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Abstract

Intraclass correlation and Cronbach’s alpha are widely used to describe reliability of tests and

measurements. Even with Gaussian data, exact distributions are known only for compound

symmetric covariance (equal variances and equal correlations). Recently, large sample Gaussian

approximations were derived for the distribution functions.

New exact results allow calculating the exact distribution function and other properties of

intraclass correlation and Cronbach’s alpha, for Gaussian data with any covariance pattern, not

just compound symmetry. Probabilities are computed in terms of the distribution function of a

weighted sum of independent chi-square random variables.

New F approximations for the distribution functions of intraclass correlation and Cronbach’s

alpha are much simpler and faster to compute than the exact forms. Assuming the covariance

matrix is known, the approximations typically provide sufficient accuracy, even with as few as ten

observations.

Either the exact or approximate distributions may be used to create confidence intervals around an

estimate of reliability. Monte Carlo simulations led to a number of conclusions. Correctly

assuming that the covariance matrix is compound symmetric leads to accurate confidence

intervals, as was expected from previously known results. However, assuming and estimating a

general covariance matrix produces somewhat optimistically narrow confidence intervals with 10

observations. Increasing sample size to 100 gives essentially unbiased coverage. Incorrectly

assuming compound symmetry leads to pessimistically large confidence intervals, with pessimism

increasing with sample size. In contrast, incorrectly assuming general covariance introduces only a

modest optimistic bias in small samples. Hence the new methods seem preferable for creating

confidence intervals, except when compound symmetry definitely holds.

© 2004 The Psychometric Society

Requests for reprints should be sent to Emily O. Kistner (EKistner@Bios.UNC.EDU).

NIH Public Access
Author Manuscript
Psychometrika. Author manuscript; available in PMC 2014 August 20.

Published in final edited form as:
Psychometrika. 2004 September ; 69(3): 459–474. doi:10.1007/BF02295646.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Keywords

interrater reliability; confidence interval; compound symmetry; quadratic forms

1. Introduction

1.1. Motivation

Estimates of interrater reliability are often of interest in behavioral and medical research. As

an example, consider a study in which each of five physicians used X-ray images (from CT

scans) to measure the volume of the hippocampus (a region of the brain). Each physician

measured the volume for each of twenty subjects. The scientist sought to evaluate inter-

physician reliability. This led to a wish to compute estimates of reliability and confidence

intervals for the estimates. The intraclass correlation coefficient and Cronbach’s alpha,

which are one-to-one functions of each other, provide appropriate indexes of reliability. The

disparities in training and experience among physicians makes it seem unlikely that equal

variances and equal correlations (compound symmetry) occur in this setting.

The exact, small sample, distributions of the estimates of intraclass correlation and

Cronbach’s alpha are known only for Gaussian data with compound symmetric covariance.

However, as for the example just described, it may be invalid to assume equal variances and

equal covariances across raters and time. Only a large sample approximation is available for

covariance matrices that are not compound symmetric.

1.2. Literature Review

Cronbach (1951) defined coefficient alpha, ρα, a lower bound of the reliability of a test.

Subsequently, Kristof (1963) and Feldt (1965) independently derived the exact distribution

of a sample estimate, , assuming Gaussian data and compound symmetric covariance.

Exact calculations require specifying the common variance and correlation. Recently, van

Zyl, Neudecker, and Nel (2000) derived a large sample approximation of the distribution of

 for Gaussian data with a general covariance matrix. Approximate calculations require

specifying the population covariance matrix. The results all extend to estimates of the

intraclass correlation, due to the one-to-one relationship between the two measures of

reliability.

1.3. Overview of New Results

Section 2 contains exact and approximate expressions for the distribution functions of

estimates of both intraclass correlation and Cronbach’s alpha. A theorem in Section 2.2

provides the key result. It allows computing each distribution function in terms of the

probability that a weighted sum of independent chi-square random variables is less than

zero. A simple F approximation is derived and provides a much simpler algorithm than the

one required to compute exact probabilities.

