNA conformational dynam-
ics determines how often these functionally important

conformations appear in the course of RNA’s life and,
therefore, modulate its functional activity. Hence, there is
a rejuvenated interest in accurate ab initio prediction of
three-dimensional (3D) structure and dynamics of RNAs
(Shapiro et al. 2007).

Currently, RNA folding tools are mainly focused on pre-
dicting RNA secondary structure (Mathews 2006). Compu-
tational tools for RNA secondary structure prediction, such
as Mfold (Zuker 2003) and Vienna RNA (Hofacker 2003),
are successful in predicting the RNA base pairing loci, thereby
predicting the secondary structure organization. Using a
dynamic programming approach (Eddy 2004), secondary
structures are inferred by scoring nearest-neighbor stacking
interactions with adjacent base pairs (Mathews 2006). How-
ever, these analyses based on base-pairing and base-stacking
interactions ignore 3D steric hindrances in scoring putative
secondary structures of RNA. The explicit modeling of the
3D structure might prohibit unfeasible tertiary structures of
RNA. Cao and Chen designed a simplified diamond-lattice
model for predicting folded structure and thermodynamics
of RNA pseudoknots (Cao and Chen 2006). This approach
quantitatively predicts the free energy landscape for sequence-
dependent folding of RNA pseudoknots, in agreement with
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experimental observations (Cao and Chen 2006). However,
due to the lattice constraints and the dynamic issues asso-
ciated with predefined Monte Carlo moves (Baumgartner
1987), this approach is inadequate to study the folding
dynamics of RNAs. Several other computational tools were
developed for RNA 3D structure prediction (for review, see
Shapiro et al. 2007). These methods either use comparative
modeling of RNA sequences with known structures or
utilize known secondary and tertiary structural information
from experiments in interactive modeling (Major et al.
1991, 1993; Shapiro et al. 2007). Therefore, novel auto-
mated computational tools are required to accurately pre-
dict the tertiary structure and dynamics of RNA molecules.
Recently developed knowledge-based approaches using as-
sembly of trinucleotide torsion-angle libraries (Das and
Baker 2007) are successful in predicting RNA structures for
small globular RNA fragments (z30 nucleotides [nt]).
However, RNA molecules often do not adopt globular
topologies, such as the L-shaped tRNA. Enhanced pre-
diction accuracy for longer RNA molecules is attainable by
using physically principled energy functions and using an
accurate sampling of RNA conformations.

Here, we introduce a discrete molecular dynamics (DMD)
(Ding and Dokholyan 2005) approach toward ab initio 3D
RNA structure predictions and characterization of RNA
folding dynamics using simplified structural models. In
contrast to the traditional molecular dynamics simulations,
which are computation-intensive and hence expensive in
probing RNA folding dynamics over long time scales, the
DMD algorithm provides rapid conformational sampling
(Ding and Dokholyan 2005). It is demonstrated in numer-
ous studies that the DMD method is suitable for study-
ing various properties of protein folding (Chen et al.
2008) and protein aggregation (Ding and Dokholyan
2005), and for probing different biomolecular mechanisms
(Ding and Dokholyan 2005; Sharma et al. 2006, 2007). Here,
we extend this methodology to the RNA folding problem.
We simplify the RNA structural model by using a ‘‘bead-on-
a-string’’ model polymer with three coarse-grained beads—
phosphate, sugar, and base—representing each nucleotide
(see Materials and Methods; Fig. 1). We include the base-
pairing, base-stacking, and hydrophobic interactions, the
parameters of which are obtained from experiments. The
coarse-grained nature of the model, as well as the efficiency
of the conformational sampling algorithm, enables us to
rapidly explore the possible conformational space of RNA
molecules.

RESULTS

Large-scale benchmark test of DMD-based ab initio
RNA structure prediction on 153 RNA sequences

We test the predictive power of the DMD-based RNA
folding approach by selecting a set of intermediate-length

RNA sequences, whose experimentally derived structures
are available at the Nucleic Acid Database (NDB, http://
ndbserver.rutgers.edu), and compare our predictions with
experimentally derived structures and folding dynamics.
We restrict our study to RNA molecules having a length
greater than 10 nucleotides (nt) and shorter than 100 nt.
Short RNA molecules lack well-formed tertiary structures
and were excluded from this study. All simulated RNA
molecules (153 in total) are listed in Supplemental Table 1.
Notably, this set of 153 molecules spans a range of tertiary
structural motifs: cloverleaf-like structures, L-shaped
tRNAs, hairpins, and pseudoknots.

