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Abstract

Rationale—Chronic cocaine exposure produces unconditioned enhancement in impulsive 

decision making; however, little is known about the effects of cocaine-paired conditioned stimuli 

on this behavior. Thus, this study explored the effects of cocaine-paired contextual stimuli on 

impulsive decision making and the contribution of nicotinic acetylcholine receptors (nAChRs) to 

this phenomenon.

Methods—Rats were trained to achieve stable performance on a delay discounting task, which 

involved lever press-based choice between a single food pellet (small reward) available 

immediately and three food pellets (large reward) available after a 10-, 20-, 40-, or 60-s time 

delay. Rats then received Pavlovian context-cocaine (15 mg/kg, i.p.) and context-saline (1 ml/kg, 

i.p.) pairings in two other, distinct contexts. Subsequently, delay discounting task performance 

was assessed in the previously cocaine-paired or saline-paired context following pretreatment with 

saline or cocaine (15 mg/kg, Experiment 1) or with saline or the nAChR antagonist, 

mecamylamine (0.2, 2 mg/kg, Experiment 2), using counterbalanced within-subjects testing 

designs.

Results—Independent of cocaine pretreatment, rats exhibited greater decrease in preference for 

the large reward as a function of delay duration in the cocaine-paired context, relative to the 

saline-paired context. Furthermore, systemic mecamylamine pretreatment dose-dependently 

attenuated the decrease in preference for the large reward in the cocaine-paired context, but not in 

the saline-paired context, as compared to saline.

Conclusion—Cocaine-paired contextual stimuli evoke a state of impulsive decision making, 

which requires nAChR stimulation. Drug context-induced impulsivity likely increases the 

propensity for drug relapse in cocaine users, making the nAChR an interesting target for drug 

relapse prevention.
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Cocaine abusers display impulsive decision making which likely facilitates their propensity 

for drug relapse (Coffey et al. 2003; Kirby and Petry 2004; Bornovalova et al. 2005; Heil et 

al. 2006). Similarly, laboratory animals with a history of cocaine exposure exhibit enduring 

impairment in delay discounting, an index of impulsive decision making (Simon et al. 2007; 

Dandy and Gatch 2009; Roesch et al. 2007; Mendez et al. 2010; Broos et al. 2012). While 

these findings establish the existence of unconditioned cocaine effects on impulsive decision 

making, little is known about the possible impact of drug-paired contextual stimuli on this 

phenomenon. Given that exposure to previously drug-paired environmental stimuli elicits 

drug-like motivational effects in humans and laboratory animals (Fuchs et al. 2008; 

Crombag et al. 2008), it can be hypothesized that exposure to drug-paired contextual stimuli 

also triggers a drug-like, conditioned state of impulsive decision making.

The stimulation of nicotinic acetylcholine receptors (nAChRs) plays a critical role in 

cocaine-induced behaviors (for reviews, see Williams and Adinoff 2008; Crunelle et al. 

2010) and decision making (Mitchell et al. 2011; Locey and Dallery 2009; 2011; 

Kolokotroni et al. 2011). In laboratory animals, stimulation of nAChRs is necessary for the 

maintenance and escalation of cocaine self-administration (Levin et al. 2000; Hansen and 

Mark 2007) as well as for the development of cocaine-induced behavioral sensitization 

(Schoffelmeer et al. 2002). In cocaine users, nicotine exposure enhances, while the non-

selective nAChR antagonist, mecamylamine, reduces indices of conditioned cue-induced 

craving (Reid et al. 1998; 1999). Furthermore, in rats, inhibition of nAChRs using 

mecamylamine moderately attenuates the expression of cocaine-conditioned place 

preference (Sershen et al. 2010). In addition to regulating the unconditioned and conditioned 

effects of cocaine, acute nicotine pretreatment enhances impulsive decision making (i.e. 

delay discounting), whereas systemic administration of mecamylamine inhibits this effect 

(Kolokotroni et al. 2011). Thus, it can be postulated that nAChR stimulation is also critical 

for the ability of drug-paired contextual stimuli to produce a state of increased impulsive 

decision making.

