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Abstract
Background stratified Poisson regression is an approach that has been used in the analysis of data
derived from a variety of epidemiologically important studies of radiation-exposed populations,
including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a
novel approach to fit Poisson regression models that adjust for a set of covariates through
background stratification while directly estimating the radiation-disease association of primary
interest. The approach makes use of an expression for the Poisson likelihood that treats the
coefficients for stratum-specific indicator variables as ‘nuisance’ variables and avoids the need to
explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as
well as other general relative rate models, are accommodated. This approach is illustrated using
data from the Life Span Study of Japanese atomic bomb survivors and data from a study of
underground uranium miners. The point estimate and confidence interval obtained from this
‘conditional’ regression approach are identical to the values obtained using unconditional Poisson
regression with model terms for each background stratum. Moreover, it is shown that the proposed
approach allows estimation of background stratified Poisson regression models of non-standard
form, such as models that parameterize latency effects, as well as regression models in which the
number of strata is large, thereby overcoming the limitations of previously available statistical
software for fitting background stratified Poisson regression models.
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Introduction
Background stratified Poisson regression is an approach that has been used in the analysis of
data derived from a variety of epidemiologically important studies of radiation-exposed
populations, including uranium miners, nuclear industry workers, and atomic bomb
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survivors, as well as in studies of populations exposed to non-radiological hazards (Preston
et al. 1987; Lubin et al. 1995, 2000; Cardis et al. 2005; Beane Freeman et al. 2009;
Muirhead et al. 2009). In such settings, investigators have judged that background
stratification offered a useful alternative to regression modeling as an approach to control for
confounding by a set of measured covariates. Stratification by two or more covariates results
in statistical adjustment for all product terms defined by the cross-classification of these
factors. The approach allows an investigator to focus attention on parametric modeling of
the exposure-disease association of primary interest, while obtaining covariate control via
stratification. Moreover, the use of background stratification may encourage an investigator
to avoid the use of a stepwise variable selection procedure that involves equivalence testing
or significance testing (Greenland 1989; Maldonado and Greenland 1993), to reduce the set
of covariates included in the final multivariable Poisson regression analysis and thereby
reduce the influence of model selection on estimated standard errors.

A background stratified regression model may involve a large number of strata; reliable
estimation of the coefficients and associated standard errors for the indicator variables
distinguishing different strata may pose computational difficulties. In the above cited
examples (Preston et al. 1987; Lubin et al. 1995, 2000; Cardis et al. 2005; Beane Freeman et
al. 2009; Muirhead et al. 2009), a specialized program called AMFIT, which is part of the
EPICURE software package, was used for fitting background stratified Poisson regression
models (Preston et al. 1993). The AMFIT program implements background stratification of
the regression model by the inclusion of multiplicative stratum-specific parameters and uses
a Gauss–Seidel algorithm in order to avoid matrix inversion when estimating the
coefficients for the indicator variables describing different strata. Standard errors are not
computed for stratum-specific parameter estimates, and the values for these stratum-specific
parameters are suppressed in the standard model output; however, the estimated standard
errors for the regression model parameters that are not suppressed are adjusted to account
for the estimation of the stratum-specific parameters.

In the present paper, we describe an alternative approach for fitting background stratified
Poisson regression models that may be implemented using standard statistical software. We
frame our approach in terms of fitting of general relative rate Poisson regression models that
encompass log-linear model forms as well as alternatives, such as the linear excess relative
rate model frequently used in radiation epidemiology. Rather than the standard Poisson
likelihood, we propose maximizing an alternative expression for the likelihood that avoids
estimation of the stratum-specific parameters by treating these as ‘nuisance’ terms,
sometimes termed the ‘conditional’ Poisson likelihood (Cummings et al. 2003a, b). The
‘conditional’ Poisson likelihood has been used in the context of matched cohort data
(Cummings et al. 2003a, b) and recurrent events, but to our knowledge, its use has not been
described previously for the analysis of grouped survival data with control for confounding
by background stratification. Unlike conditional maximum likelihood estimation in logistic
and Cox regression analyses, which is necessary to avoid bias that can arise when there are
small strata (Breslow and Day 1980), the ‘conditional’ Poisson analysis is not used here to
avoid bias arising from small strata, but rather because it offers a useful approach for fitting
background stratified Poisson regression models that avoid estimation of large numbers of
stratum-specific parameters. This approach could be employed in highly stratified analyses
so that the individuals contributing follow-up time and events in a stratum are tightly
matched on covariates; however, if the strata are too fine, some may lack cases (or person-
time), thus dropping the information from that stratum (Frome 1983; Pearl 2000).

