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Abstract

Rationale—The neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP, 

allopregnanolone) has effects on reward-related behaviors in mice and rats that suggest that it may 

activate brain reward circuits. Intracranial self-stimulation (ICSS) is an operant behavioral 

technique that detects changes in the sensitivity of brain reward circuitry following drug 

administration.

Objective—to examine the effects of the neuroactive steroid allopregnanolone on ICSS and to 

compare these effects to those of cocaine.

Methods—Male C57BL/6J mice implanted with stimulating electrodes implanted into the medial 

forebrain bundle responded for reinforcement by electrical stimulation (brain stimulation reward, 

BSR). Mice received cocaine (n=11, 3.0 – 30.0 mg/kg, i.p.) or the neuroactive steroid 

allopregnanolone (n=11, 3.0 – 17.0 mg/kg, i.p.). BSR thresholds (θ0) and maximum operant 

response rates (MAX) after drug treatments were compared to those after vehicle injections.

Results—Cocaine and allopregnanolone dose dependently lowered BSR thresholds relative to 

vehicle injections. Cocaine was maximally effective (80 % reduction) in the second 15 minutes 

following the 30 mg/kg dose, while allopregnanolone was maximally effective (30% reduction) 

15-45 minutes after the 17 mg/kg dose. Neither drug had significant effects on MAX response 

rates.

Conclusions—The effects of allopregnanolone on BSR thresholds are consistent with the 

previously reported effects of benzodiazepines and alcohol suggesting that positive modulation of 

GABAA receptors can facilitate reward-related behaviors in C57BL/6J mice.
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Introduction

Since its discovery as a potent allosteric modulator of GABAA receptors, the endogenous 

neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone has 

been shown to affect a wide array of behaviors in species as diverse as salamanders and 

human beings. Roles for endogenously synthesized allopregnanolone have been proposed in 

reproductive and aggressive behaviors, learning and memory, mood and anxiety, and drug 

use and withdrawal, while dysregulation of allopregnanolone has been associated with 

psychiatric conditions such as pre-menstrual dysphoria, depression, and schizophrenia 

(Brinton 2013; Marx et al. 2006; Rasmusson et al. 2006; Rupprecht et al. 2010). Though the 

effects of allopregnanolone likely involve potentiation or direct activation of GABAA 

receptors (see (Morrow 2007) for review), which are associated with GABA mediated Cl- 

influx and cellular inhibition, allopregnanolone alters many behaviors in ways that are 

similar to those of drugs that enhance the mesolimbic dopamine (DA) system. 

Allopregnanolone can stimulate locomotor activity in mice (Finn et al. 1997b; Palmer et al. 

2002), enhance sexual receptivity and motivation in female rats and hamsters (Frye et al. 

1998; Frye and DeBold 1993), facilitate responding for different reinforcers in both mice 

and rats (Fish et al. 2002; Janak et al. 1998; Sinnott et al. 2002b), increase or decrease 

mouse aggressive behavior in particular testing conditions (Fish et al. 2001; Pinna et al. 

2003), and induce conditioned place preference in mice (Finn et al. 1997a). Certain drugs of 

abuse, including alcohol, can elevate allopregnanolone levels in the brain as well as the 

bloodstream, effects that are most consistently observed in rats (Concas et al. 2000; Cook et 

al. 2014a; Grobin et al. 2005; Morrow et al. 1999; Quinones-Jenab et al. 2008) and 

allopregnanolone appears to contribute some of the behavioral effects of alcohol (VanDoren 

et al. 2000). Interestingly, intracerebroventricular (icv) allopregnanolone administration 

biphasically alters extracellular DA levels in the mesocorticolimbic circuitry (Rouge-Pont et 

al. 2002) and allopregnanolone is thought to be the mechanism through which progesterone 

sensitizes DA elevations induced by alcohol (Dazzi et al. 2002).