For each RNA molecule, we first generate a linear con-
formation using the nucleotide sequence. Starting from this
extended conformation, we perform replica exchange simu-
lations at different temperatures (see Materials and Meth-
ods). The three-dimensional conformation corresponding
to the lowest free energy is predicted as the putative
structure of the RNA molecule, assuming that the corre-
sponding native structure is unknown. The extent of native
structure formation in simulations is measured by com-
puting the Q-values (akin to protein folding experiments
[Sali et al. 1994], see Materials and Methods), defined as
the fraction of native base pairs present in a given RNA
conformation. We compute Q-values for the lowest free

FIGURE 1. Coarse-grained structural model of RNA employed in
DMD simulations. (A) Three consecutive nucleotides, indexed i � 1,
i, i + 1, are shown. Beads in the RNA: sugar (S), phosphate (P), and
base (B). (Thick lines) Covalent interactions, (dashed lines) angular
constraints, (dashed–dotted lines) dihedral constraints. Additional
steric constraints are used to model base stacking. (B) Hydrogen
bonding in RNA base pairing. (Dashed lines) The base-pairing
contacts between bases Bi � 1:Bj + 1 and Bi:Bj. A reaction algorithm
is used (see Materials and Methods) for modeling the hydrogen
bonding interaction between specific nucleotide base pairs.
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energy states (i.e., predicted putative structures) and also
the maximum Q-values sampled during the course of
simulations (Fig. 2A; Supplemental Table 1). For a majority
of the simulated RNA sequences, the lowest free-energy
structures from simulations have predicted Q-values close
to unity, suggesting the correct formation of native base
pairs in simulations. The average Q-value for all 153 RNA
molecules under study is 94%. For comparison with avail-
able secondary structure prediction methods, we also
compute the Q-values using Mfold (Fig. 2A; Supplemental
Table 1), and the average Q-value is 91%. The DMD-based

RNA folding approach shows improvement over the Mfold
method in predicting the native base pairs, especially for
pseudoknots (Supplemental Table 1).

Out of 153 RNA molecules studied, there are three cases
(NDB codes: 1P5O, 1P5M, and 2AP5) where the predicted
and maximum Q-values as well as the Q-value from the
Mfold prediction are small. Additionally, there are a few
cases where the predicted Q-values are not unity while the
maximum Q-values are unity (Fig. 2A). This suggests that
our simulations are able to sample the native state, but the
force field cannot capture it. Therefore, further optimiza-
tion of the force field parameters is necessary.

The objective of this work is toward ab initio tertiary
structure prediction. Toward this goal, we evaluate our
predicted tertiary structures by computing their root-
mean-square deviation (RMSD) from corresponding native
structures, excluding the three RNA molecules where the
secondary structures are not correctly formed (Fig. 2B,C).
The RMSD value is computed based on the backbone
phosphate atoms. We notice that the predicted lowest free
energy structure usually does not have the lowest RMSD
with respect to the corresponding crystal structure (Fig.
2B,C; Supplemental Table 1), possibly due to inaccuracy of
the force field and the coarse-grained nature of the sim-
plified RNA model. Despite these approximations, the
method features striking predictive power. We observe that
for the RNA molecules with nucleotide length <50, the
predicted RMSD are <6 Å. Longer RNA molecules exhibit
larger RMSD due to the highly flexible nature of RNA
molecules. Among the 153 sequences simulated, 84% of the
predicted tertiary structures have an RMSD of <4 Å with
respect to the experimentally derived native RNA structure.
Many functionally important RNA molecules have short
sequences, e.g., pre-miRNA is typically 70–100 nt long,
suggesting a potential for DMD-based RNA folding for de
novo structure prediction of functional RNA molecules.

Folding dynamics in DMD simulations

We analyze the folding thermodynamics and kinetics for
several nontrivial RNA motifs, the pseudoknot and tRNA.
We also study the folding thermodynamics of B-RNA
(Escherichia coli 23S rRNA, G1051-C1109) (Laing and
Draper 1994), 72 RNA (E. coli a-operon mRNA fragment
G16-A72) and its mutants: 72-C RNA (G16-A72, G51/C)
and 72-14 RNA (G16-A72, AA44/CC, UU54/GG)
(Gluick and Draper 1994), and compare our simulations
with corresponding experimental measurements.

Pseudoknot folding

The RNA pseudoknot structure has non-nested base pair-
ing and minimally consists of base-pairing between a loop
region and a downstream RNA segment. Pseudoknots serve
diverse biological functions, including formation of protein

FIGURE 2. Ab initio RNA folding using DMD. (A) Fraction of native
base pairs (Q-values) present in the predicted RNA 3D structure. The
maximum Q-values during the course of simulations are also shown,
which depict the conformational sampling efficiency of the DMD
algorithm to reach the native states. We also show the Mfold predicted
Q-values. (B) Scatter plots of RMSD for the final folded conformation
with respect to the experimentally derived native structure as a
function of RNA size. Large RNA molecules have increased fluctua-
tions due to larger conformational freedom and consequently have
greater RMSD from the native conformation. (C) Normalized histo-
gram of predicted and least RMSD to the native RNA structure.
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recognition sites mediating replication and translational
initiation, self-cleaving ribozyme catalysis, and inducing
frameshifts in ribosomes (Staple and Butcher 2005). We
study pseudoknot folding dynamics by selecting a 44-nt-
long representative pseudoknot whose structure is available
at high resolution (NDB code: 1A60) (Fig. 3A). This
pseudoknot represents the T-arm and acceptor stem of
the turnip yellow mosaic virus (TYMV) and has structural
similarity with TYMV genomic tRNA (Kolk et al. 1998).
The model pseudoknot is stabilized by the hairpin loop
formed at the 59 end of RNA, and by the interactions with
the loops of the pseudoknot in the 39 end.