The present approach allows investigators to overcome some limitations to the AMFIT
program for fitting background stratified Poisson regression models. One limitation of the
AMFIT program is that there are computational constraints to the number of strata that may
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be included in a model. Our approach avoids estimation of the stratum-specific parameters
and therefore has no such constraints; this may be an advantage in analyses in which
regression models are stratified on large numbers of multilevel study covariates, as in a
pooled analysis of cohort data (Lubin et al. 1995; Cardis et al. 2007). Another limitation of
the AMFIT program is the inability to easily fit models that parameterize latency functions
for protracted exposures (Langholz et al. 1999); the approach that is described here
facilitates fitting of a wide range of Poisson regression models. Conveniently, this approach
may be implemented using standard statistical software that provides the flexibility to
specify general models, compute likelihood contributions, and maximize the likelihood
function. SAS code is provided to illustrate the fitting of these models.

Materials and methods
Consider a cohort study in which incident events or cases have been ascertained over a
period of follow-up. An analytical data structure can be generated for the purposes of
Poisson regression analyses consisting of counts of person-time and events cross-classified
by levels of explanatory variables (Allison 1995; Singer and Willett 2003). Necessarily,
such a grouped data structure requires the categorization of any covariate that was originally
measured on a continuous scale. Table 1 provides an illustrative tabulation of person-time
and events cross-classified by levels of a binary explanatory variable of primary interest, Z,
and two binary covariates, A and B. For purposes of notation, let s index the strata defined
by the cross-classification of the covariates, A and B.

Exponential rate models are often used for Poisson regression analyses of grouped survival
data; an exponential rate model with binary indicator variables for the four levels of s, S1,
…,S4, and an explanatory variable Z can be expressed as λ(αs, β) = exp(α1S1 + α2S2 + α3S3 +
α4S4 + β1Z), where αs are the strata and β the exposure model parameters. Poisson regression
models typically are fitted by maximizing the unconditional likelihood. Let csz and Psz
denote the numbers of cases and the person-years observed at each level of the explanatory
variable, Z, in stratum s of the covariates. The contribution of the szth cell to the log
likelihood is

(1)

The likelihood from the piecewise exponential model with categorical covariates for event-
time data is formally the same as the likelihood treating the number of events in each cell as
independent Poisson random variables with mean values given by the exponential rate times
the person-time (Frome 1983; Breslow and Day 1987). Fitting an exponential rate Poisson
regression model to the data in Table 1 yields an adjusted estimate of the change in log rate
for a 1-unit increase in Z, as well as adjusted estimates of the log rate of outcome for each
level of A and B (Table 3).

Other model forms have been proposed, notably general relative rate models of the form

(2)

which encompasses the exponential rate model, ϕ(Z, β) = exp(βZ), as well as linear excess
relative rate models widely used in radiation epidemiology, ϕ(Z, β) = 1 + βZ, and mixture
models that combine features of linear and exponential functions (Thomas 1981).
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Background stratification in Poisson regression
Consider again the grouped data structure of person-time and events shown in Table 1.
Background stratification offers an approach to adjustment for the effects of a set of
covariates that define strata of the regression model. As in (2), we consider a model with
multiplicative stratum-specific parameters, αs, and a relative rate function, ϕ(Z, β). We
propose implementing a background stratified Poisson regression analysis by using another
Poisson likelihood yielding the same inferences regarding β, as we shall show. Under this
model, the contribution of the sth stratum of the data to the log likelihood is given by

(3)

where Rs is the set of unique exposure (z) values in stratum s and cs is the total number of
cases in the sth stratum. Note that the coefficients for the stratum-specific effects, αs, are not
part of the expression for the likelihood.