To test the above hypotheses, experiment 1 evaluated the effects of cocaine-paired 

Pavlovian contextual stimuli on impulsive choice behavior in rats, using the delay 

discounting paradigm. In this model, impulsive choice is indicated by preference for an 

immediately available small food reward over a delayed large food reward (for a review, see 

Mar and Robbins 2007). As predicted, exposure to the cocaine-paired context elicited a 

robust increase in delay discounting. Hence, experiment 2 expanded upon this finding by 

exploring the contribution of nAChRs to this phenomenon in a second group of rats. To this 

end, the effects of systemic mecamylamine pretreatment on impulsive choice behavior were 

assessed in the presence and absence of drug-paired contextual stimuli.

MATERIALS AND METHODS

Animals

Male Sprague-Dawley rats (Charles-River, N=16; 250–275 g) were individually housed in a 

temperature- and humidity-controlled vivarium on a reversed light/dark cycle. Rats were 

maintained on 15–20 g of rat chow per day and water ad libitum. The rats were acclimated 

to handling over five consecutive days prior to instrumental training. The housing and care 
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of rats were in accordance with the guidelines defined in the Guide for the Care and Use of 

Laboratory Animals (Institute of Laboratory Animal Resources on Life Sciences, National 

Research Council, 2011), and were approved by the Institutional Animal Care and Use 

Committee of the University of North Carolina at Chapel Hill.

Instrumental Training

On day 6, rats were food deprived for 24 h in order to facilitate the acquisition of food-

reinforced lever pressing behavior starting on day 7. The sessions were conducted in 

standard operant conditioning chambers, each equipped with two levers and a food 

magazine located at equal distance from each lever (Coulbourn Instruments, Whitehall, PA). 

Initially, each lever press on either lever resulted in the delivery of a food pellet (45 mg, 

Purina Test Diets, Richmond, IN, USA) under a continuous reinforcement schedule. 

Training continued until rats reached a criterion of 100 presses on each lever during a single 

16-hour session (mean number of sessions needed = 1.25±0.16). Water was available ad 

libitum throughout the session. After reaching the acquisition criterion, rats were trained to 

respond for food reinforcement using a discrete trial procedure during daily 60-min sessions. 

Each trial was initiated by the insertion of one of the two levers into the chamber and the 

illumination of the tray light. The rats were required to press the lever within 30 s in order to 

extinguish the tray light and initiate the immediate delivery of a single food pellet. Failure to 

respond within 30 s led to the termination of the trial. The left and right levers were 

presented an equal number of times during each session with no more than two consecutive 

presentations of the same lever. Training on the discrete trial schedule continued until rats 

reached a criterion of at least 60 successful trials during a 60-min session (mean number of 

sessions needed = 1.45±0.21).

Delay discounting task training

The experimental timeline is shown in Figure 1. Delay discounting task training consisted of 

5 blocks of 8 trials per day, during the rats’ dark cycle. Each block consisted of 2 forced-

choice trials and 6 free-choice trials. The forced-choice trials introduced the reinforcement 

contingency. During the 2 forced-choice trials of each block, one lever was inserted and the 

tray light was illuminated. A lever press resulted in lever retraction and the extinction of the 

tray light, accompanied by the immediate delivery of a single food pellet or the delivery of 

three food pellets after a programmed time delay (0, 10, 20, 40, or 60 s). The order of lever 

presentations was random. The pairing of a particular lever with the reward size (1 or 3 food 

pellets) remained constant throughout the experiment, but it was counterbalanced across 

subjects. The delay period that preceded the delivery of the large reward increased 

systematically (i.e. 0, 10, 20, 40, then 60 s) across the 5 blocks. During the 6 free-choice 

trials of each block, both levers were presented and the tray light was illuminated. A press 

on one of the two levers resulted in a single food pellet delivered immediately, whereas a 

press on the other lever resulted in the delivery of 3 food pellets after the same delay as 

during the preceding forced-choice trial. A new trial started every 100s, resulting in a 

uniform number of choice opportunities but in variable inter-trial intervals across blocks, 

depending on the delay value programmed. If no lever press occurred within 30 s of trial 

onset (i.e. response omission), both levers were retracted and the tray light was extinguished. 

During the course of the 5 blocks of each session, the time delay to the presentation of the 3-
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pellet reward increased systematically (i.e. 0, 10, 20, 40, then 60 s). Delay discounting 

training sessions were conducted Monday through Friday. On Saturdays, delay discounting 

probe sessions were conducted, during which the delay to the presentation of the 3-pellet 

reward was maintained at 0 s in all blocks. These probe sessions examined whether the 

behavior remained sensitive to reward magnitude. If a rat selected the larger reward fewer 

than 5 out of 6 times in any one block during a probe session, the rat received additional 

probe sessions until this criterion was met before delay discounting task training resumed. 