We calculate the folding thermodynamics using the
weighted histogram analysis method (WHAM) (see Materi-

als and Methods). The specific heat (Fig. 3B) has one peak
centered at temperature T* = 0.245 and a shoulder near
T* = 0.21 (temperature expressed in reduced units, see Mate-
rials and Methods), suggesting the presence of intermediate
states in the folding pathway (Fig. 3B). The thermodynamic
folding intermediate species is characterized by computing
the two-dimensional potential of mean force (2D-PMF) as a
function of total number of base pairs (N) and the number
of native base pairs (NN). The 2D-PMF plots at temper-
atures corresponding to the two peaks in the specific heat
(Fig. 3C,D) show two intermediate states with distinct free
energy basins: The first intermediate state corresponds to
the folded 59 hairpin, while the second intermediate cor-
responds to the formation of one of the helix stems for the
39 pseudoknot. For example, the 2D-PMF plot at T* = 0.21
(Fig. 3D) shows that the shoulder in the specific heat plot
corresponds to the formation of the second intermediate
state. The basins corresponding to the two intermediate
states have a weak barrier, resulting in a lower height in the
specific heat plot. Contact frequencies at the folding inter-
mediates and the native state contact map (Fig. 3E–G) dem-
onstrate the progress in the pseudoknot folding pathway.

tRNA folding

The transfer RNA (tRNA) molecules serve as information
transducers, linking the amino acid sequence of a protein
and the information in DNA, thereby, decoding the
information in DNA. Crystallographic studies of tRNA
molecules reveal a distinct L-shaped 3D structure (Fig. 4A).
Here, we study the folding of a yeast phenylalanine tRNA
(NDB code: 1evv). For the tRNA molecule, the predicted
Q-value is z0.87. We find that the RMSD of the putative
structure is z7.20 Å with respect to the crystal structure,
while the lowest RMSD in the simulation is z5.2 Å
(Supplemental Table 1). The predicted structure misses
the tertiary contacts between the TCC-loop and D-loop
(Fig. 4A); such long-range contacts are stabilized by metal
ion coordination as shown in high-resolution X-ray crys-
tallography structures (Fig. 4A). Since our model does not
include nucleotide metal ion coordination effects, such
tertiary contacts mediated by metal coordination are not
expected to form during the DMD simulations. However,
this methodology is still able to recapitulate all other
tertiary contacts, including the long-range helix between
the 59 and 39 ends and co-stacking between the terminal
helix and D-helix, and between the TCC-helix and anti-
codon helix (Fig. 4B). The specific heat of tRNA exhibits a
single peak at T* = 0.22 (Fig. 4C). However, a single peak in
the specific heat does not guarantee the absence of folding
intermediates (Dixon et al. 2004). We first compute the
2D-PMF as the function of the total number of contacts
and the number of native contacts at T* = 0.22 (Fig. 4D).
We observe two major basins: one corresponding to the
unfolded/misfolded states (NN = 0 and N $ 0), and the
other corresponding to a state that has NN z 6. There are

FIGURE 3. Ab initio folding kinetics and energetics of a model
pseudoknot RNA. (A) Superposition of experimental pseudoknot
structure (NDB code: 1A60, ribbon) against DMD prediction (ribbon
backbone trace with backbone spheres). Backbone ribbons are colored
blue (N terminus) to red (C terminus). (B) Graph of specific heat of
the pseudoknot molecule as a function of simulation temperature. (C)
Two-dimensional potential of mean force 2D-PMF for pseudoknot
folding at T* = 0.245 (corresponds to the major peak in the specific
heat). (I1, I2) The two intermediate states, (N) native state. (D) The
2D-PMF plot at T* = 0.21. (E) Internucleotide base-pairing contact
frequencies at the first folding intermediate (I1) corresponding to the
state where the 59 hairpin is folded. (F) Internucleotide base-pairing
contact frequencies at the second intermediate state (I2) correspond-
ing to the formation of the major groove helix stem of the 39
pseudoknots. (G) Contact map of the native state (N) as observed in
the experimental structure (NDB code: 1A60).
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minor basins corresponding to states with NN ranging
from 10 to 18 and the native state with NN z22.