Section 3 contains three kinds of numerical evaluations of the new results. The first involves

verifying the accuracy of the exact forms. The second centers on comparing the existing

Gaussian approximation to the new exact result and the new F approximation. The third
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contains an evaluation of the coverage accuracy of confidence intervals based on an

estimated covariance matrix.

2. Analytic Results

2.1. Notation

A scalar variable will be indicated by lower case, such as x; a vector (dimension n × 1,

always a column) by bold lower case, such as x; an n × p matrix by bold upper case, X; and

its transpose by X’. For example, 1n indicates an n × 1 vector of 1’s. If X = [x1 x2 … xp],

then the stacking of the columns into an n · p × 1 will be indicated by vec(X), with the first

column at the top, followed by the second, etc. The Kronecker product is defined as X ⊗ Y
= {xij · Y}. For an n × 1 vector x, the n × n matrix with all zero elements off the diagonal

and xi as the (i, i) element will be written Dg(x). As needed, a scalar, vector or matrix is

described as constant, random, or a realization of a random scalar, vector or matrix.

Properties of Gaussian variables will be used throughout (Arnold, Chapter 3, 1981). All

parameters are assumed finite. A scalar variable, y, will be indicated to follow a Gaussian

distribution, with expected value, the mean, ε(y) = μ and variance, ν(y) = ε(y2) − [ε(y)]2 =

σ2, by writing y ~ N (μ, σ2). An n × 1 vector will be indicated to follow a Gaussian

distribution, with n × 1 mean vector ε(y)= μ and n × n covariance matrix ν(y) = ε(yy’ − εy)

[ε(y)]’ = Σ, by writing y ~ Nn(μ, ∑).

Interest in this paper centers on an n × p matrix of data, Y, for which the rows form a set of

independent and identically distributed Gaussian vectors. This may be indicated

symbolically as [rowi(Y)]’ ~ Np (μ, Σ), assuming independent and identically distributed

rows. Throughout this paper, Σ represents a p × p, symmetric, and positive definite

population covariance matrix. The spectral decomposition allows writing Σ =

VΣDg(λΣ)V’Σ, with positive eigenvalues {λΣ,j}. Corresponding eigenvectors are the

columns of VΣ, which is p × p, of full rank, and orthonormal (V’ΣVΣ = Ip). Furthermore, if

FΣ = VΣDg(λΣ)1/2 then Σ = FΣF’Σ.

Johnson, Kotz, and Balakrishnan (1994, 1995) gave detailed treatments of the chi-square

and F distributions. Writing X ~ χ2(ν) indicates that X follows a central chi-square

distribution, with ν degrees of freedom. If X1 ~ χ2(ν1) X2 ~ χ2(ν2) then writing (X1/ν1)

(X2/ν2) ~ F(ν1, ν2) indicates that the radio follows a central F distribution, with numerator

degrees of freedom ν1 and denominator degrees of freedom ν2. The distribution function of

a central F will be indicated as FF(f;ν1, ν2), with corresponding qth quantile

. The identity  is useful.

2.2. Known Results

A covariance matrix may be described as compound symmetric if all variances are equal and

all correlations are equal. If so, and σ2 is the common variance while ρI is the common

correlation, Σ = σ2[ρI1p1’p − (1 − ρI)Ip]. The matrix has two distinct eigenvalues. The first is

τ1 = σ2[1 + (p − 1)ρI], with corresponding eigenvector . The second is τ2 = σ2(1

− ρI), which has multiplicity p − 1 and corresponding eigenvectors any matrix V⊥, of
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dimension p × (p − 1), such that V’⊥ V⊥ =Ip−1 and V’⊥ 1p = 0p−1. Without loss of

generality, V⊥ may be taken to be the orthogonal polynomial trend coefficients (normalized

to unit length). Requiring 0 < σ2 < ∞ and −(p − 1)−1 < ρI < 1 ensures finite and positiv

definite Σ. See Morrison (1990, p. 289) for additional detail.