A common effect of drugs that directly and/or indirectly enhance dopaminergic 

neurotransmission is to increase operant intracranial self-stimulation (ICSS). ICSS measures 

the responding of an animal for reinforcement by direct electrical stimulation of brain 

reward circuitry. Stimulation of the medial forebrain bundle, which contains ascending 

dopaminergic projections from the ventral tegmental area, as well as descending 

glutamatergic and GABAergic projections from the cortex and nucleus accumbens (NAc), 

elicits robust and reproducible brain stimulation reward (BSR). Drugs of abuse with widely 

differing pharmacological mechanisms of action all potentiate BSR (Kornetsky and Bain 

1992). An essential role for DA in BSR is supported by pharmacological studies 

administering indirect agonists, specific DA receptor agonists and antagonists, as well as in 

vivo measures of extracellular DA levels (Carlezon and Chartoff 2007; Wise 1996). 
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However, the full expression of ICSS requires not only DA, but also the integrated functions 

of glutamate and GABA (Cheer et al. 2005) as well as cholinergic actions in the VTA (Wise 

2002). While the glutamatergic (Herberg and Rose 1990; Todtenkopf et al. 2006; You et al. 

2001) and cholinergic, especially in regard to nicotine (Huston-Lyons and Kornetsky 1992; 

Kenny and Markou 2006; Singh et al. 1997), contribution to ICSS has been well 

characterized, the role of GABA in ICSS has been studied less frequently. Pharmacological 

studies have demonstrated a potentiation of ICSS by benzodiazepines (Caudarella et al. 

1982; Reynolds et al. 2012; Straub et al. 2010) and alcohol (Fish et al. 2010; Robinson et al. 

2013) consistent with abuse of these substances by humans. However, the role of GABA in 

reward processing is complex and other studies have shown that direct GABA agonists 

depress ICSS (Hayes et al. 2011; Willick and Kokkinidis 1995). Given that 

allopregnanolone can alter extracellular DA levels in mesocorticolimbic regions and 

produces behavioral and neurophysiological effects that are similar to benzodiazepines and 

alcohol, we hypothesized that allopregnanolone could also potentiate ICSS. The present 

study examined the effects of allopregnanolone on ICSS in male mice and compared these 

effects to those of the pharmacological reference compound cocaine.

Methods

Mice

The cocaine and allopregnanolone dose-response experiments were conducted in separate 

groups of experimentally naïve male C57BL/6J mice (Jackson Laboratories, Bar Harbor, 

ME; n=11 for each group). The effects of allopregnanolone were further replicated in an 

additional replicate of mice with a different experimental history. This replicate consisted of 

11 male C57 mice with a humanized mutation of the mu opioid receptor (h/mOPRM1 

118AA (n=5) or 118GG (n=6), (Ramchandani et al. 2011) that had previously been treated 

with the mu opioid receptor agonist fentanyl and the kappa opioid receptor agonist U69,593 

(n=8) or the opioid receptor agonist morphine and cocaine (n=3) (Robinson et al. in prep). 

When the mice were at least 60 days old, monopolar stainless steel electrodes (0.28 mm 

diameter, Plastics One, Roanoke, VA) were stereotaxically implanted to the right medial 

forebrain bundle at the level of the lateral hypothalamus (LH) (AP: −1.2; ML −1.0; DV −5.2 

from the skull,) under anesthesia with ketamine (120 mg/kg) and xylazine (9 mg/kg) (Sigma, 

St. Louis MO). The electrode connected to a stainless steel electrical ground screw and was 

mounted to the skull with dental cement. Following implantation, the mice were housed 

individually in polycarbonate cages (28 × 17 × 14 cm) that were lined with cob bedding that 

was changed weekly and covered with stainless steel wire lids. Mice had free access to food 

(TestDiet) and tap water and were between. The vivarium was 21±1°C, 30-40% humidity, 

and on 12-h dark/light cycle (lights off at 8:00 AM). All procedures were performed during 

the dark phase and were approved by the Institutional Animal Care and Use Committee 

(IACUC) of the University of North Carolina and conducted according to the Guide for the 

Care and Use of Laboratory Animals (NIH publication No. 85-23, revised 2011).