We examine the folding trajectories in simulations (Fig.
4E,F) and observe that the tRNA folding process is not
cooperative and follows multiple folding pathways. The
twofolding trajectories (Fig. 4E,F) consist of distinct folding
intermediates populated along the successful folding path-
way. While the rest of the folding pathways are different in
the twofolding events, common to the two folding events is
the initial formation of the anticodon helix, suggesting that
these intermediate states (NN ranging from 10 to 18; Fig.
4G–J) have similar free energies. Sorin and coworkers
investigated the folding mechanism of tRNA using all-
atom molecular dynamics simulations with G�o model
(Sorin et al. 2004). These investigators observed that the
tRNA folds via multiple folding pathways with distinct
intermediates populated upon folding. This observation is
consistent with our studies. The advantage of our meth-

odology is that we do not impose the native structure bias
in the simulations.

Folding of ribosomal and messenger RNA fragments

We compare our predictions with experimental data by
studying the thermodynamics of four RNA sequences:
B-RNA (E. coli 23S rRNA, G1051-C1109) (Laing and
Draper 1994), 72 RNA (E. coli a-operon mRNA fragment
G16-A72), and the 72-C RNA (G16-A72, G51/C), 72-14
RNA (G16-A72, AA44/CC, UU54/GG) mutants
(Gluick and Draper 1994). The 72 RNA fragment contains
a coding RNA sequence, suggesting functional implication
of folding thermodynamics associated with translational
regulation (Gluick and Draper 1994). Gluick and Draper
(1994) have measured the melting curves of wild-type and
mutant 72 RNA. Mutations at key 72-RNA nucleotides
resulting in the 72-C RNA, 72-14 RNA sequences were
engineered to probe significant events in 72-RNA folding

FIGURE 4. Ab initio folding kinetics and energetics of a model tRNA. (A) Mg2+ binding site (sphere) in the tRNA. (B) Superposition of
experimental tRNA structure (NDB code: 1EVV, ribbon) against DMD prediction (ribbon backbone trace with backbone spheres). Backbone
ribbons are colored blue (N terminus) to red (C terminus). D loop, TCC loop, anticodon loop, and acceptor loop are indicated with color
representing their position in the tRNA secondary structure. (C) The specific heat of the tRNA molecule as the function of simulation
temperature. (D) The 2D-PMF as the function of the total number of contacts and the number of native contacts at T* = 0.22. (I1, I2, I3) Folding
intermediates, (N) native conformation. (E,F) Folding events in the trajectories of tRNA replica exchange simulation. Two folding events in
corresponding different replicas are observed out of eight replicas. (G–I) Internucleotide base-pairing contact frequencies at the threefolding
intermediate states, I1, I2, and I3, respectively. (J) Contact map of the native conformation (N) as observed in the experimental structure (NDB
code: 1EVV).
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thermodynamics (Gluick and Draper 1994). We compute
the temperature dependence of specific heat of wild-type
and mutant 72 RNA sequences from simulations (Fig. 5A).
The predicted specific heat curves show a single dominant
peak for each of the three 72 RNA sequences. We observe
a shoulder at the higher temperature regime of 72-14 RNA,
suggesting a convolution of multiple small transitions in 72-
14 RNA folding. Notably, in 72-14 RNA, the peak of specific
heat, corresponding to the experimentally measured melting

temperature Tm, is shifted to the higher temperature regime,
suggesting that the mutation AA44/CC, UU54/GG
stabilizes the RNA. The predicted changes of Tm for 72-14
RNA and 72-C RNA with respect to wild-type 72-RNA are
in agreement with the experimental measurements (Gluick
and Draper 1994).

B-RNA represents the highly conserved 59-nt fragment
(G1051-C1109) of E. coli 23S rRNA, serving as a recog-
nition site for two structurally different ligands: ribosomal

protein L11 and thiostrpton (a class of
thiazole-containing antibiotics) (Laing
and Draper 1994). Laing and Draper
(1994) have experimentally measured
the melting curves of B-RNA in 100
mM KCl, 0.1 mM MgCl2. For B-RNA,
we find that the specific heat profile has
a broader peak (T* = 0.22) than that of
72-RNA and its mutants (Fig. 5A). We
also observe that the magnitudes of
specific heat of B-RNA at different
temperatures are significantly smaller,
as compared with that of the 72 RNA
variants. The peak of specific heat for
B-RNA is shifted toward the low-tem-
perature regime, relative to 72-RNA,
suggesting that B-RNA has lower sta-
bility than 72-RNA (Fig. 5A). These
observations are consistent with calori-
metric experiments of Laing and
Draper (1994) and Gluick and Draper
(1994). Also, the predicted B-RNA
structure is in agreement with ex-
perimental observations (Fig. 5B). The
corresponding experimental structure
is taken from the 23S rRNA structure
(NDB code: 1C2W), which is recon-
structed from cryo-electron micros-
copy. We find that our predicted
structure with the lowest free energy
state agrees with the cryo-electron
microscopic structure with a backbone
RMSD of 6.2 Å.

