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SUMMARY

The SCID-hu Thy/Liv mouse is a model for the analysis of human thymopoiesis. It has been 

constructed by engrafting fragments of human fetal liver and thymus into the immunodeficient 

C.B-17 scid/scid (SCID) mouse. The resulting ‘Thy/Liv’ organ promotes long-term differentiation 

of human T cells. Given the apparently normal physiology of the SCID-hu Thy/Liv organ, it has 

been used to explore the pathophysiologic mechanisms of HIV-1 infection in vivo, and to test 

therapeutic modalities such as anti-HIV-1 drugs and haematopoietic stem cell (HSC)-based gene 

therapy. In this review, I will summarise what we have learned from the SCID-hu Thy/Liv model, 

with a focus on recent findings in HIV-1 replication and therapy. Unique HIV-1 determinants have 

been identified which are required for replication in the Thy/Liv organ but not for replication in 

PBMC or in T cell lines in vitro. The mechanism of HIV-1 induced thymus depletion is not clear. 

It is correlated with high levels of HIV-1 replication. Both direct and indirect mechanisms may be 

involved. In addition to preclinical evaluation of anti-HIV-1 drugs, the SCID-hu Thy/Liv mouse 

has also been successfully used to test the feasibility of HSC-based gene therapy.

A number of improved SCID-hu models have been constructed to meet different requirements. 

Using these SCID-hu Thy/Liv models, current/future efforts will provide insightful information 

for understanding pathogenesis and designing therapeutic interventions against HIV-1 infection in 

humans, especially in paediatric patients.

INTRODUCTION

It has become increasingly clear that the pathophysiologic correlates leading to T cell 

depletion during HIV-1 disease may be clarified by direct evaluation of interactions between 

the virus and defined haematolymphoid organs.1,2 Though not well studied during HIV-1 

infection, the thymus has been implicated as a site of early viral replication3–8 and thymic 

organs from HIV-1 infected fetuses and paediatric patients show profound parenchymal 

damage and involution.5,6,9,10 More significantly, a strong correlation of HIV induced 

thymus dysfunction has been established with faster AIDS progression in paediatric 
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patients.11 In addition, early thymus destruction appears to be a common feature of other 

lentivirus diseases in FIV-infected cats12 and SIV-infected monkeys.13

In the thymus, where most T cells are derived, CD4 is present not only on mature 

(CD3+CD4+CD8−) T cells and macrophages, but also on less mature thymocytes 

(CD3−/low CD4+CD8+) and intrathymic progenitor (CD3−CD4+CD8−) cells.14,15 Since 

the thymus organ is difficult to study in human subjects, a small animal model (SCID-hu 

Thy/Liv mouse) for the analysis of human thymopoiesis has been constructed by engrafting 

fragments of human fetal liver and thymus into the immunodeficient C.B-17 scid/scid 

(SCID) mouse.16 The resulting ‘Thy/Liv’ organ promotes longterm differentiation of human 

T cells in a manner which appears physiologically normal.17,18 Thymocyte subpopulations 

are represented within the organ in expected proportions, a normal T cell receptor Vfl 

repertoire is displayed,19,20 and tolerance is induced towards both ‘self’ major 

histocompatibility antigens and exogenously provided superantigens.21,22

Given the apparently normal physiology of the SCID-hu Thy/Liv organ, we and others23–26 

have used this model to explore the pathophysiologic mechanisms of HIV-1 infection in 

vivo. In this review, I will summarise what we have learned from the SCID-hu Thy/Liv 

model, with a focus on recent findings in HIV-1 replication and therapy. A number of 

reviews of earlier reports have been published.27,28 A different humanised SCID model, hu-

PBL-SCID,29 which is transplanted with mature human PBMC, will not be covered here.