Delay discounting task training continued until a stability criterion was reached. Stability 

was defined as the absence of a statistically significant main or interaction effect involving 

session on seven consecutive days in a repeated-measures analysis of variance (ANOVA), 

accompanied by a significant main effect of trial block (i.e., delay).

Pavlovian conditioning

After delay discounting task training, rats underwent 14 Pavlovian conditioning sessions. 

During conditioning, cocaine injection (15 mg/kg, i.p.) was followed immediately by 

placement into a distinct context, and saline injection (1 ml/kg, i.p.) was followed 

immediately by placement into a different context, on alternating days (7 exposures to each 

context). Contexts 1 and 2 consisted of modified operant conditioning chambers in which 

the levers were retracted. In addition, context 1 contained a continuous red house light (0.4 

fc brightness), intermittent pure tone (80 dB, 1 kHz; 2 s on, 2 s off), pine-scented air 

freshener strip, and wire mesh flooring (26 cm × 27 cm). Context 2 contained an intermittent 

white stimulus light above the left lever (1.2 fc brightness; 2 s on, 2 s off), continuous pure 

tone (75 dB, 2.5 kHz), vanilla-scented air freshener strip, and a slanted ceramic tile wall that 

bisected the bar floor (19 cm × 27 cm). Each conditioning session lasted 30 min, after which 

the rats were returned to their home cages. Assignment for cocaine versus saline to be paired 

with context 1 or 2, and the order of cocaine and saline conditioning sessions were 

counterbalanced based on the pre-cocaine delay discounting performance (i.e., indifference 

point) during the last seven days of training. The indifference point was defined as the time 

delay at which the large reward was chosen 50% of the time, and it was calculated for each 

subject using a linear regression model constructed from the data points averaged across the 

five trial blocks (Mendez et al. 2010; Diller et al. 2008; Winstanley et al. 2004).

Testing

After the last Pavlovian conditioning session, rats received additional delay discounting task 

training in the training context until they re-obtained the stability criterion (see above). 

Subsequently, 4 test sessions were conducted in Experiment 1 and 8 test sessions were 

conducted in Experiment 2. Between testing sessions that fell within experiments, rats 

received a minimum of two delay discounting training sessions in the training context until 

their responding reached the stability criterion. The stability criterion was defined as the 

absence of a statistically significant session main or interaction effect on two consecutive 

days in a repeated-measures ANOVA, accompanied by a significant main effect of trial 

block.

Experiment 1—On the test days, rats (N = 8) received an i.p. cocaine (15 mg/kg) or saline 

(1 ml/kg) injection. Immediately after the pretreatment, the rats were placed into the testing 
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context (previously saline- or cocaine-paired), and their delay discounting performance was 

assessed. During four test sessions, the order of testing in the two contexts (saline-paired 

context first, cocaine-paired context first) and the order of pretreatments (saline first, 

cocaine first) were counterbalanced across subjects based on their pre-cocaine delay 

discounting task performance (i.e. indifference point).

Experiment 2—On the test days, a separate group of rats (N = 8) received an i.p. injection 

of 0.2 mg/kg of mecamylamine, 2 mg/kg of mecamylamine or 1 ml/kg of saline. 

Immediately after the pretreatment, the rats were placed into the testing context (previously 

saline- or cocaine-paired), and their delay discounting performance was assessed. During 

testing, mecamylamine and saline test sessions alternated in the two contexts, such that a 

total of eight test sessions were conducted. The order of testing in the two contexts (saline-

paired context first, cocaine-paired context first), the order of pretreatment type 

(mecamylamine first, saline first), and the order of mecamylamine dose (0.2 mg/kg first, 2 

mg/kg first) were counterbalanced across subjects based on their pre-cocaine delay 

discounting task performance (i.e. indifference point).