Apparatus and Procedures

Testing occurred in sound attenuated operant conditioning chambers as previously described 

(Fish et al. 2010; Malanga et al. 2008; Robinson et al. 2011). Computers running control 
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software (MED-PC for Windows, version 4.1; Med Associates; St. Albans, VT) recorded 

wheel spin responses (1/4 turn), activated house lights, and issued stimulation to the 

electrodes through a swivel commutator and insulated wire (Plastics One, Roanoke, VA). 

Each response was reinforced by a brief (500 ms) unipolar cathodal square-wave current at a 

frequency of 158 Hz (pulse width = 100 μs) accompanied by illumination of the house light 

(500 ms). Responses during the stimulation period were recorded but did not earn additional 

stimulation. Current intensity was adjusted for each individual mouse and held constant 

throughout the experiment to maintain at least 40 responses/min (−40 to −150 μA). Rate-

frequency curves were generated as the mice responded for a series of decreasing 

(0.05log10) stimulation frequencies. Stimulation at each frequency was available ad libitum 

for 50 s initiated by a 10-s phase during which 5 non-contingent (“priming”) stimulations 

were presented. During conditioning, each series of 15 frequencies was presented four times 

(60-min session) and the range of frequencies (therefore, total charge delivered) was 

adjusted so that the mice only responded during the 3-5 highest frequencies and did not 

respond during the remaining 12-10 lowest frequencies. When BSR thresholds varied less 

than 10% on three consecutive days, the mice were habituated to injections and drug testing 

phases began. The mice were approximately 90 days old at the start of drug testing. 

Following a 45-min pre-injection baseline (i.e. three series of 15 descending frequencies), 

the mice were removed from the chamber, injected with either cocaine (saline, 3, 10 and 30 

mg/kg, i.p.) or allopregnanolone (BCD vehicle, 3, 5.6, 10, and 17 mg/kg, i.p.) and returned 

immediately to the operant chambers for 60 minutes during which four series of 15 

descending stimulation frequencies were presented. Each drug dose was administered in a 

random order and separated by at least 48 hours.

Drugs

Cocaine hydrochloride (Sigma, St. Louis, MO) was dissolved in 0.9% saline and 

allopregnanolone [(3α,5α)-3-hydroxy-pregnan-20-one, purchased from Robert H. Purdy] 

was suspended with sonication in a 20% (w/v) hydroxypropyl-β-cyclodextrin (Acros 

Organics, Fairlawn, NJ) solution. For cocaine, doses were calculated as the free base. All 

drugs were injected intraperitoneally in a volume of 1ml/100 g body weight.

Histology

At the end of the ICSS experiment, the mice were deeply anesthetized with sodium 

pentobarbital (120 mg/kg) and intracardially perfused with 0.9% saline followed by 4% 

paraformaldehyde in 0.1M PBS. The brains were removed and sectioned (50 μm) on a 

sliding microtome and stained with cresyl violet for Nissl to determine the location of the 

most ventral electrode tip placements under low-powered (4-x) light microscopy (Figure 1).

Data Analysis

Customized software analyzed each rate frequency curve to determine the maximum 

response rate (MAX) and to derive, from least squares regression, the EF50 (the frequency 

that maintained 50% of maximum responding) and the BSR threshold θ0 (the x-intercept, or 

minimum frequency that maintained ICSS responding). For each mouse, data following drug 

or vehicle injections were then normalized to a percent of that individual's vehicle baseline. 
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All data were analyzed using a one-way repeated measures analysis of variance (ANOVA) 

with cocaine or allopregnanolone dose as the within subjects factor. Significant F-tests were 

further analyzed using Bonferroni corrected post-hoc tests to determine doses that were 

significantly different from the vehicle control at the p<0.05 level.