In practice, caluculations are based on , with ν = n − 1 > p

assumed throughout. In turn, this leads to the estimated intraclass correlation coefficient,

(1)

with . Similarly, the estimate of Cronbach’s α is

(2)

with . Estimated Cronbach’s α is a one-to-one function of estimated intraclass

correlation:

(3)

Replacing  with Σ gives the population values. If Σ is compound symmetric, then ρI is the

common correlation, with  the maximum likelihood estimate (with Gaussian data).

To avoid confusion it may help to describe ρI as the intraclass correlation if Σ is compound

symmetric, and as the generalized intraclass correlation if Σ is not compound symmetric.

The two situations have different analytic properties, including different maximum

likelihood estimates of Σ. Under compound symmetry, ρI equals the average population

correlation, and  is the corresponding maximum likelihood estimate. In contrast, without

compound symmetry, typically ρI will not equal the average correlation and  will not be

the maximum likelihood estimate of the average correlation. See Morrison (1990, p. 250) for

some additional detail.

2.3. New Exact Distributions and Related Properties

Theorem 1. With multivariate Gaussian data, the cumulative distribution function of the

estimate of intraclass correlation exactly equals the probability that a particular weighted

sum of independent central chi-square random variables is less than zero. A parallel

statement holds for Cronbach’s α.

In particular, consider observing the n × p random matrix Y with independent and

identically distributed rows such that [rowi(Y)]’ ~ Np(μ, Σ), with Σ = FΣF’Σ, a p × p,

symmetric, and positive definite matrix. Recall that the corresponding estimate is , with ν

= n − 1 > p degrees of freedom. Let rI indicate a particular quantile of , with −(p − 1)−1 <
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rI < 1, and let rα indicate a particular quantile of , with −∞ < rα < 1. In addition, define

the following one-to-one functions of the quantiles:

(4)

(5)

For c ∈ {α, I}, also define

(6)

The assumptions just stated suffice to allow proving the following results.

The Matrix F’Σ(1p1’p − xcIp)FΣ is a p × p, symmetric full rank, with one strictly positive

eigenvalue, λ2c,1, and p − 1 strictly negative eigenvalues, {λ2c,2, …, λ2c,p}. Most

importantly,

(7)

with Xcj ~ χ2(ν), independently of Xcj, if j ≠ j’.

Proof. See Propositions 1–4 and their proofs in the appendix.

Corollary 1—The previously known exact results for compound symmetry are special

cases of the theorem results.

1. If Σ has compound symmetry then the proofs of Propositions 1–4 lead to simple forms of

the required eigenvalues. In turn,  and

(8)

2. If Σ has compound symmetry and q ∈ [0, 1] then

Solving for xc gives

with corresponding qth quantiles
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(9)

and

(10)

3. If Σ has compound symmetry, an exact confidence interval can be computed as follows.

Let  and . For ρα, a confidence

interval size 1 − αL − αU < 1, with 0 ≤ αL < 1 and 0 ≤ αU < 1, is given by

(11)

Similarly, if , then for ρI it follows that

(12)

Part 1 is proven in the appendix. The result coincides with the previously known form, as do

2 and 3, which follow easily from 1.

Corollary 2—The moment, characteristic, and cumulant generating functions, as well as all

cumulants and the first two moments of D(xc), have simple closed forms. In particular, with

, the characteristic function is (Johnson & Kotz, 1970, equation 15, p. 152)

(13)

The moment generating function is the same function with t replacing it and the cumulant

generating function is the logarithm of the moment generating function. The mth cumulant is

(Johnson & Kotz, 1970, equation 20, p. 153)

(14)

The first cumulant is the mean,

(15)

and the second cumulant is the variance,
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(16)

Corollary 3—Davies’ algorithm (1980) allows computing the exact distribution function of

estimates of intraclass correlation and Cronbach’s alpha.

The algorithm computes the distribution function of a weighted sum of independent chi-

squares with any combination of positive and negative weights, by numerical inversion of

the characteristic function.