There is also a broad shoulder in
the B-RNA specific heat at the low-
temperature regime. The flattened as
well as skewed melting curve suggests
a possible convolution of multiple fold-
ing transitions between intermediate
states as observed in experiments (Laing
and Draper 1994). The 2D-PMF of
B-RNA at T* = 0.22 shows twofolding
intermediates and one non-native state
(Fig. 5C–F). Internucleotide contact
frequencies in the near-native state are
in agreement with the folded RNA state

FIGURE 5. Thermodynamics of B-RNA and 72 RNA variants. (A) Specific heat: (circles) B-
RNA, (diamonds) 72-RNA, (squares) 72-C RNA, (triangles) 72-14 RNA (shown in DMD
units). (B) Superposition of experimental B-RNA structure (ribbon) against DMD prediction
(ribbon with backbone spheres). Backbone ribbons are colored blue (N terminus) to red (C
terminus). (C) 2D-PMF of B-RNA as the function of the number of total base pairs and native
base pairs. We find that there are three major basins in the 2D-PMF corresponding to
intermediate states I1, I2, and I3. (I4) Near-native intermediate conformation, (N) native con-
formation. (D) Internucleotide contact frequencies at the intermediate state with about zero
native contacts (i.e., non-native state I1). (E) Internucleotide contact frequencies at the B-RNA
folding intermediate state with about five native contacts, (non-native state I2). (F)
Internucleotide contact frequencies at the B-RNA folding intermediate state I3 with about
nine native contacts. (G) Internucleotide contact frequencies at the B-RNA folding interme-
diate state I4 at near-native conformation. (H) Contact map in the native state (N) observed in
the experimental structure (NDB code: 1C2W).
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(Fig. 5G,H). Such accord between the predicted folding
thermodynamics and experimental observations suggests
that this approach is suitable for probing thermodynamics
of RNA folding.

DISCUSSION

DMD-based RNA folding is rapid and potentially applica-
ble for a number of molecular biotechnology and molecular
biology-related applications. Rapid and accurate prediction
of RNA tertiary structure is the core of the RNA folding
problem. For small RNA molecules, ab initio predictions
developed in this work have yielded significantly accurate
structures. The available conformational space increases
exponentially with increasing length of the simulated RNA.
For example, we observed large structural flexibility for
longer RNAs in DMD simulations. The complexity of
adequately sampling conformational space through DMD
simulations also increases significantly for large RNA
molecules. We suggest that the hierarchical organization
of RNA secondary and tertiary structures may be exploited
to predict the structure of complex RNA molecules.
Additionally, experimentally derived constraints, such as
base pairs from SHAPE chemistry (Wilkinson et al. 2006),
proximity information from hydroxyl radical experiments,
and size measurements from small-angle X-ray scattering
(SAXS), can help the structure determination of large RNA
molecules. We can use biased interaction potential to guide
simulations and generate RNA structures consistent with
experimental measurements.

Two alternative scenarios for the time-course of RNA
folding are possible: (1) the sequential hierarchical folding,
where the secondary structure forms first, then tertiary
contacts finally shape a specific tertiary structure (Tinoco
and Bustamante 1999); and (2) the mutually dependent
interplay of RNA secondary and tertiary interactions, where
substantial rearrangement of folding intermediates succes-
sively takes place (Silverman et al. 1999). We posit that using
simplified models for folding RNA is apt for investigating
RNA folding mechanisms in de novo RNA fragments, as no
assumptions regarding the folding mechanisms are made
a priori. For the folding of the pseudoknot, the folding
intermediate I1 forms a weak non-native stem (contacts
between nucleotides 32 and 42; see Fig. 3E), while interme-
diate I2 does not have this but does have native stems (see
Fig. 3F). The correct folding requires the disruption of the
non-native stems. Similarly, the folding trajectories of tRNA
(Fig. 4E,F) suggest that the folding of the RNA always
accompanies the formation of non-native base pairs, with
the total number of base pairs larger than the number of
native base pairs. Therefore, our simulations suggest that
RNA folds in a non-hierarchical manner, with nonnative
conformations accumulated during the folding as observed
in experiments (Wilkinson et al. 2005; Figs. 3, 4).

RNA folding has been investigated experimentally using
single-molecule fluorescence spectroscopy (Zhuang 2005).
These experiments conclude that RNA folding proceeds via
a highly frustrated energy landscape, and adequate sam-
pling of the RNA conformational ensemble is necessary for
predicting RNA folding kinetics. The agreement of the
thermodynamics between simulation predictions and
experiments for B-RNA, 72-RNA, and its mutants encour-
ages the efficacy of this method to qualitatively study
folding thermodynamics of RNA molecules.