THE SCID-HU THY/LIV MOUSE AS A MODEL FOR PRIMARY HIV-1 

INFECTION AND PATHOGENESIS IN THE HUMAN THYMUS

In contrast to in vitro models of HIV-1 infection, the SCID-hu Thy/Liv mouse provides an 

intact human lymphoid organ for HIV-1 infection. Multiple cell types are present and, most 

importantly, most target cells are in their physiological resting stage. In addition, normal T 

cell development and maturation occur in the Thy/Liv organ over 12 months after 

transplantation.17,18

The organ system is permissive for infection with primary HIV-1 isolates.30 Both 

macrophages and T cells are infected in the Thy/Liv organ. Most T cell line-adapted HIV-1 

strains, however, failed to replicate efficiently.31 The infection proceeds in a dose- and time-

dependent manner and is suppressed by in vivo administration of nucleoside analogues such 

as zidovudine (AZT).32

In an attempt to analyse AZT resistant mutants arising during in vivo selection, multiple 

rounds of infection of the Thy/Liv organ in the presence of increasing concentrations of 

AZT have failed to generate AZT-resistant HIV-1 mutants (J. McCune and H. Kaneshima., 

personal communication). This is consistent with the finding that very few mutations have 

accumulated during the infection process.33 Thus HIV-1 replication in this model reflects a 

low level, primary infection in the absence of immune selection.

After intra-organ inoculation of the SCID-hu Thy/Liv with HIV-1 (Figure. 1), HIV-1 

replication reaches high levels followed by depletion of CD4+ thymocytes with an inversion 
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of the CD4/CD8 ratio.23,24,34 CD4+CD8+ thymocytes, which comprise 80–85% of total 

thymocytes, are significantly depleted about 1 week after HIV-1 reaches peak infection 

(Figure 2).24,35 In addition, a more accelerated pace of replication and thymocyte depletion 

is observed with rapidly replicating, syncytium-inducing (SI) virus isolated from AIDS 

patients than with slowly replicating, non-syncytium-inducing (NSI) virus isolated from the 

same patients before AIDS development, or from long term non-progressor patients.36,37 

Thus, the Thy/Liv organ provides a relevant in vivo model to evaluate primary HIV-1 

replication and pathogenicity.

ANALYSIS OF HIV-1 FACTORS UNIQUELY REQUIRED FOR REPLICATION 

IN THE THY/LIV ORGAN

Studies of HIV-1 accessory genes in the SCID-hu Thy/Liv model

As is observed in the SIV-infected rhesus macaque,38 replication and pathologic effects (e.g. 

thymocyte depletion) of HIV-1 (both NL4–3 and JRCSF) in the SCID-hu mouse are 

dependent upon an intact nef open reading frame39 Analysis of the other HIV-1 accessory 

genes such as vpr, vpu and vif has demonstrated that, unlike in tissue cultures, mutations in 

these genes significantly slowed down the replication and cytopathic effects of HIV-1-

NL4-3.40

A close correlation between the levels of HIV-1 replication and thymocyte depletion has 

been established (Table 1). Thus, NL4-3, JD, EW and primary SI isolates replicated to high 

levels in about 2–3 weeks post inoculation (wpi) and lead to early thymocyte depletion at 

about 3–4 wpi. JRCSF, NL4-3 mutants (nef-, vpu- or vif-) and primary NSI isolates 

replicated to peak levels in about 5–6 weeks and significant thymocyte depletion occurred at 

about 7–8 weeks post infection. In addition, high input HIV-1 accelerated both HIV-1 

replication and its associated thymocyte depletion.40 Therefore, prolonged presence of high 

viral replication is required to cause thymocyte depletion.

HIV-1 env determinants required for efficient replication in the Thy/Liv organ

Comparison of ‘attenuated’ HIV-1 isolates with ‘pathogenic’ ones in vitro and in vivo 

should help to identify important viral determinants for replication and pathogenesis in vivo. 