Given the equivalence of this expression for the Poisson likelihood and Breslow’s
approximation for the partial likelihood for tied events in Cox regression, log-linear Poisson
regression models are sometimes fitted using statistical procedures for Cox regression, for
example in the analysis of matched cohort data (Cummings et al. 2003a, b). Further, noting
that cs = Σz csz, the expression for the Poisson likelihood shown in (3) is formally equivalent
to a multinomial likelihood with probabilities Pszϕ(z; β)/Σz Pszϕ(z; β) allowing for other
software options for fitting.

To facilitate estimation, the typical analytical data structure for a Poisson regression analysis
can be transformed so that it includes one observation per stratum of the analysis (i.e., one
record representing all cases and person-years of observation in that stratum). Table 2
illustrates the transformation of the data structure shown in Table 1 to a data structure that
includes one observation per stratum of the analysis. Since the number of cases, and unique
covariate values, may vary from stratum to stratum, it is useful to summarize these values
within each stratum. A SAS program to implement this transformation and summarization of
a grouped data structure is provided as an electronic appendix.

Using the data structure in Table 2, a log-linear Poisson regression model with background
stratification on A and B may be fitted, obtaining a single estimated parameter and
associated 95% likelihood-based confidence interval (Table 3). This parameter corresponds
to the estimated log of the rate ratio for a 1-unit change in Z, adjusted for A and B. The point
estimate and confidence interval are identical to those values obtained via a standard Poisson
regression analysis that included the main effect for Z, and indicator terms for each stratum
defined by combinations of A and B. ‘Appendix 1’ provides sample code to fit these Poisson
regression models using the SAS statistical package (SAS Institute Inc., Cary, NC).

When using the AMFIT statistical program, the estimation of background stratified models
requires additional workspace to compute intermediate values. To obtain this workspace, the
program will adjust the internal workspace by reducing the number of new variables that can
be created. If there is not enough unused memory to handle the number of strata requested,
an error is generated and the strata command is ignored. Our proposed approach has no such
limitations on the number of strata, since these nuisance terms are conditioned out.

Maximizing the likelihood expressions shown in (1) and (3) consistently yields identical
point estimates and confidence intervals for the exposure variable (given complete
stratification by the confounding variables in each analysis). This can be shown quite
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succinctly. With the standard expression for the Poisson likelihood given in (1) and a
regression model as in (2), the log-likelihood contribution from stratum s is ls(αs, β) = csαs +
Σz∈Rs csz ln(Pszϕ(z, β)) − exp(αs)Σz∈Rs Pszϕ(z, β).

The associated score functions are U(αs) = cs − exp(αs) Σz∈RsPszϕ(z; β) and

.

Setting U(αs) = 0, as obtained at the maximum likelihood estimates for αs, implies that
exp(α̂s) = cs/Σz∈Rs Pszϕ(z; β). This expression may be plugged into the score functions for β

yielding , which are precisely the score equations
from the Poisson likelihood expression given in (3). Likelihood-based confidence intervals
from the likelihood expression in (1) (plugging in the α̂ into the log-likelihood) differ from
the log of the likelihood expression in (3) only by a constant, so that the likelihood-based
confidence intervals will be identical. In ‘Appendix 2’, it is shown that estimated standard
errors and Wald-type confidence intervals obtained from Poisson regression analyses
maximizing either (1) or (3) are also identical (given regression analysis with complete
stratification by the confounding variables).

The proposed approach is general enough to accommodate non-standard models, such as
those in which an explanatory variable in the regression model is itself a function of one or
more unknown parameters. One important example arises when modeling latency effects for
a protracted exposure (Langholz et al. 1999). The present approach permits fitting of these
types of background stratified Poisson regression models.