2.4. An F Approximation for the Distribution Function

Davies’ algorithm can be computationally intensive. Therefore an approximation was

derived for the distribution function of D(xc), based on Satterthwaite’s method (Mathai &

Provost, 1992). The approximation matches the first two moments of

(17)

to Q* = λ* X* with X* ~ χ2(ν*). The constants that define the approximation are

(18)

and

(19)

Assuming Q ≈ Q* allows writing

(20)

Note that both the exact distribution and the approximate F distribution depend only on the

eigenvalues of A2c, which are functions of Σ and rc. The approximation reduces to the exact

result in the special case of compound symmetry.

2.5. Proposals for Approximating Confidence Limits with General Covariance

Two different methods for approximating confidence limits with general covariance have

some appeal. For a confidence level of 1 − αL − αU, the simplest method is to merely
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replace Σ by  and find the values of rcL and rcU that satisfy the equation

. This first approach is based on approximate quantiles.

Alternately, the relationship between the forms of the exact quantiles and confidence bounds

under compound symmetry leads to suggesting a simple modification in the context of the F

approximation. The confidence limit differs from the quantile by replacing an F quantile

with the reciprocal of the opposite tail quantile. In the context of numerically inverting the

approximate distribution function, this corresponds to replacing

The second approach may be described as being based on approximate confidence limits.

3. Numerical Evaluations

3.1. Check Exact Results with Simulations

Given a critical value, rc, and Σ calculation of the exact distribution function required the

following steps.

1. Use Cholesky decomposition to compute FΣ such that Σ = FΣF’Σ.

2. Compute xc as either xI = [(p − 1)rI + 1] or xα = [1 − rα(p − 1)/p]−1.

3. Compute A1c = (1p1’p − xcIp).

4. Compute the eigenvalues of A2c = F’ΣA1cFΣ.

5. Apply Davies’ algorithm to compute Pr{D(xc) ≤ 0}, based on equation 7.

Computer simulations allowed checking the accuracy of the calculations of exact

probabilities. All such simulations used ν = 9 and p = 4. Using SAS/IML® (SAS Institute,

1999), 100,000 random samples were generated from a multivariate normal distribution.

Twelve distinct choices for Σ, assumed known, were created by combining one of four

correlation matrices with one of three variance patterns. One correlation matrix had all

correlations equal to ρ 0.5 (all off-diagonal elements were 0.5). The other three correlation

matrices were autoregressive = of order 1, indicated AR(1), which implies the j, j’ element

was ρ|j−j’|, with ρ ∈ {0.2, 0.5, 0.8}. The variance pattern, , was [1 1 1]’,

[1 2 3 4]’, or [4 3 2 1]’. The observed probability that the estimate of Cronbach’s alpha was

less than the critical value of rα = 0.70 was tabulated from the 100,000 replications. Each

observed probability was compared to the corresponding exact probability computed with

Davies’ algorithm. In all cases the exact probability was contained within the 95%

confidence interval around the observed probability. The confidence intervals were based on

a Gaussian approximation.
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3.2. Evaluation of the F Approximation

Calculation of the F approximation for the distribution function began with computing the

eigenvalues of A2c, as described in the opening paragraph of Section 3.1. Then equations 19

and 20 were used to complete the calculation.

The F approximation was computed for all cases considered in Section 3.1, again assuming

Σ known (see Table 1). As stated in Corollary 1, the approximation gives the exact

probability with compound symmetry. More notably, at least for the cases considered in

Table 1, the approximation achieves three to four digits of accuracy.

Table 2 illustrates the behavior of the approximation for a range of quantiles with ν 9, p = 3,

AR(1) with ρ = 0.5, and . For the case considered, the

approximation is accurate even at the extremes of the distribution.

Figures 1–4 display the exact density function of Cronbach’s alpha, the F approximate

density, and the Gaussian approximate density due to van Zyl et al. (2000). The exact and F

approximation densities were computed as numerical derivatives of the corresponding

distribution functions. In Figures 1 (ν = 9) and 2 (ν = 49), which differ only due to sample

size, the exact density and the F approximate density coincide exactly because both are

based on compound symmetry. Figures 3 (ν = 9) and 4 (ν = 49), which differ only due to

sample size, are based on an AR(1) correlation pattern with heterogeneity of variance. In

Figure 3, the exact and F approximate densities differ only slightly (by less than 10% in

ordinate values) for only a subset of the domain. In Figure 4, the exact and F approximate

densities are indistinguishable at the resolution of the plot.