The coarse-graining process might alter the conforma-
tional entropy of molecules. To circumvent this coarse-
graining artifact, the entropic contribution of loop formation
is effectively modeled by estimating the loop free energies
in simulations. The predicted structures correspond to the
lowest free energy state, which is the result of an intricate
interplay between enthalpy and entropy. We compute the
effective loop free energies during simulations and intro-
duced a stochastic approach to evaluate the formation of
each base pair, corresponding to changes in loop lengths or
formation/disruption of loops (see Materials and Meth-
ods). We find that this procedure is crucial for the correct
prediction of the RNA structures: without taking the loop
entropy into account, the simulation maximizes the num-
ber of base pairs but does not penalize the formation of
additional loops, resulting in non-native RNA structures
(data not shown).

One of the salient features of our approach is the rapid
conformational sampling efficiency of DMD. We have
previously reported estimates of experimental time scales
accessible by DMD simulations (Ding and Dokholyan
2005). Typically, DMD simulations performed on a single
processor can span time scales of the order of microseconds.
Because of parallelization of replica exchange methodology,
much larger time scales are accessible with short simula-
tions. We perform the replica exchange method to rapidly
sample the conformational space available to RNA. Folding
simulation of a 36-nt-long RNA sequence for 2 3 106 DMD
time units took z5 h of wall-clock time utilizing eight
3.6-GHz Intel Xeon compute nodes, communicating over
MPI. Within the 2 3 106 time units of simulations, multiple
folding transition events were observed. Since the DMD
codes are highly optimized, we found that the computa-
tional time scales linearly with respect to the system size
(Supplemental Fig. 1). After completion of this work, Das
and Baker (2007) have reported the prediction of tertiary
structures of RNA molecules with lengths of z30 nt. This
approach utilizes assembly of short RNA fragments using
Monte Carlo sampling with a knowledge-based energy
function to predict putative RNA conformations. The
DMD-based RNA folding approach is able to predict folding
for longer RNA molecules having better agreement with the
corresponding native structures. Generating 50,000 frag-
ments with 45 sec per fragment would require 625 CPU-
hours of computation, as opposed to 33 CPU-hours for a

Ding et al.

1170 RNA, Vol. 14, No. 6

JOBNAME: RNA 14#6 2008 PAGE: 7 OUTPUT: Wednesday May 7 22:18:57 2008

csh/RNA/152282/rna8946



30-nt-long RNA. Our method is fully automated, since a
unique tertiary structure is predicted, corresponding to the
least free energy conformation. In addition, replica exchange
DMD simulations also offer probing the mechanistic fea-
tures, (e.g., folding kinetics and thermodynamics) of the
RNA folding process. Due to the computational efficiency of
the DMD-based RNA folding prediction, we are able to test
a larger set of RNA molecules than is accessible using the
fragment-based approach. Finally, the web-based DMD sim-
ulation tool iFold (http://ifold.dokhlab.org) (Sharma et al.
2006) may be extended for predicting the folded structure
and probing the folding dynamics of de novo RNAs.

MATERIALS AND METHODS

Discrete molecular dynamics

A detailed description of the DMD algorithm can be found else-
where (Dokholyan et al. 1998). Briefly, interatomic interactions in
DMD are governed by stepwise potential functions. Neighboring
interactions, such as bonds, bond angles, and dihedrals, are modeled
by infinitely high square well potentials. During a simulation, an
atom’s velocity remains constant until a potential step is encoun-
tered, where it changes instantaneously according to the conserva-
tions of energy, momentum, and angular momentum. Simulations
proceed as a series of such collisions with a rapid sorting algorithm
employed at each step to determine the following collision.

The simplified RNA model

We approximate the single-stranded RNA molecule as a ‘‘beads-
on-a-string’’ polymer, with each bead corresponding to either
sugar (S), phosphate (P), or nucleo-base (B) moieties, thus mak-
ing three beads for each nucleotide (Fig. 1). Beads P and S are
positioned at the center of mass of the corresponding phosphate
group and the five-atom ring sugar. For both purines (adenine
and guanine) and pyrimidines (uracil and cytosine), we represent
the base bead (B) as the center of the six-atom ring. The neigh-
boring beads, which are either inter- or intranucleotides, are
constrained to mimic the chain connectivity and the local chain
geometry (Fig. 1). The types of constraints include bonds (solid
lines), bond angles (dashed lines), and dihedrals (dot–dashed
lines). The parameters for the bonded interactions mimic the
folded RNA structure and are derived from a high-resolution
RNA structure database (Murray et al. 2003; Supplemental Table
2). The nonbonded interactions are crucial to model the folding
dynamics of RNA molecules. In our model, we include the base-
pairing (A–U, G–C, and U–G), base-stacking, short-range phos-
phate–phosphate repulsion, and hydrophobic interactions, which
are described below as well as in the parameterization procedure.