Data analysis

The percentage of trials with choice of large reward was calculated based on the number of 

trials with a choice of large reward relative to the total number of choice trials in each block 

(i.e. 6). The percentage of trials with choice of large reward during delay discounting task 

training before and after the Pavlovian context-cocaine conditioning was analyzed using 

analysis of variance (ANOVA) with time (day) and delay interval (0, 10, 20, 40, 60 s) as 

within-subjects factors. In Experiment 1, the percentage of trials with choice of large reward 

during the four test sessions was analyzed using ANOVA with testing context (previously 

saline-, cocaine-paired), pretreatment (saline, cocaine), and delay interval (0, 10, 20, 40, 60 

s) as within-subjects factors. In Experiment 2, the percentage of trials with choice of large 

reward during the four vehicle test sessions was analyzed using ANOVA with test day (first 

saline test, second saline test), testing context (previously saline-, cocaine-paired), and delay 

interval (0, 10, 20, 40, 60 s) as within-subjects factors. This ANOVA did not indicate any 

test day effects. Subsequently, the percentage of trials with choice of large reward during the 

two collapsed saline tests and four mecamylamine test sessions was analyzed using 

ANOVA with testing context (saline-paired, cocaine-paired), pretreatment (0, 0.2, 2 mg/kg 

mecamylamine), and delay interval (0, 10, 20, 40, 60 s) as within-subjects factors. In all 

analyses, significant ANOVA main and interaction effects were further investigated using 

Tukey’s HSD post hoc tests. Alpha was set at 0.05. Only statistically significant effects are 

reported below.

RESULTS

Delay discounting task performance

After 37.4±0.6 (Mean ± SEM) delay discounting training sessions, rats (N=16) exhibited 

stable delay discounting performance in the training context during the last 7 days preceding 

the Pavlovian context-cocaine conditioning phase (ANOVA time main and delay×time 

interaction effects, F<1, data not shown). There was no statistically significant difference in 
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delay discounting task performance during the first re-training session after Pavlovian 

conditioning relative to the delay discounting task performance during the last training 

session before Pavlovian conditioning (ANOVA time main and delay×time interaction 

effects, F<1, Figure 2A). Thus, in 7.1±0.2 days, rats reacquired the stability criterion for 

delay discounting task performance in the training context (ANOVA time main and 

delay×time interaction effects, F<1, data not shown). Furthermore, once the stability 

criterion was reached, the baseline delay discounting performance was not different before 

versus after Pavlovian conditioning (ANOVA all main and interaction effects, F<1, Figure 

2B).

Experiment 1: Effects of cocaine-paired context exposure on impulsive decision making

On the test days (Figure 3A), rats exhibited preference for the large reward when it was 

available with no delay (0 s), regardless of testing context and pretreatment (Tukey test, 

p>0.05). However, preference for the large reward decreased as a function of delay and 

testing context (context×delay interaction effect, F(4, 28)=4.10, p=0.01; delay main effect, 

F(4, 28)=22.30, p=0.0001; context main effect, F(1, 7)=63.41, p=0.0001). This effect was 

independent of pretreatment (cocaine versus saline; pretreatment two- and three-way 

interaction effects, F<1), with no significant difference in choice omissions between the test 

conditions (mean number of choice omissions=1.2±0.2; F<1, data not shown). Thus, 

collapsed across the pretreatment variable (Figure 3B), in the saline-paired context, rats 

exhibited decreased preference for the large reward after 20-, 40-, or 60-s, but not 10-s 

delay, relative to 0-s delay (Tukey test, p<0.05; Figure 3B). In contrast, in the previously 

cocaine-paired context, rats exhibited decreased preference for the large reward after all 

delay periods (Tukey test, p<0.05; Figure 3B). Importantly, rats exhibited significantly less 

preference for the large reward after 10-, 20-, 40-, or 60-s delay in the cocaine-paired 

context, relative to the saline-paired context (Tukey tests, p<0.05; Figure 3B).

Experiment 2: Effects of systemic administration of mecamylamine on drug context-
induced impulsive decision making

There was no difference in preference for the large reward following saline pretreatment as a 

function of test day (all test day main or interaction effects, F<1). Therefore, data were 

collapsed to form a single saline condition for each testing context. Preference for the large 

reward decreased as a function of delay and testing context (context×delay interaction effect, 

F(4, 28)=3.32, p=0.02; delay main effect, F(4, 28)=24.65, p=0.0001; context main effect, 