The Lai/IIIB isolate and its associated infectious molecular clones (e.g. HXB2) were found 

to infect T cell lines such as H9.41 When a laboratory worker was accidentally infected by 

Lai/IIIB, however, HIV-1 was isolated only from inoculation of primary PBMC, but not 

from T cell lines.42 The SCID-hu Thy/Liv model was used to study the replication of HXB2 

and of HXB2 recombinant viruses with HIV-1 fragments isolated from the infected 

laboratory worker.43 HXB2 showed no or very low levels of replication in the Thy/Liv 

organ. Replacement of its subgenomic fragment encoding the envelope gene with a 

corresponding fragment from the LW87-1 isolate generated a recombinant virus 

(HXB2/LW) which replicated actively in SCID-hu mice.

The specific env determinants have been mapped to the V1–V3 regions of the HIV-1 

genome. Six unique mutations in the V3 loop region have been identified which contribute 

to most of its increased replication in vivo. These changes affected target cell tropism and/or 
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overall infectivity of the virus. However, HXB2/LW showed no enhanced replication 

activity in PBMC. Thus, altered or expanded host cell range may contribute to its enhanced 

replication in the Thy/Liv organ.

The unique structural determinants in HIV-1 appear to be necessary for infectivity in vivo, 

but not in PBMC or in immortalised T cell lines. Interestingly, the relevant changes did not 

affect the nef gene, previously implicated for pathogenicity of SIV in rhesus macaques,38 or 

of HIV-1 in SCID-hu mice.39,40 The vpu and vpr genes, which have also been reported to 

affect HIV-1 replication in SCID-hu Thy/Liv mice,40 of HXB2/LW also remain defective. 

Thus, unique features of the V3 region of env that are necessary for infection of thymic 

target cells are revealed by phenotypic and molecular analyses of HIV-1 isolates in the 

SCID-hu Thy/Liv mouse.

A variation of the SCID-hu Thy/Liv model which transplants more human tissues has been 

developed.25 In this model, HIV-1 infection can be initiated by intraperitoneal inoculation.44 

However, the Lai/IIIB isolate appears to infect the Thy/Liv organ in this model and leads to 

thymus depletion. The difference may be due to its long duration (6 months) of infection 

and/or to activation of human thymocytes in this model by some unknown mechanisms.

MECHANISMS OF HIV-1 INDUCED THYMUS DEPLETION

HIV-1 replication in the Thy/Liv organ leads to thymocyte depletion with a preference for 

CD4+ thymocytes. As mentioned above, a close correlation exists between levels of HIV-1 

replication and thymocyte depletion (Table 1). Kinetic analysis indicated that thymocyte 

depletion occurs about 1–2 weeks after HIV-1 peak replication is achieved (Figure 2). This 

indicates that high levels of viral replication are required to lead to thymus depletion. Both 

viral encoded proteins and host factors may be involved. The SCID-hu Thy/Liv mouse has 

been used to address the following questions regarding HIV-1 induced thymus depletion.

How do thymocytes die in response to HIV-1 infection in the Thy/Liv organ?

Apoptosis has been associated with HIV-1 induced T cell death both in vitro and in 

vivo.45–49 It appears to be associated, at least partly, with HIV-1 induced thymocyte 

depletion in the Thy/Liv organ. Morphologically, some thymocytes with condensed nuclei 

are detected in HIV-1 infected Thy/Liv organs by thin section light microscopy and by 

electron microscopy.24 Biochemically, partial chromosomal loss (detected by propidium 

iodide staining)24 and DNA strand breaks (detected by terminal deoxynucleotide transferase 

labelling)35 are associated with HIV-1 induced thymocyte depletion, although the 

characteristic chromosomal DNA ladder associated with most forms of apoptosis is not 

consistently observed (Su, Bonyhadi, Kaneshima and McCune, unpublished observation). 

Experiments performed by a different research group using the Thy/Liv model have failed to 

demonstrate evidence of significant levels of apoptosis during HIV-1 induced thymocyte 

depletion. Necrosis appears to be the major mechanism of HIV-1 induced T cell death (J. 