Base pairing

In the folding of RNA molecules, the complementary hydrogen
bonding interactions between nucleotides, base pairing, are the
key interactions. We use the ‘‘reaction’’ algorithm to model the
hydrogen-bonding interaction between specific nucleotide base
pairs. The details of the algorithm can be found in Ding et al.
(2003). Briefly, to mimic the orientation-dependent hydrogen-

bond interaction, we introduce auxiliary interaction beside the
distance-dependent interaction between donor and acceptor (Fig.
1). For example, once the two nucleotides (e.g., A–U, G–C, or U–
G, represented as Bi and Bj in Fig. 1) approach the interaction
range, we evaluate the distances between SiBj and SjBi, which
define the orientations between these two nucleotides. If the
distances satisfy the predetermined range, we allow the hydrogen
bond to be formed, and forbid its formation otherwise. The
parameters used for modeling base-pairing interactions are listed
in Supplemental Table S3.

Phosphate–phosphate repulsion

Phosphates are negatively charged and usually repel each other. To
account for the repulsion, we assign repulsion between phosphate
groups. Due to the strong screening effect of water and ions, we
use the Debye–Hückel model to account for the electrostatic
repulsion between phosphates. We discretize the continuous
potential with a step-wise function with a step of 1 Å and the
cutoff distance of 10 Å.

Hydrophobic interactions

Buried inside the double-helix, the bases are hydrophobic in
nature. We include a general attraction between all bases. Due to
the coarse-graining feature of our model, the assignment of
attraction between bases results in overpacking (e.g., the symmet-
rically attractive tends to form close packing). In order to avoid
this artifact, we introduce an effect energy term to penalize the
overpacking of bases: Eoverpack = dEQ(nc � nmax). Here, Q(x) is a
step function, which adapts the value of x if x is positive and zero;
otherwise, nc is number of contacts, and nmax is the maximum
number of contacts; dE is the repulsion coefficient. Using a cutoff
of 6.5 Å, we sample the available RNA structures from NDB and
find that nmax corresponds to 4.2.

Base stacking

A close examination of stacking interactions from available crystal
structures suggests the following salient features: (1) Stacking
interactions are usually short-ranged as in close packing; (2) each
base has a stacking valence of 2; i.e., a base does not make more
than two stacking interactions; (3) three consecutively stacked
bases align approximately linearly. We include the above features
into our model. We compute the distance distributions of stacked
bases from available RNA structures. We find that distribution
depends on the types (purine or pyrimidine), and we identify the
stacking cutoff distances: 4.65 Å between purines, 4.60 Å between
pyrimidines, and 3.80 Å between purine and pyrimidine. To
approximately model the linearity of the stacking interactions, we
penalize two bases, which form stacking interactions to the same
base, from coming closer than 6.5 Å. As a result, these three bases
effectively form an obtuse angle. Next, we discuss the energy
parameterization of the base-stacking interaction, base pair, and
hydrophobic interactions.

Parametrization of the hydrogen-bond, base-stacking,
and hydrophobic interactions

In order to determine the pairwise interaction parameters for the
stacking and hydrophobic interactions for all pairs of the bases, we
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decompose the sequence-dependent free energy parameters for
individual nearest-neighbor hydrogen-bond model (INN-HB)
(Mathews et al. 1999). We assume that the interaction of
neighboring base pairs in INN-HB is the sum of the hydrogen-
bond, base-stacking, and hydrophobic interactions. In a nearest
neighboring base-pair configuration (Fig. 1), Bi+1 and Bi (Bj-1 and
Bj) usually stack on top of each other. However, if both bases Bi+1

and Bj are purines, we find that they tend to stack instead. The
bases Bi and Bj-1 are usually farther than the cutoff distance of
6.5 Å. Therefore, we use the following equation to estimate the
pairwise interactions:

E
50 Bi Bi + 1 30

30 Bj Bj�1 50

� �
=

ðEHB
Bi Bj

+ EHB
Bi + 1Bj�1

Þ=2 + EStack
BjBi + 1

+ E
Hydrophobic
Bi Bi + 1

+ E
Hydrophobic
Bj Bj�1

;Bi + 1;Bj = purines

ðEHB
Bi Bj

+ EHB
Bi + 1Bj�1

Þ=2 + EStack
BiBi + 1

+ EStack
BjBj�1

+ E
Hydrophobic
Bi + 1Bj

; otherwise:

8<
: (1)

Here, EStack, EHB, and EHydrophobic are the interaction strengths of
stacking, base-pair, and hydrophobic interactions, respectively.
Given the experimentally tabulated energy between all possible
neighboring base pairs (Mathews et al. 1999), we are able to
determine the values of EStack, EHB, and EHydrophobic, which are
consistent with the experimental measurements using singular
value decomposition. The interaction parameters are listed in
Supplemental Tables 3 and 4.