Two overall conclusions seem apparent. First, the Gaussian approximation may deviate

substantially from the exact result, including nonzero probabilities for values of Cronbach’s

α greater than 1.0 (which are impossible). Second, the F approximation is nearly always

indistinguishable from the exact result, except for some small differences in the right half of

Figure 3. These results agree with those in Tables 1 and 2.

3.3. Confidence Intervals from Estimated Σ

All research to this point has assumed that the true covariance matrix is known. In practice,

the covariance matrix can only be estimated. This leads to the desire to compute confidence

intervals based on an estimated Σ. Four distinct methods for computing confidence intervals

are defined by making two choices. The first choice is to assume either compound symmetry

or general covariance. The second choice is to compute estimated quantiles or estimated

confidence limits.

Assuming general covariance led to difficulties with finding lower quantiles of the

unbounded random variable . Hence all calculations were conducted in terms of the

intraclass correlation coefficient, which has a finite range, (−(p − 1)−1, 1), while the range of

 is unbounded, (−∞, 1). The change ensured stable convergence.
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When assuming compound symmetry, equation 1 was used to compute . In turn,

 was computed. The quantile approach values were

computed by replacing τ2/τ1 with  in equation 10. The confidence limits approach

values were computed by replacing τ2/τ1 with  in equation 12.

Assuming general covariance requires an iterative process to compute quantiles or

approximate confidence limits. The corresponding method assuming compound symmetry

provided the starting value. The associated approximate distribution function value was

computed next. This was done by computing the eigenvalues of A2c, as described in the

opening paragraph of Section 3.1, but with  replacing Σ, and then using equations 19 and

20. A simple bisection algorithm was applied to numerically invert the process and find a

particular quantile. As described in Section 2.5, the confidence interval approach differs

only by replacing the calculation of

with the calculation of

Simulations were used to estimate the coverage probability, which is the number of times a

confidence interval contains the true value of the parameter, ρα, when estimating Σ. In all

cases p = 4, with 500,000 samples from a multivariate normal distribution. One of four

covariance matrices were used. Two were compound symmetric (see Table 3) with constant

variance of  and ρ ∈ {0.2, 0.8}. Two (see Table 4) used

 with an AR(1) correlation matrix and ρ ∈ {0.2, 0.8}.

The coverage probability was estimated by tabulating the fraction of times the estimated

confidence interval contained the true value of ρα. Results in Tables 3 and 4 followed

consistent patterns. Overall, estimating the covariance matrix introduced bias in confidence

interval coverage, with the nature of the bias varying with the underlying assumption.

Naturally, if the assumption of compound symmetry holds in the population, confidence

intervals based on the exact method worked perfectly. In contrast, the quantile based

approximation gave accurate confidence intervals in large samples and optimistically narrow

confidence intervals in small samples. Of course, the quantile approach would never be used

in practice if compound symmetry were known to hold. However, the results give some

guidance as to the sources of inaccuracy in the general covariance setting.
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When general covariance is assumed regardless of the underlying covariance matrix, both

methods generated optimistically narrow intervals in small samples, with the approximate

confidence limit approach generating slightly less bias. In larger samples, assuming general

covariance works very well with either method.

A very different picture arose from assuming compound symmetry when the assumption

was false. Violation of the assumption led to consistently wide confidence intervals,

independent of sample size for the approximate confidence limit approach. The quantile

approach also always gave pessimistically wide intervals, although with somewhat less bias

in small samples.

4. Conclusions

The new results provide a wide range of properties of estimates of intraclass correlation and

Cronbach’s alpha with Gaussian data and general covariance. In addition, Davies’ algorithm

provides precise numerical calculation of probabilities and densities.

The new F approximation, based on assuming general covariance, provides the best

combination of accuracy and convenience, for both known and estimated Σ. In comparison

to the Gaussian approximation, the new F approximation provides substantially greater

accuracy, especially in small samples.