Zack, personal communication). Differences in experimental procedures and in animal 

maintenance conditions may contribute to the discrepancy.
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Are all dead or dying thymocytes directly infected with HIV-1?

Regardless of how thymocytes die after HIV-1 infection, a very important question is 

whether direct infection is required for the thymocyte to die. The replication level of HIV-1 

in the Thy/Liv organ is relatively low. At peak times, about 10% thymocytes are infected as 

measured by PCR detection of proviral DNA.23,33–35,39,40,43 This is consistent with lack of 

significant mutation during infection33 and failure to generate AZT-resistant mutants 

(unpublished results), as discussed earlier. Using flow cytometric cell sorting coupled with a 

semi-quantitative PCR assay for detection of HIV-1 DNA, it was shown that most of the 

thymocytes within the HIV-1 infected Thy/Liv organ with induced DNA strand breaks in the 

chromosome were not infected with HIV-1. Thus, both cells with DNA strand breaks and 

without DNA strand breaks were infected at the same level (about 10% as measured by 

PCR). Therefore, HIV-1 replication may induce changes in the thymus to cause cell death 

(or chromosomal breakages) of uninfected, as well as infected, thymocytes.35 Likewise, it 

has been recently reported that most apoptotic cells are not productively infected in lymph 

nodes from HIV-1 infected human patients or from SIV infected monkeys.48

What contributes to the thymus depletion following HIV-1 infection?

Both direct and indirect mechanisms of cell death induction may be involved. The plateau 

and slight reduction of HIV-1 replication during thymus depletion may be interpreted as 

gradual depletion of direct HIV-1 target cells (Figure 2).24,35 Thus, HIV-1 infects and 

depletes the target cells and leads to lower levels of HIV-1 replication. Reduced replication 

may be achieved by a number of HIV-1 encoded factors with cytotoxic or cytostatic 

activities as demonstrated in T cells cultured in vitro. For example, vpr has been shown to 

lead to G2/S phase cell cycle arrest in infected target cells by a cytostatic mechanism.50 

Other HIV-1 proteins, such as tat, nef and gp120/gp41, have also demonstrated cytotoxic 

activity in various cell culture systems.51–54

Besides evidence discussed above of DNA strand breaks in uninfected cells, there is also 

evidence showing that, at least in some infected thymocytes, HIV-1 infection does not lead 

to their immediate destruction. For example, CD3+CD8+CD4− cells from HIV-1 infected 

Thy/Liv organs have been shown to carry HIV-1 proviral DNA 23,34 (Su, unpublished 

results). It has recently been shown that the HIV-1+ CD8 single positive cells are derived 

from HIV-1 infected CD4+ progenitors,55 possibly CD4+CD8+ and/or CD3−CD4+CD8− 

cells. Thus, HIV-1 infection of CD4+CD8+, CD3−CD4+CD8− or earlier progenitor cells 

does not necessarily lead to their immediate cytolysis.

Is thymocyte depletion due in part to destruction of intrathymic T progenitor cells?

Besides the CD4+CD8+ immature thymocytes, the intrathymic CD3−CD4+CD8− T 

progenitor cell subpopulation constitutes a target for HIV-1 infection in vivo. Some HIV-1 

isolates infect this population and deplete it; others infect it and do not lead to its immediate 

depletion.35 As illustrated in Figure 3, infection of progenitor cells by HIV-1 may lead to the 

following: (1) generation of a reservoir to transmit the HIV-1 genome to progeny cells; (2) 

destruction of a population that could provide progeny cells (reduction of progenitor cell 

pool); and (3) introduction of a maturational block upon normal thymocyte differentiation 
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processes. Induction of cell death, either by direct or indirect mechanisms, may occur 

through pathway a or pathway b (Figure 3).