Results

The ventral most electrode placements are shown in Figure 1 throughout the right medial 

forebrain bundle in the lateral hypothalamus. There was a similar distribution of electrode 

placements and similar pre-injection baseline responding for the mice treated with cocaine 

and the mice treated with allopregnanolone; BSR thresholds, EF50s and MAX response 

rates were 2.3±0.2 Coulombs 10−7, 3.2±0.25 Coulombs 10−7, and 143±8.8 responses/50s for 

the cocaine treated mice and 3.2±0.4 Coulombs 10−7, 4.3±0.39 Coulombs 10−7, and 133±7.4 

responses/50s for the allopregnanolone treated mice.

Cocaine

Cocaine dose dependently lowered BSR threshold in each 15-minute time period after 

injection (Figure2A. F3,43= 27.9; 48.9; 33.2; and 8.2 for the first, second, third, and fourth 

15 minutes; all p's <0.001). Cocaine also lowered the EF50 (Table 1. F3,43= 9.9, 36.3, 19.4, 

and 6.5 for the first, second, third, and fourth 15 minutes; all p's <0.001). Post-hoc 

comparisons versus the saline control revealed that the 3 mg/kg dose lowered the EF50 by 

18±3.8% in the first 15 minutes, that the 10 mg/kg dose significantly lowered BSR threshold 

by 50±7.2% and 11±3.9% in the first and second 15 minutes and lowered the EF50 by 

30±4.1% and 20±2.6% in the first and second 15 minutes, and that the 30 mg/kg dose 

significantly lowered BSR threshold by 75±5.3%, 85±2.6%, 72±6.0, and 48±7.6 in the first, 

second, third, and fourth 15-minute time period. The 30 mg/kg dose also lowered the EF50 

by 37±6.6%, 50±3.8%, 46±4.3%, and 32±6.3% in the first, second, third, and fourth 15-

minute time period.in each 15-minute period. No dose of cocaine significantly affected 

MAX response rates as compared to the saline control (Figure 2B).

Allopregnanolone

Allopregnanolone dose-dependently lowered BSR threshold and the EF50 in the second 

(F4,54=4.1; p=0.01, Figure 3A; F4,54=3.3; p=0.02, Table 1) and third (F4,54=3.0; p=0.03, 

Figure 3A; F4,54=3.9; p=0.01, Table 1) 15-minute time periods. Relative to the vehicle 

injection, the 17 mg/kg dose lowered BSR threshold and the EF50 by 33±9.0% and 

15±3.4%, respectively, in the second 15-minute time period. In the third 15-minute time 

period, the 17 mg/kg dose lowered BSR threshold and the EF50 by 23±5.6 and 18±5.1%, 

respectively. There were no significant effects of allopregnanolone on BSR threshold or the 

EF50 in the first or fourth 15-minute time period. There were no significant effects of 

allopregnanolone on MAX response rates in any of the 15-minute time periods.

Similar effects of allopregnanolone were achieved when the allopregnanolone was further 

tested in an additional replicate of mice (Table 2). In this second replicate, the 10 mg/kg 

dose significantly lowered BSR threshold in the second 15-minute time period and the EF50 

in the third 15-minute time period. The 17 mg/kg dose significantly lowered BSR threshold 
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in the third 15-minute time period. There were not significant effects of allopregnanolone on 

MAX response rates.

Discussion

These experiments compared the effects of different doses of the neuroactive steroid 

allopregnanolone on ICSS, a behavioral measure of the sensitivity to rewarding brain 

stimulation. The psychomotor stimulant cocaine was also tested as a pharmacological 

reference. Allopregnanolone, like cocaine, dose-dependently potentiated ICSS in male C57 

mice by lowering the amount of stimulation that was necessary to maintain ICSS 

responding, as measured by both the EF50 and the θ0, two indices of the self-stimulation 

threshold. These effects were significant for the 17 mg/kg dose between 16 and 45 minutes 

after allopregnanolone injection. A possible effect of allopregnanolone on operant motor 

behavior was not evident as there were no significant increases in maximum (MAX) 

response rate after any allopregnanolone dose. Overall, these results are consistent with 

previous findings that other GABAA receptor positive allosteric modulators, such as 

benzodiazepines and alcohol can potentiate BSR (Fish et al. 2010; Reynolds et al. 2012; 

Straub et al. 2010).