F(1, 7)=44.03, p=0.0001). Furthermore, rats’ preference for the large reward was altered in 

the cocaine-paired context, relative to the saline-paired context as a function of 

mecamylamine pretreatment (context×pretreatment interaction effect, F(2, 14)=5.97, p=0.01; 

pretreatment main effect, F(2, 14)=3.81, p=0.04). Specifically, on the test days (Figure 4A), 

rats exhibited preference for the large reward when it was available with no delay (0 s), 

regardless of testing context and pretreatment (0, 0.2, 2 mg/kg mecamylamine; Tukey test, 

p>0.05). In the saline-paired context, rats exhibited decreased preference for the large 

reward after 20-, 40-, or 60-s, but not 10-s delay, relative to 0-s delay, regardless of 

pretreatment (Tukey test, p<0.05; Figure 4B–D). In contrast, in the previously cocaine-

paired context, rats exhibited decreased preference for the large reward after all delay 

periods, regardless of pretreatment (Tukey test, p<0.05; Figure 4B–D). Collapsed across 
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delay, following saline or 0.2 mg/kg of mecamylamine pretreatment, rats exhibited 

significantly less preference for the large reward in the cocaine-paired context, relative to 

the saline-paired context (Tukey test, p<0.05; Figure 4B–C). Conversely, following 2 mg/kg 

of mecamylamine pretreatment, rats failed to exhibit a preference for the large reward in the 

cocaine-paired context, relative to the saline-paired context (Tukey test, p>0.05; Figure 4D). 

Furthermore, there was no significant difference in choice omissions between the test 

conditions (mean number of choice omissions=1.1±0.2; F<1, data not shown).

DISCUSSION

In the present study, rats displayed greater delay discounting behavior (i.e. greater 

preference for the immediately available small reward) in the previously cocaine-paired 

context than in the saline-paired context (Figure 3B). This behavioral effect reflected 

increased sensitivity to delay, rather than a decreased sensitivity to reward magnitude or an 

instrumental performance deficit, given that the context manipulation failed to alter the 

preference for the large reward over the small reward when both were available with no 

delay (Figure 3A) and failed to increase choice omissions during the test sessions, 

respectively. In the follow-up experiment, systemic mecamylamine pretreatment dose-

dependently decreased the preference for the immediately available small reward in the 

previously cocaine-paired context, but not in the saline-paired context, as compared to saline 

(Figure 4A–C). However, mecamylamine pretreatment failed to alter the preference for the 

large reward over the small reward when both were available with no delay during the test 

session (Figure 4D) and failed to increase choice omissions during the test sessions. Taken 

together, these findings indicated that exposure to a cocaine-paired environmental context 

produces a state of increased impulsive decision making and the stimulation of nAChRs is 

critical for this phenomenon.

In the present study, as in earlier work by Winstanley et al. (2007), the repeated cocaine 

administration regimen (15 mg/kg, i.p.) failed to alter subsequent delay discounting 

performance in a drug-free state in the training context (Figure 2). Conversely, more 

extensive passive cocaine exposure regimens (3×15 mg/kg or 30 mg/kg i.p. per day for 14 

days) in the home cage or cocaine self-administration regimens in distinct self-

administration chambers can increase subsequent delay discounting performance in the 

training context (Paine et al., 2003; Simon et al. 2007; Roesch et al. 2007; Mendez et al. 

2010; Broos et al. 2012). Furthermore, it appears that a less extensive cocaine regimen (e.g., 

15 mg/kg i.p. per day for 9 days) can also produce a prolonged increase in delay discounting 

performance as long as cocaine is administered in the delay discounting training context 

(Dandy and Gatch 2009). Thus, contextual conditioning and cocaine history may interact to 

determine the effects of cocaine exposure on subsequent delay discounting performance and 

these factors will need to be explored systematically in future studies.

Interestingly, cocaine challenge (15 mg/kg i.p.) on the test day failed to alter delay 

discounting performance relative to saline challenge in either the previously cocaine-paired 

or the previously saline-paired context (Figure 3). There are several possible explanations 

for this negative effect. First, tolerance may develop to the unconditioned effects of cocaine 

on impulsive choice. Consistent with this possibility, a previous study reports that a cocaine 
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challenge injection alters impulsive choice in cocaine-naive rats, but not in cocaine-

experienced rats (Winstanley et al. 2007). Adding to this line of research, the present 

findings suggest that the possible development of tolerance to the unconditioned effects of 

cocaine does not inhibit cocaine-paired contextual stimuli from maintaining critical control 

over impulsive decision making. Second, individual differences in pre-cocaine delay 

discounting, or trait impulsivity, may influence the unconditioned effects of cocaine on this 

behavior (for review, see Perry and Carroll 2008). In support of this idea, D-amphetamine 

challenge increases impulsive choice in low impulsive rats, but decreases impulsive choice 

in high impulsive rats (Perry et al. 2008). Furthermore, based on the asymptote of the delay 

discounting curve, rats in the present study were relatively low in impulsivity, as compared 

with those in other studies (Winstanley et al. 2007; Broos et al., 2012). Third, independent 

of the development of tolerance or trait impulsivity, cocaine challenge may enhance 

impulsive choice under experimental conditions (e.g. dose, task parameters) other than those 

employed in these studies, warranting further exploration of this question.