In addition to production of viral proteins, HIV-1 infection also leads to cytokine 

dysregulation in humans.56 A large number of cytokines are produced in the thymus which 

play important roles in modulating T cell development. HIV-1 infection in the Thy/Liv 

organ leads to increased production of cytokines such as IL4, IL6, IL10. In addition, TNFa 

and TGFfl are also induced.57 The contribution of the increased levels of cytokines to 

thymocyte depletion is not clear and needs future attention. These viral and host ‘virulence 

factors’ may cause thymocyte depletion either directly or indirectly by enhancing HIV-1 

replication, as shown in pathway c (Figure 3).

The thymus microenvironment is essential for T cell development. Direct infection and 

destruction of thymic epithelium cells have been reported in the human thymus and in 

HIV-1 infected Thy/Liv organs.5,34 This may lead to blockage in T cell development and 

result in thymocyte death. Thus, HIV-1 infection of the Thy/Liv organ may cause 

destruction of the thymus microenvironment to induce thymocyte depletion (pathway d, 

Figure 3). It is not clear, however, whether the HIV-1 infected thymic stromal cells are still 

functional in supporting de novo human T cell development.

SCREENING ANTI-HIV-1 DRUGS IN THE SCID-HU MODEL

As mentioned above, the Thy/Liv model provides an in vivo system to study the human 

thymus organ in a normal, physiologically relevant state. In addition, the SCID-hu mouse 

also provides an animal model to test toxicity and bioavailability of therapeutic 

compounds.58 The SCID-hu Thy/Liv model has been used to evaluate anti-retroviral drugs 

since the beginning of its construction. AZT, either administered before or post exposure to 

HIV-1, appeared to inhibit HIV-1 replication in the model.32,59 In recent years, the Thy/Liv 

model has been used to evaluate and screen various compounds for their efficacy, toxicity 

and in vivo formulations.60,61 This includes AZT, didanosine, nevirapine and bicyclams 

(singly or in combinations). This will provide useful preclinical information in drug 

evaluation and clinical trials.

Novel peptide-based therapeutic agents can also be tested in this model. It has been reported 

that IL10, but not IL12, can inhibit HIV-1 replication in the SCID-hu Thy/Liv mouse.25

PRECLINICAL STUDIES OF HSC-BASED GENE THERAPY OR CELL 

THERAPY FOR AIDS

Gene delivery via the haematopoietic stem cell (HSC) offers an attractive means to 

introduce antiviral genes into both T cells and macrophages for AIDS gene therapy. HSC 

can be isolated from a number of tissue sources, including bone marrow and peripheral 

blood, and are used to reconstitute all haematopoietic lineages in transplant recipients.62,63 

Recently, haematopoietic progenitor cells have been efficiently transduced with murine 

leukaemia virus-based vectors.64,65 In addition, a retroviral vector encoding an anti-HIV-1 

ribozyme has been shown to inhibit HIV replication in macrophage-like cells derived from 
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the transduced stem/progenitor cells.65 Due to the difficulty of deriving human T cells from 

HSCs in vitro, it is difficult to demonstrate efficacy in the T lineage. The SCID-hu Thy/Liv 

model offers an ideal system to evaluate the potential of HSC-based gene therapy for AIDS.

The HIV-1 rev protein is critically required for the transport of unspliced HIV-1 mRNA into 

the cytoplasm and thus for the expression of HIV structural proteins.66 A trans-dominant 

mutant of HIV-1 rev, RevM10, has been shown to inhibit HIV-1 replication in PBMCs 

without affecting the growth and functions of the transduced cells.67,68 A clinical trial using 

retrovirally modified PBMCs, however, has demonstrated that RevM10 modified PBMC are 

short-lived in vivo. Thus, HSC-based gene therapy may be necessary to obtain long 

termanti-HIV-1 PBMCs in AIDS patients. It was unknown, however, whether the 

transduced gene will express at sufficient levels in T and myeloid cells and what effect (if 

any) RevM10 expression may have on the ability of transduced HSCs to differentiate into 

lymphoid or myeloid lineages.