Loop entropy

The loop entropy plays a pivotal role in RNA folding kinetics and
thermodynamics (Tinoco and Bustamante 1999). Hence, an RNA
folding prediction method should take the entropic effect into
account, either implicitly (in all-atom MD simulations [Sorin et al.
2004]) or explicitly (Monte Carlo or dynamic programming
methods [Rivas and Eddy 1999; Mathews 2006]). However, due
to the reduction of the degrees of freedom in our simplified RNA
model, the entropy is often underestimated in our DMD simu-
lations. For example, we often observe that the RNA molecule
forms long loops readily and is kept trapped in a nonnative
conformation for a long simulation time. To overcome such an
artifact due to the coarse-graining process, we develop a simple
approach in the DMD simulation to model the loop entropy
explicitly. We use the experimentally tabulated free energies for
different types of loops, including hairpin, bulge, and internal loops
(Mathews et al. 1999). The free energy of a loop depends on its size
and type (hairpin, bulge, or internal loops). We compute the
effective loop free energy in DMD simulations based on the set of
base pairs formed in simulations. Upon the formation or breaking
of each base pair, the total loop free energy changes. We estimate
the loop–free energy difference DGloop for each base pair formation
during the simulation and determine the probability to form such a
base pair by coupling to a Monte Carlo procedure using a
Metropolis algorithm with a probability, p = exp(�bDGloop). If it
is possible to form the base pair after the stochastic estimation, the
particular base pair will form only if the kinetics energy is enough to
overcome the possible potential difference before and after the base
pair formation. Upon breaking of a base pair, the stochastic
procedure is not invoked, since it is always entropically favorable
to break the base pair. The breaking of the base pair is only
governed by the conservation of momentum, energy, and angular
momentum before and after the base pair breakage.

Replica exchange DMD simulations

We use DMD (Dokholyan et al. 1998) simulations to investigate
the dynamics of RNA folding. Efficient exploration of the
potential energy landscape of molecular systems is the central
theme of most molecular modeling applications. Sampling effi-
ciency at a given temperature is governed by the ruggedness and
the slope toward the energy minimum in the landscape. Although
passage out of local minima is accelerated at higher temperatures,
the free energy landscape is altered due to larger entropic con-
tributions. To efficiently overcome energy barriers while main-
taining conformational sampling corresponding to a relevant free
energy surface, we utilize the replica exchange sampling scheme.
In replica exchange computing, multiple simulations or replicas of
the same system are performed in parallel at different temper-
atures. Individual simulations are coupled through Monte Carlo-
based exchanges of simulation temperatures between replicas at
periodic time intervals. Temperatures are exchanged between two
replicas, i and j, maintained at temperatures Ti and Tj and with
energies Ei and Ej according to the canonical Metropolis criterion
with the exchange probability p = 1 if D = (1/kBTi� 1/kBTj)(Ej� Ei)
# 0, and p = exp(�D), if D > 0. We perform the replica exchange
method to rapidly sample the conformational space available to
RNA. For simplicity, we use the set of eight temperatures in all the
replica exchange simulations: 0.200, 0.208, 0.214, 0.220, 0.225,
0.230, 0.235, and 0.240. The temperature is in the abstract unit of
kcal/(mol kB). Note that we approximate the pairwise potential
energy between the coarse-grained beads with the experimentally
determined free energy of nearest neighboring base pairs, instead
of the actual enthalpy. As a result, the temperature does not di-
rectly correspond to the physical temperatures. In DMD, constant
temperature simulation is achieved by the Andersen thermostat
(Andersen 1980). Folding simulation of a 36-nt-long RNA se-
quence (median size of RNA chains in the sample) for 2 3 106

DMD time units took z5 h of wall-clock time utilizing eight
3.6-GHz Intel Xeon compute nodes, communicating over the Mes-
sage Passing Interface library (http://www-unix.mcs.anl.gov/mpi).

Q-value of a putative RNA structure

We use the fraction of the total number of native base pairs, the
Q-value, as one criterion to evaluate the accuracy of a putative
RNA structure predicted from simulations. As used in protein
folding studies (Sali et al. 1994), the Q-value quantifies the extent
of native-likeness of a putative structure with respect to the native
structure. To compute the Q-value of a putative RNA structure,
the native structure or at least the native secondary structure must
be known. If a Q-value equals 1, the putative structure correctly
predicts the native base pairs and features all native secondary
structures. If the Q-value is close to zero, the corresponding
structure does not resemble the native state.

Weighted histogram analysis method

The weighted histogram analysis method (Kumar et al. 1992)
was used to analyze the thermodynamics of RNA folding. The
MMTSB toolset (Feig et al. 2004) was used to perform WHAM
on replica exchange trajectories. Since our simulations are started
from a fully extended conformation, we exclude the first 5 3 105

time units of the simulation trajectories and use the last 1.5 3 106
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time units of simulation trajectory for performing the WHAM
analysis.

SUPPLEMENTAL DATA

Supplemental material can be found at http://www.rnajournal.org.
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