While we may postulate that cocaine-paired contextual stimuli enhance impulsive decision 

making and therefore maladaptive behaviors in cocaine users, the results from clinical and 

preclinical studies on the contextual control of impulsive decision making have been 

inconsistent. Exposure to a gambling-associated context enhances impulsive choice in 

habitual gamblers (Dixon et al. 2006), while smoking-related environmental cues fail to 

facilitate delay discounting in smokers (Field et al. 2007). The latter negative finding may be 

related to drug-specific differences in sensitivity to the motivational effects of drug-paired 

contextual stimuli, given that a recently published study demonstrates that exposure to 

heroin-related video images enhances risk-based decision making, as measured using the 

Iowa gambling task, in heroin users (Wang et al. 2011). However, other factors may also 

regulate the development of context-dependent impulsive decision making. Consistent with 

this, exposure to cocaine-paired contextual stimuli robustly enhanced impulsive decision 

making in rats in the present study, whereas exposure to a context, in which rats had self-

administered cocaine, resulted in a transient reduction in delay discounting in a recent study 

by Broos et al. (2012). In addition to methodological differences between these studies, rats 

exhibited greater impulsivity prior to cocaine exposure in the study by Broos et al. (2012) 

than in the present study. Thus, the effects of cocaine-paired contextual stimuli on impulsive 

decision making may depend on trait impulsivity, similar to the unconditioned effects of 

psychostimulants (Perry et al. 2008). Overall, these findings provide strong rationale for 

comparative studies exploring the effects of drug-related contextual stimuli on impulsive 

decision making in various populations of substance users.

The finding that mecamylamine administration decreased delay discounting in the present 

study indicates that populations of nAChRs play a critical role in drug context-induced 

impulsive decision making. These receptor populations are likely in limbic and paralimbic 

brain regions that receive dense cholinergic innervations (Mesulam 1996; Papez 1995; 

Calabresi et al. 2000; Pisani et al, 2001; Lautin 2001; Zhou et al. 2002). Such brain regions 

include the nucleus accumbens, basolateral amygdala, hippocampus, and orbitofrontal 

cortex (OFC), which are also recognized for controlling impulsive decision making 

(Cardinal et al. 2001; Winstanley et al. 2004; Cheung and Cardinal 2005; Churchwell et al. 

2009; Galtress and Kirkpatrick 2010; Zeeb et al. 2010; Mar et al. 2011; Zuo et al. 2012). 
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Remarkably, the functional integrity of the same brain regions is critical for the ability of 

cocaine-paired contextual stimuli to elicit goal-directed behaviors (e.g. cocaine-seeking 

behavior; Fuchs et al. 2005; 2008; Lasseter et al. 2009). Among these brain regions, the 

OFC critically regulates unconditioned impulsive decision making by encoding reward 

delay (Roesch et al. 2006) given that baclofen/muscimol-induced temporary neuronal 

inactivation of the OFC decreases delay discounting in high-impulsive rats (Zeeb et al. 

2010). The OFC also exhibits Fos protein expression, an index of neuronal activation, 

concomitant with cocaine-seeking behavior in a cocaine-paired context (Hearing et al. 

2008). Furthermore, baclofen/muscimol-induced temporary neuronal inactivation of the 

OFC inhibits drug context-induced reinstatement of extinguished cocaine-seeking behavior 

in rats (Lasseter et al. 2009). High impulsive choice predicts robust cue-induced nicotine-

seeking behavior (Diergaarde et al. 2008), Thus, conditioned activation of neuronal 

ensembles within the OFC, and in similar brain regions, may increase impulsive decision 

making and the reinstatement of extinguished cocaine-seeking behavior. Given the 

involvement of nAChRs in various forms of drug-seeking behavior (Biala et al. 2010; Liu et 

al. 2007; Schmidt et al. 2009; Zhou et al. 2007), future studies will need to examine the role 

of distinct neuronal ensembles and nAChR populations in drug context-induced impulsive 

decision making in relation to cocaine-seeking behavior per se.