Allopregnanolone was tested in two separate replicates of mice, one which had a prior drug 

history and one that was experimentally naïve. Two important features of ICSS are that BSR 

thresholds remain stable over time (Carlezon and Chartoff 2007; Riday et al. 2012b) and the 

sensitivity to pharmacological manipulation does not change after prior experience with 

psychostimulants or opioids (Esposito and Kornetsky 1977; Frank et al. 1988; Riday et al. 

2012b). The dose-dependent effects of allopregnanolone on ICSS were qualitatively similar 

in each of the replicates, supporting the validity of testing different pharmacological classes 

of drugs in the same individuals (Fish et al. 2013; Malanga et al. 2008; Riday et al. 2012a) 

and strengthening the conclusion that allopregnanolone potentiates BSR in C57BL/6J mice. 

Whether repeated allopregnanolone treatment induces tolerance and/or sensitization to its 

effects on BSR is a question for further study. Additionally, there are species and strain 

differences in response to allopregnanolone and it is not known how these results would 

generalize to rats or to different mouse strains (Finn et al. 1997b; Porcu et al. 2010) (see 

Porcu et al., this issue)

The largest effects of allopregnanolone on ICSS in C57BL/6J mice occurred after the 10 and 

17 mg/kg doses, a dose range that is consistent with other behavioral effects of 

allopregnanolone, such as locomotor stimulation (Finn et al. 1997b; Palmer et al. 2002), 

escalated aggression (Fish et al. 2001), reduction of anxiety-like behaviors (Bitran et al. 

1991; Brot et al. 1997; Fish et al. 2000) and alcohol consumption (Ford et al. 2005). The 17 

mg/kg dose allopregnanolone significantly lowered self-stimulation thresholds by about 

30%. This degree of reduction was of a similar magnitude to the effects observed 

immediately after 3 mg/kg cocaine and was modest compared to the maximal effects of the 

30 mg/kg dose of cocaine. Moderate reductions in BSR thresholds have been reported for 

the benzodiazepines diazepam (Reynolds et al. 2012) and midazolam (Engin et al. 2014) as 

well as for alcohol (Fish et al. 2010), indicating that GABAA receptor positive modulators 

can potentiate BSR, although not to the same degree as psychostimulants. The time course 
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for allopregnanolone followed previously reported brain levels of allopregnanolone after 

systemic administration which peak within 10 minutes and are metabolized rapidly into 

forms that do not affect GABAA receptors (Mellon et al. 2008; Purdy et al. 1990). An 

alternative to allopregnanolone treatment is the synthetic neurosteroid ganaxolone, which 

has a longer half-life (Carter et al. 1997) and may be useful for the treatment of epilepsy 

(Reddy 2010). Future measurements of the effects of ganaxolone on ICSS may uncover 

influences on brain reward that could be related to its effects on alcohol intake in rodents 

(Besheer et al. 2010; Ramaker et al. 2012) and have implications for its clinical use.

The potentiation of BSR is consistent with the findings that lower doses of allopregnanolone 

and ganaxolone can facilitate some other operant behaviors, including fixed interval 

responding for the opportunity for aggression (Fish et al. 2002), fixed ratio responding for 

alcohol administration (Besheer et al. 2010; Janak et al. 1998; Ramaker et al. 2012) and the 

reinstatement of extinguished responding for alcohol (Finn et al. 2008). Some evidence also 

suggests allopregnanolone has reinforcing effects of its own as mice will orally self-

administer allopregnanolone (Sinnott et al. 2002a) and develop a conditioned place 

preference (Finn et al. 1997a), but see Beauchamp (2000). The current results are not 

interpreted to reflect a direct reinforcing effect of allopregnanolone. Instead, 

allopregnanolone, like many drugs that are self-administered, enhances sensitivity to BSR. 