To address these issues, experiments were performed to show that RevM10 could be 

efficiently transduced into cord blood derived HSC/progenitor cells, which develop into 

primary T cells69 or myeloid cells expressing the RevM10 gene in the SCID-hu Thy/Liv 

model or SCID-hu Bone model,70 respectively. After reconstitution of the Thy/Liv implants 

in SCID mice (SCID-hu Thy/Liv) with the transduced HSC/progenitor cells, normal 

thymocytes were derived and a significant number of donor derived thymocyte cells were 

found to express the RevM10 gene69 or a marker gene.71 It was further demonstrated that 

sufficient levels of RevM10 expression could be achieved to suppress HIV-1 replication in 

primary T cells derived from retrovirally transduced human HSCs69 Thus, the RevM10 gene 

did not appear to inhibit the differentiation of HSC/progenitor cells into T cells in the 

Thy/Liv organ. The level of retrovirus-mediated RevM10 expression in T cells derived from 

transduced HSCs was sufficient to suppress HIV-1 replication.

CONCLUSIONS

I have briefly summarised the most recent findings in HIV-1 infection and therapy using the 

SCID-hu Thy/Liv mouse. Its application to understanding HIV-1 infection, pathogenesis and 

therapy has proven that insighful information can be obtained about the HIV-1 disease 

process in vivo and about the feasibility of various therapeutic modalities. Further studies for 

assessing HIV-1 effects on the thymus environment, mechanisms of HIV-1 replication and 

associated thymocyte depletion, as well as tests of novel therapeutic agents and protocols are 

being explored by an increasing number of research groups. The preclinical studies of HSC-

based gene therapy in the SCID-hu mouse have helped to launch a Phase I/II clinical trial in 

HIV-1 infected patients (SyStemix, Inc., 1997).

A number of improved SCID-hu models have been constructed to meet different 

requirements. For example, human fetal liver, thymus, bone and spleen fragments have been 

co-transplanted into SCID mice to form a human joint organ with T cell, B cells, myeloid 

cells and red blood cells.72 This model will be useful to test HIV-1 pathogenesis and to 

study HSC differentiation into all lineages in the same organ. In addition, implanting human 

lung tissues intraperitoneally in the SCID-hu Thy/Liv mouse has created a model to study 
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HIV-1 infection of the lung (macrophages) and its transmission to the Thy/Liv organ.26 

Using current or improved SCID-hu Thy/Liv models, future efforts are directed to 

addressing the following outstanding questions.

1. What viral factors (virulence factors) are uniquely required for replication and/or 

pathogenicity in the Thy/Liv organ?

2. What host factors are involved in HIV-1 induced thymus depletion?

3. What are the distributions of co-receptors (CCR5 and fusin) in the Thy/Liv organ?

4. What target cells are infected in the Thy/Liv organ by different HIV-1 isolates?

5. How significant is HIV-1 induced indirect cell killing in the Thy/Liv model?

6. Can HIV-1 infected/depleted Thy/Liv organs still support de novo thymopoiesis 

from HSC/progenitor cells carrying an antiviral gene or in the presence of antiviral 

drugs?

7. Are the findings of studying SCID-hu Thy/Liv mice reflective of HIV-1 infection 

in humans (paediatric infection in particular)?