In summary, nAChR stimulation is necessary for the ability of cocaine-paired contextual 

stimuli to facilitate impulsive decision making, as measured using delayed discounting 

performance in rats. Such drug-paired context-induced increase in impulsivity may augment 

the propensity to drug relapse in cocaine users, making nAChRs an interesting therapeutic 

target for reducing cocaine relapse. However, different forms of impulsivity exist and these 

may be differentially modulated by exposure to drug-paired contextual stimuli (Evenden 

1999; Moeller et al. 2001). In support of this, preclinical and clinical studies find little 

correlation between different measures of impulsivity (e.g. impulsive choice and impulsive 

action; McDonald et al, 2003; Winstanley et al., 2004). Furthermore, a study in attention 

deficit hyperactivity disorder patients suggests that individual differences or clinical 

conditions may influence the efficacy of nAChR manipulations on impulsive decision 

making (Potter et al. 2009). Thus, it will be imperative to evaluate the impact of drug-paired 

contextual stimuli and nAChR manipulations on multiple indices of impulsivity in various 

populations in the future. Such studies may inform the development of effective anti-

impulsivity pharmacotherapies for cocaine addiction as well as for impulse control 

disorders.
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Figure 1. 
Schematic illustration of the experimental timeline for Experiment 1 (EXP1) and 

Experiment 2 (EXP2), performed in different groups of rats. Asterisk represents that, after 

initial training on the delay discounting (DD) task, rats received seven cocaine – cocaine-

paired context (COC context) and seven saline – saline-paired context (SAL context) 

pairings in alternation during Pavlovian conditioning. After conditioning, rats were required 

to re-obtain the DD stability criterion. In Experiment 1, four food-reinforced DD tests were 

then conducted. Bidirectional arrows indicate that, during these DD test session, the order of 

exposure to the two testing contexts (SAL context, COC context) and the order of 

intraperitoneal pretreatments (15 mg/kg of cocaine, 1 ml/kg of saline) were counterbalanced. 

In Experiment 2, eight food-reinforced DD tests were conducted. Bidirectional arrows 

indicate that, during these DD test sessions, the order of exposure to the two testing 

contexts, the order of intraperitoneal pretreatment types (mecamylamine, saline) and the 

order of mecamylamine doses (0.2 mg/kg, 2 mg/kg) were counterbalanced. Rats received 

additional DD task training in the training context on a minimum of two days before each 

test session.
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Figure 2. 
Delay discounting task performance (mean percentage of trials with choice of the large 

reward ± SEM) in the training context (A) during the last session before and during the first 

session after Pavlovian conditioning and (B) after achieving the stability criterion before and 

after Pavlovian conditioning. Asterisks represent significant difference relative to the large 

reward available with no delay (ANOVA delay main effect, Tukey test, p<0.05).
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Figure 3. 
Delay discounting task performance (mean percentage of trials with choice of the large 

reward ± SEM) during testing, (A) following pretreatment with cocaine (15 mg.kg, i.p.) or 

saline (1 ml/kg, i.p.) in the saline-paired (SAL CTX) and cocaine-paired (COC CTX) 

contexts, and (B) the same data set displayed collapsed across the non-significant 

pretreatment variable. Asterisks represent significant difference relative to the large reward 

available with no delay (ANOVA delay simple main effect, Tukey test, p<0.05). Daggers 

represent significant difference relative to the large reward available with comparable delay 

in the saline-paired context (ANOVA context simple main effect, Tukey test, p<0.05).
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Figure 4. 
Delay discounting task performance (mean percentage of trials with choice of large reward ± 

SEM) during testing in the saline-paired (SAL CTX) and cocaine-paired (COC CTX) 

contexts, following i.p. pretreatment with (A) 1 ml/kg of saline, (B) 0.2 mg/kg of 

mecamylamine, and (C) 2 mg/kg of mecamylamine. Panel D represents a composite of the 

data in Panels A–C. Asterisks represent significant difference relative to the same reward 

with no delay (ANOVA delay simple main effect, Tukey test, p<0.05). Daggers represent 

significant difference relative to the large reward with comparable delay in the saline-paired 

context (ANOVA context simple main effect, Tukey test, p<0.05).
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