Results
Example one—Life Span Study of Japanese atomic bomb survivors

To illustrate the comparability of the proposed approach for estimation using the AMFIT
program for background stratified Poisson regression analysis, the data from a recent
analysis of the association between radiation dose and thyroid cancer incidence among
female Japanese atomic bomb survivors who were aged 20 years or older at the time of the
bombings in August, 1945, are used (Richardson 2009). The study included 241 thyroid
cancers ascertained during the period 1958–1998 among women in the LSS. The primary
exposure of interest was defined as weighted DS02 thyroid radiation dose, expressed in
weighted Gray (Gy). We fitted Poisson regression models of the form λ(c, a, e, l, h, d) =
eαi(1 + δd) where c, a, e, l, h, and d denote city, attained age, age-at-exposure, distal
location, Adult Health Study membership, and dose, respectively, and the baseline rate of
thyroid cancer was described by the stratum-specific parameters αi that index the strata
defined by the cross-classification of the covariates c, a, e, l, and h. Point estimates and 90%
likelihood-based confidence intervals obtained via the SAS statistical package were
compared with those obtained using the AMFIT module of the EPICURE software package.

The estimated association between radiation dose and thyroid cancer, with background
stratification on the cross-classification of strata defined by city, attained age, age at
exposure, distal location, and Adult Health Study membership was (β = 0.70, 90% CI: 0.20,
1.46). The point estimate and 90% confidence interval obtained from the background
stratified Poisson regression model fitted using the SAS statistical package were identical (to
the second decimal place) to the values obtained using the AMFIT program in the Epicure
software package with background stratification on these covariates.
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Example two—uranium miners data
To illustrate an extension of the proposed approach for background stratified Poisson
regression analysis to an analysis in which a time-varying weight function is used to
describe the modification of a cumulative dose–response association by time-since-
exposure, we use data from a study of underground uranium miners (Hornung and
Meinhardt 1987; Langholz et al. 1999). The Colorado Plateau cohort that we examined
includes 2,704 white men employed in underground uranium mining operations between 1
January 1950 and 31 December 1960. Vital status was ascertained through 31 December
1990. The outcome of interest, lung cancer mortality, was defined by underlying cause of
death; the study cohort includes 263 lung cancer deaths. The primary exposure of interest
was defined as cumulative radon exposure, expressed in working-level months, and was
computed for each worker as the product of the duration of employment in each job in a year
by the estimated radon exposure rate for that job. Person-time and lung cancer deaths were
cross-classified by categories of attained age (<50, 50 to <55, 55 to <60, 60 to <65, 65 to
<70, 70 to <75, 75 to <80, or ≥80 years), calendar period (defined in 5-year categories from
1950–1955 to 1985–1990), and cumulative exposure. As in Langholz et al. (1999),
cumulative exposure was partitioned into six exposure time-windows defined by the
intervals 0 to <5, 5 to <10, 10 to <15, 15 to <20, 20 to <30, and 30+ years since exposure;
within each window, exposure was categorized into five groups (<48, 48 to <154, 154 to
<392, 392+ WLM). First, we estimated the association between cumulative radon dose and
lung cancer mortality assuming a time-constant model, fitting a linear excess relative rate
Poisson regression model of the form ϕ = (1 + θz) with background stratification on all

covariates where z represents total cumulative exposure, , and x1–x6 represent the
time-window-specific exposures. Next, we fit a model that included six terms for the six
time-window-specific exposures, ϕ = (1 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6). Last, we
fitted a regression model that incorporated a bilinear latency function (i.e., a triangular
weighting function consisting of two attached lines) (Langholz et al. 1999), corresponding to

a regression model of the form: ,
where tj is the midpoint of each time-window, and I[‘logical function’] equals 1 if ‘logical
function’ is true else 0.

Fitting a background stratified linear excess relative rate model for lifetime cumulative
exposure (under a time-constant model) led to an estimated ERR/100 working-level months
of 0.32 (95% CI: 0.18, 0.60). Next, we estimated model coefficients for six exposure time-
windows; the estimated coefficients (0.11, 0.22, 0.44, 0.58, 0.34, and 0.15, respectively)
were positive for each time-window but were imprecise. Last, we fitted a background
stratified Poisson regression model that incorporated a bilinear latency function to describe
effect modification by time-since-exposure. The fitted bilinear function obtains a maximal
value 6.5 (SE = 3.72) years after exposure and then declines linearly to a null value 44.4 (SE
= 2.66) years after exposure; the estimated ERR/100 WLM at its maximal value was 0.62
(95% CI: 0.23, 1.51).