This enhanced sensitivity combined with the above mentioned increased responding for 

certain reinforcers suggests that one of the effects of allopregnanolone may be an overall 

increase in the salience of positive reinforcement. In contrast to this hypothesis are the 

findings that allopregnanolone, especially at higher doses, inhibits responding in rats 

reinforced by cocaine or food administration (Anker and Carroll 2010; Schmoutz et al. 

2014) as well as the reinstatement of extinguished responding for cocaine (Anker et al. 

2009; Schmoutz et al. 2014). Allopregnanolone can attenuate cocaine-induced seizures 

(Kaminski et al. 2003) and high doses of other neuroactive steroids can decrease the 

sensitivity to the discriminative stimulus effects of cocaine (Quinton et al. 2006) and alter 

cocaine-induced conditioned placed preference (Romieu et al. 2003). The findings of these 

studies indicate that allopregnanolone influences several effects of cocaine and that 

allopregnanolone may differentially alter specific forms of reward and reinforcement.

An important consideration, which cannot be directly addressed in the current study, is 

whether allopregnanolone potentiates BSR through a dopamine dependent mechanism, as do 

many other drugs that potentiate BSR and stimulate locomotor behavior (Wise 2002) or if its 

actions are independent of dopamine, as has been suggested for the effects of 

benzodiazepines (Straub et al. 2010). There are numerous interactions between 

allopregnanolone and DA that suggest that DA could be involved in the effects of 

allopregnanolone on BSR. For example, in the VTA, allopregnanolone co-localizes with 

tyrosine hydroxylase, the rate-limiting enzyme in DA biosynthesis (Cook et al. 2014b) 

where it may modulate local excitability (Akk et al. 2005; Sanna et al. 2004). Ganaxolone 

and benzodiazepines can act on DA neurons in the VTA and enhance long-term potentiation 

(Tan et al. 2010; Vashchinkina et al. 2014) an effect associated with altered place 

conditioning. Moreover, pharmacological antagonists to dopamine receptors attenuate the 

promotion of lordosis behavior by ventral tegmental area (VTA) allopregnanolone in female 

rats (Frye et al. 2004).
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While the above evidence supports the idea that dopamine might also be involved in the 

effects of allopregnanolone on BSR, Straub et al. (2010) hypothesized that the potentiating 

effects of benzodiazepines on BSR are due to direct inhibition of medium spiny neurons in 

the NAc, which has been proposed as important for reward processing (Carlezon and 

Thomas 2009). It is not known whether allopregnanolone modulates these medium spiny 

neurons but a GABAergic mechanism is thought to inhibit NAc core neurons following 

MFB stimulation (Cheer et al. 2005). Neurons expressing the GABAA receptor α2 subunit 

are critical for the BSR potentiating effects of diazepam (Reynolds et al. 2012) and 

midazolam (Engin et al. 2014), and extrasynaptic α4 subunit containing GABAA receptors 

in the NAc modulate the place conditioning effects of cocaine (Maguire et al. 2014) 

indicating the ability of specific GABAA receptors to influence measures of reward. Given 

the roles of both DA and GABA in the neural control of reward and reinforcement 

processing and the fact that neuroactive steroids modulate components of both of these 

neurotransmitters, it is tempting to speculate that allopregnanolone may be an endogenous 

positive modulator of mesocorticolimbic reward circuits. Continued investigations with the 

ICSS technique may help to resolve whether the facilitation of BSR by allopregnanolone is 

predominantly dopaminergic or GABAergic.
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Figure 1. 
Panel A. Schematic representation of ICSS electrode implantations aimed for the right 

medial forebrain bundle at the level of the lateral hypothalamus. For clarity, implantations 

for the cocaine experiment (n=11, filled triangles) are shown on the left and implantations 

for the allopregnanolone experiments (n=22, filled circles) are shown on the right. Panel B. 