Answers to these questions will further prove the usefulness of the model and provide 

insightful information for understanding pathogenesis and designing therapeutic 

interventions against HIV-1 infection in humans, especially in paediatric patients.
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HSC haematopoietic stem cell

AZT zidovudine

wpi weeks post-inoculation

SI syncytium-inducing

NSI non-syncytium-inducing
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Figure 1. 
HIV-1 infection of the SCID-hu Thy/Liv mouse. Human fetal thymus and liver fragments 

transplanted under renal capsules in SCID mice support stable human thymopoiesis for over 

a year. HIV-1 inoculation and endpoint (1–6 wpi) analyses are illustrated.
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Figure 2. 
Kinetics of HIV-1 replication and pathogenesis in the Thy/Liv organ. (A) Production of viral 

p24 antigen after HIV-1 infection. Thymocyte-associated p24 antigen is measured and 

standardised as pg/106 cells). NL4–3 is a T-tropic HIV-1 clone. EW and JD are two primary 

patient isolates. No Thy/Liv organs infected by JD are analysed at 5 wpi. NC: Negative 

controls of mock infected Thy/Liv organs. (B) Depletion of CD4+CD8+ thymocytes after 

HIV-1 infection. SCID-hu mice are analysed by FACS staining of CD4 and CD8. 

%CD4+CD8+, which consist of 80%–85% of total thymocytes in normal human thymi and 

Thy/Liv organs, is a good measure of thymocyte depletion.
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Figure 3. 
A model for multiple target cells and pathogenic pathways of HIV-1 pathogenesis in the 

human thymus. HIV-1 infection may occur in many different types of cells in the thymus 

(both thymocytes and stromal cells). Infection and destruction of intrathymic T progenitor 

cells will block the supply of new thymocyte maturation, leading to thymus depletion 

(pathway a). Direct infection of CD4+ thymocytes may lead to their destruction (pathway b). 

In addition, virulence factors induced after HIV-1 infection may directly induce thymocyte 

death or indirectly by enhancing HIV-1 replication in the thymocytes (pathway c). 

Furthermore, destruction of thymic stromal cells following HIV-1 infection may contribute 

to thymocyte death induction (pathway d). HSC: haematopoietic stem cell. TN: Triple 

negative (CD3−CD4−CD8−) thymocytes.
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Figure 4. 
Preclinical studies of HSC-based gene therapy in the SCID-hu Thy/Liv model. Retroviral-

modified HSC/progenitors can be used to reconstitute the Thy/Liv organ which is irradiated 

to deplete resident thymocytes. Donor cells can be identified by mismatched HLA markers 

or by retroviral marking. Thymocytes from reconstituted Thy/Liv organs can be isolated and 

characterised in vitro to study gene expression, T cell function and resistance to HIV-1 

infection.
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Table 1

Correlation of HIV-1 replication and thymus depletion

HIV-1 isolates PBMC
a Thy/Live

replication
b

Thy/Liv

depletion
c

Clones

 NL4–3 +++ +++ +++

 NL4–vif − 
d +/− +/−

 NL4–vpr +++ ++ ++

 NL4–vpu +++ + +

 NL4–nef +++ +/− +/−

 JRCSF +++ ++ ++

 JRCSF-nef +++ +
NDS

e

 Lai/IIIB +++ − −

 HXB2 +++ − −

 HXB2/LW +++ +++ NDS

Primary isolates

 SM +++ +++ +++

 TY +++ +++ +++

 EW +++ +++ +++

 JD +++ +++ +++

 A–NSI + +/− +/−

 A–SI +++ +++ +++

 B–NSI + +/− +/−

 B–SI +++ +++ ++

 LTNP–NSI + +/− +/−

Data from the following reports are summarised. NL4–323,33,35,39,40,43 and its mutant derivatives,39,40 JRCSF23,24,33,34,39 and JRCSF–

nef,39 Lai/IIIB31 HXB2 and HXB2/LW.31,43 SM,24,34 TY24 EW24,35 JD35 A–NSI, SI and B–NSI, SI.36 LTNP (long-term non-progressor)–

NSI.37

a
Replication in PHA-activated PBMC as measured by p24 or RT production.

b
HIV-1 replication in the Thy/Liv organ measured by cell- associated p24 or by semi-quantitative DNA PCR analyses.

c
Thymocyte depletion after HIV-1 infection as analysed by FACS analysis.

d
NL4–vif mutant replicates in certain T cell lines.

e
No data shown.
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