Discussion
In the present paper, it is shown that by using an expression for the Poisson likelihood that
treats the coefficients for stratum-specific indicator variables as ‘nuisance’ variables, an
investigator conditions out the effects of the set of covariates that define the stratifying
factors and obtains an adjusted estimate for the exposure effect of primary interest. The
point estimate and confidence interval obtained from this ‘conditional’ regression approach
are identical to the values obtained using unconditional Poisson regression with models
terms for each background stratum. Therefore, this approach yields unbiased estimates of
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association with proper confidence interval coverage. The proposed approach may be useful
in settings in which the number of strata is large, as might occur in pooled analyses of cohort
data (in which there are a large number of study sites). Under the approach, we propose
there are no limitations on the number of strata as we employ an expression for the Poisson
likelihood, sometimes termed the ‘conditional Poisson’ likelihood (Cummings et al. 2003a,
b), that avoids the need to estimate coefficients for the stratum-specific indicator variables.
Moreover, our proposed approach is general enough to facilitate fitting non-standard
models, such as flexible models for modification of exposure effects by time-since-
exposure.

Of course, background stratification is only one approach to covariate control in regression
analyses. Another approach is to develop a parsimonious regression model to estimate the
exposure-outcome association of primary interest while adjusting for a set of covariates
(Frome 1983; Frome and Checkoway 1985). A stepwise variable selection approach to
regression model development will often result in similar relative rate estimates to the values
obtained via a background stratified Poisson regression analysis. The use of a stratified
Poisson regression model may encourage an investigator to avoid use of a stepwise variable
selection procedure. Since a variable and all possible product terms are entered, or removed,
from a model, simultaneously, the background stratified Poisson regression approach is not
conducive to standard stepwise variable selection procedures. Rather, it tends to encourage
adjustment for a set of potential confounders selected based on considerations such as
background knowledge regarding causal relationships between study variables. This may be
fortuitous, as there is no evidence that use of stepwise variable selection procedures
necessarily leads to better results than those obtained by adjusting for all well-measured
confounders identified a priori (Greenland 2008; Weng et al. 2009).

We have previously shown how general relative rate regression models could be fitted using
standard statistical software (Richardson 2008; Langholz and Richardson 2010). The present
paper extends this for fitting models that accommodate background stratification of general
relative rate Poisson regression models using standard statistical software. This should
further facilitate the ability of investigators to replicate prior analyses that used specialized
software to fit such models, as well as permit investigators to fit alternative models. Poisson
regression methods offer a useful approach to adjustment for a set of model covariates in
cohort analyses. This paper should facilitate wider use of Poisson regression methods and
their application for background stratified analyses.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix 1
A standard log-linear unconditional Poisson regression model of the form λ(α, β) = exp(α1S1
+ α2S2 + α3S3 + α4S4 + β1Z) may be fitted to the data in Table 1 via the SAS statistical
package as follows:

proc nlp data= ;
parms a1-a4 b1 ;
profile a1-a4 b1/ alpha=0.05 forchi=chi;
lambda=exp(a1*S1 + a2*S2 + a3*S3 + a4*S4 + b1*Z) ;
LL=c*log(P*lambda) - (P*lambda) ;
max LL ; run;

The variables P and c denote counts of person-time and events, respectively, in the grouped
data structure. The ‘parms’ statement defines the parameters to be estimated, and the
‘profile’ statement requests associated 95% likelihood-based confidence intervals. The term
‘lambda’ specifies that the rate of disease conforms to an exponential function of the model
covariates. The ‘LL’ statement specifies the expression for the unconditional Poisson
likelihood, and the statement ‘max LL’ defines the function to be maximized.