Sample photomicrograph of medial forebrain bundle implantation site.
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Figure 2. 
Time course for the effects of cocaine on ICSS in C57BL/6J mice (n=11). Panel A. (top) 

portrays the effects of cocaine (3, 10, 30 mg/kg, filled triangles) or saline (Veh, open 

triangles) on the mean (±SEM) threshold for brain stimulation reward (BSR). Panel B. 

(bottom) portrays the effects of cocaine or saline on the mean (±SEM) maximum response 

rate (MAX). All data are expressed as a percent of the values for the saline vehicle and are 

shown over four successive 15 minute intervals. Asterisks denote doses that are significantly 

different from the saline vehicle (p<0.05).
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Figure 3. 
Time course for the effects of allopregnanolone on ICSS in C57BL/6J mice (n=11). Panel A. 

(top) portrays the effects of allopregnanolone (3, 5.6, 10, 17 mg/kg, filled circles) or 20% 

beta-cyclodextrin (Veh, open circles) on the mean (±SEM) threshold for brain stimulation 

reward (BSR). Panel B. (bottom) portrays the effects of allopregnanolone or beta-

cyclodextrin on the mean (±SEM) maximum response rate (MAX). All data are expressed as 

a percent of the values for the saline vehicle and are shown over four successive 15 minute 

intervals. Asterisks denote doses that are significantly different from the saline vehicle 

(p<0.05).

Fish et al. Page 15

Psychopharmacology (Berl). Author manuscript; available in PMC 2015 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fish et al. Page 16

T
ab

le
 1

E
ff

ec
ts

 o
f 

C
oc

ai
ne

 a
nd

 A
llo

pr
eg

na
no

lo
ne

 o
n 

th
e 

E
F 5

0 
in

 C
57

B
L

/6
J 

M
ic

e.

T
im

e 
(m

in
)

(0
-1

5)
(1

6-
30

)
(3

1-
46

)
(4

6-
60

)

C
oc

ai
ne

 D
os

e 
(m

g/
kg

)

V
10

0±
6.

7
10

0±
6.

2
10

0±
6.

6
10

0±
7.

3

3.
0

82
±3

.8
93

±
1.

9
95

±
2.

5
97

±
3.

5

10
70

±4
.1

80
±2

.6
85

±
2.

7
90

±
3.

1

30
63

±6
.6

50
±3

.8
54

±4
.3

68
±6

.3

A
llo

pr
eg

na
no

lo
ne

 D
os

e 
(m

g/
kg

)

V
10

0±
3.

4
10

0±
3.

1
10

0±
3.

5
10

0±
5.

2

3.
0

10
0±

3.
9

98
±

2.
8

98
±

2.
1

98
±

3.
0

5.
6

97
±

2.
5

99
±

3.
2

94
±

3.
8

94
±

3.
7

10
99

±
4.

3
98

±
5.

5
93

±
3.

8
10

0±
3.

4

17
98

±
3.

5
85

±3
.4

82
±5

.1
90

±
3.

6

A
ll 

da
ta

 a
re

 m
ea

n 
(±

SE
M

) 
pe

rc
en

t o
f 

ve
hi

cl
e 

ba
se

lin
e.

 E
m

bo
ld

en
ed

 v
al

ue
s 

ar
e 

p<
0.

05
 v

s.
 v

eh
ic

le
 c

on
tr

ol
.