A log-linear Poisson regression model may be fitted to the data structure in Table 2, with
background stratification on covariates A and B, via the SAS statistical package as follows:

proc nlp data= ;
parms b1 ;
profile b1 / alpha=0.05 forchi=chi;
array _cases{*} _cases1-_cases2;
array _pt{*} _pt1-_pt2;
array _z{*} _z1-_z2;
caseprod=1; sum=0; nc=_ncovals;
do i = 1 to nc;
phi = exp(b1*_z{i}) ;
caseprod = caseprod*phi**_cases{i} ;
sum = sum+phi*_pt{i} ;
end;
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LL= log(caseprod) - _totcases * log(sum) ;
max LL; run;

The analytical data structure has one record per stratum. The variables _ncovals and
_totcases denote the total number of exposure values, and total number of cases, in each
stratum. The arrays _cases, _pt, and _z index the values for the counts of events, person-
time, and levels of the exposure variable(s) of interest in each stratum of the analytical data
structure. The length of the arrays will depend upon the analytical data structure. The
variables caseprod and sum, which are the numerator and denominator, respectively, of the
expression for the conditional likelihood, are initialized at each new record in the analysis.
The term ‘phi’ defines the relative rate function of the regression model. In the example
above, the rate ratio function conforms to a standard log-linear model. The ‘parms’
statement defines the parameter(s) to be estimated, and the ‘profile’ statement requests
associated 95% profile likelihood confidence bounds. The ‘LL’ statement specifies the
expression for the log likelihood in this model, and the statement ‘max LL’ defines the
function to be maximized.

The SAS procedure PROC NLP is part of the SAS/OR statistical package. Some SAS users
may have access to the SAS/STAT package but not the SAS/OR package. Therefore, below,
we also provide sample code for fitting background stratified Poisson regression models via
the SAS PROC NLMIXED procedure which is part of the SAS/STAT package. SAS PROC
NLMIXED does not directly output profile likelihood confidence intervals for estimated
parameters but does report Wald-type confidence intervals.

proc nlmixed data= ;
parms b1=0;
array _cases{*} _cases1-_cases2;
array _pt{*} _pt1-_pt2;
array _z{*} _z1-_z2;
caseprod = 1; sum=0;
do i = 1 to _ncovals;
phi= exp(b1*_z{i});
caseprod = caseprod*phi**_cases{i};
sum = sum+phi*_pt{i};
end;
LL= log(caseprod) - _totcases * log(sum) ;
model _totcases ~ general(LL); 
run;

This approach accommodates a variety of functional forms for the relative rate function, φ.
For example, a linear excess relative rate model of the form φ = (1 + βz) would be fitted by
replacing the statement “phi= exp (b1*_z{i});” with the statement “phi= (1+b1*_z{i});”.

Appendix 2
With the model as in (2), the unconditional log-likelihood contribution from stratum s is
Ls(αs, β) = csαs + Σz∈Rs csz ln(Pszϕ(z, β)) − exp(αs) Σz∈Rs Pszϕ(z, β). The observed
information at α̂, I(α̂, β) is given by
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The variance estimate for β ̂ is the corner of the inverse of the observed information
(evaluated at α̂, β ̂) which may be obtained using the well-known matrix formula

Since Iα,α is a diagonal matrix, it is easy to compute that

This expression is the same as the second derivative of the ‘conditional’ Poisson log-
likelihood; consequently, estimated standard errors and associated Wald-type confidence
intervals will be the same. For simplicity, we derive the expression for a single parameter β.
The expressions apply to column vector β where the derivatives are as in standard vector
calculus and squared terms are replaced by outer products, i.e., replace a2 by aat where at is
the transpose of a.
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Table 2

Transformation of the data shown in Table 1 into a data structure, representing the numbers of cases and
person-years at risk at each unique value of the explanatory variable, Z, within strata defined by covariates A
and B

Stratum, s cs0 Ps0 cs1 Ps1

1 21 1,325 32 2,362

2 13 353 21 1,322

3 10 226 2 1,141

4 11 111 4 1,042
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Table 3

Estimated parameters, associated standard errors, and 95% likelihood-based confidence intervals (CI) obtained
by fitting an unconditional Poisson regression model to the data in Table 1 and by fitting a conditional Poisson
regression model (with background stratification on covariates A and B) to the data shown in Table 2

Parameter Unconditional Conditional

Estimate 95% CI Estimate 95% CI

α1 −3.706 −4.027, −3.412 – –

α2 −3.181 −3.601, −2.800 – –

α3 −3.958 −4.627, −3.385 – –

α4 −3.462 −4.085, −2.910 – –

β1 −1.043 −1.425, −0.659 −1.043 −1.425, −0.659
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