Psychopharmacology (Berl). Author manuscript; available in PMC 2015 December 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fish et al. Page 17

T
ab

le
 2

E
ff

ec
ts

 o
f 

A
llo

pr
eg

na
no

lo
ne

 o
n 

IC
SS

 R
es

po
nd

in
g 

in
 a

 S
ec

on
d 

R
ep

lic
at

e 
of

 C
57

B
L

/6
J 

M
ic

e 
(n

=
11

)

B
SR

 T
hr

es
ho

ld

A
ll

o 
D

os
e 

(m
g/

kg
)

V
eh

3.
0

5.
6

10
.0

17
.0

A
N

O
V

A

T
im

e 
(m

in
)

0-
15

10
0±

6.
8

86
±

7.
1

96
±

9.
7

72
±

4.
6

95
±

14
F (

4,
54

)=
1.

7;
p=

0.
17

16
-3

0
10

0±
6.

0
99

±
8.

2
88

±
9.

2
64

±9
.1

76
±

9.
7

F (
4,

54
)=

3.
6;

p=
0.

01

31
-4

5
10

0±
3.

5
97

±
6.

8
87

±
5.

5
74

±
9.

9
70

±9
.6

F (
4,

54
)=

3.
7;

p=
0.

01

46
-6

0
10

0±
5.

3
99

±
6.

9
94

±
7.

2
81

±
9.

8
82

±
7.

3
F (

4,
54

)=
1.

7;
p=

0.
16

E
F

50

A
ll

o 
D

os
e 

(m
g/

kg
)

V
eh

3.
0

5.
6

10
.0

17
.0

A
N

O
V

A

T
im

e 
(m

in
)

0-
15

10
0±

4.
6

98
±

3.
5

10
0±

4.
1

85
±

6.
8

10
0±

7.
7

F (
4,

54
)=

1.
5;

p=
0.

21

16
-3

0
10

0±
4.

7
97

±
6.

0
99

±
6.

1
84

±
7.

2
90

±
6.

9
F (

4,
54

)=
1.

4;
p=

0.
24

31
-4

5
10

0±
2.

3
98

±
3.

4
95

±
3.

5
84

±4
.5

87
±

6.
5

F (
4,

54
)=

3.
1;

p=
0.

03

46
-6

0
10

0±
3.

7
96

±
5.

0
94

±
5.

5
86

±
4.

0
89

±
6.

5
F (

4,
54

)=
1.

5;
p=

0.
21

M
A

X
 R

es
po

ns
e 

R
at

e

A
ll

o 
D

os
e 

(m
g/

kg
)

V
eh

3.
0

5.
6

10
.0

17
.0

A
N

O
V

A

T
im

e 
(m

in
)

0-
15

10
0±

23
11

4±
12

11
4±

15
12

4±
13

11
4±

14
F (

4,
54

)=
0.

29
;p

=
0.

88

16
-3

0
10

0±
20

12
1±

9.
1

12
7±

8.
9

15
7±

18
12

4±
12

F (
4,

54
)=

1.
9;

p=
0.

12

31
-4

5
10

0±
19

11
2±

6.
9

12
7±

12
14

8±
12

12
5±

15
F (

4,
54

)=
1.

7;
p=

0.
16

46
-6

0
10

0±
19

10
3±

6.
2

11
6±

4.
8

14
5±

12
11

6±
8.

0
F (

4,
54

)=
2.

5;
p=

0.
06

A
ll 

da
ta

 a
re

 e
xp

re
ss

ed
 a

s 
M

ea
n 

±
 S

E
M

 p
er

ce
nt

 o
f 

ve
hi

cl
e 

in
je

ct
io

n.
 F

-t
es

ts
 f

ro
m

 o
ne

-w
ay

 r
ep

ea
te

d 
m

ea
su

re
s 

A
N

O
V

A
 a

re
 in

di
ca

te
d 

fo
r 

ea
ch

 ti
m

e 
in

te
rv

al
. E

m
bo

ld
en

ed
 v

al
ue

s 
de

no
te

 s
ta

tis
tic

al
 s

ig
ni

fi
ca

nc
e 

fr
om

 v
eh

ic
le

 in
je

ct
io

n 
(p

<
0.

05
).

Psychopharmacology (Berl). Author manuscript; available in PMC 2015 December 28.