The one-to-one relationship between estimates of intraclass correlation and Cronbach’s

alpha has two practical implications. First, all of the conclusions from the simulations about

estimates of Cronbach’s alpha also apply to estimates of intraclass correlation. Second, the

bounded nature of the intraclass correlation, leads to preferring calculations based on the

intraclass correlation, even when interest centers on Cronbach’s alpha.

Not surprisingly, assuming general covariance provides much greater accuracy than that

obtained when wrongly assuming that compound symmetry holds. Equally important,

assuming general covariance in the presence of compound symmetry has only a small effect

on confidence interval accuracy, and then only in small samples. Hence any substantial

doubt about the validity of the compound symmetry assumption should lead to assuming

general covariance and using the new results.

A number of avenues have appeal for future research. An improved approximation for

confidence intervals based on estimated Σ in very small samples merits attention. Methods

for comparing two or more estimates of reliability, and associated sample size formulas,

would be valuable. It would be useful to know the impact of allowing missing data. Finally,

the robustness of the probability calculations to the violation of the assumption of Gaussian

variables holds great interest.

Free software which implements the new methods may be found at http://

www.bios.unc.edu/~muller. Distribution function and confidence interval algorithms are

implemented as collections of SAS/IML modules (SAS Institute, 1999).
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Appendix: Definitions and Properties of Matrix Normal and Wishart

Matrices

Arnold (1981, pp. 310–311) provided a general notation for a Gaussian data matrix. It is

used because it helps simplify the proof of Theorem 1. In particular, an n × p matrix, Y, will

be indicated to follow a matrix normal distribution, with n × p mean matrix, M, n × n row

structure, Ξ, p × p column structure, Σ, by writing Y ~ Nn,p(M, Ξ, Σ). Equivalently, vec(Y)

~ Nn·p[vec(M), Σ ⊗ Ξ], or vec(Y’) ~ Nn·p[vec(M’), Ξ ⊗ Σ. Both Ξ and Σ are required to be

symmetric and positive symmetric and semi-definite.

A reproductive property of a matrix normal will be used repeatedly. For constants A, (n* ×

n), B (p × p*), and C (n* × p*), it follows that AYB + C ~ Nn*,p* (AMB + C, AΞA’ B’ΣB),

Either the original or transformed distribution may be singular, depending on the

combination of ranks of A, B, Ξ and Σ.

Following Arnold (1981, pp. 314–323), if Y ~ Nn,p(M, I, Σ), then Y’Y is described as

following a Wishart distribution, written Y’Y ~ Wp(n, Σ, M’M). Many variations occur,

depending on the relative sizes of p and n, as well as the ranks of Σ and M. If M = 0 then

write Wp(n, Σ) to indicate a central Wishart.

Proof of Theorem 1

The following assumptions suffice to prove Theorem 1. The n × p random matrix Y has

independent and identically distributed rows such that [rowi (Y)]’ ~ Np(μ, Σ), with Σ =

FΣF’Σ, a p × p, symmetric, and positive definite matrix. The corresponding estimate is .

The functions xI = [(p−1)rI+1] and xα = [1−rα(p−1)/p]−1 are functions of −(p−1)−1 < rI < 1

and −∞ < rα < 1, while for  (see equations 4–

6).

The assumptions have the following immediate implications. With ν = n − 1 > p, the

estimated covariance matrix, , is such that . A lemma in Glueck and Muller

(1998) ensures that for any such  there exists a ν × p matrix Y0 ~ Nν,p(0, Iν, Σ) with

. The spectral decomposition allows writing Σ = VΣDg(λΣ)V’Σ, with VΣV’Σ =

V’ΣVΣ = Ip. Also FΣ = VΣDg(λΣ)1/2 and Σ = FΣF’Σ. The matrices VΣ, Dg(λΣ) and FΣ are p

× p and full rank.

Proposition 1

Let V1 = [v0 V⊥ ], with v0 = 1p p−1/2. Also let V⊥ be a p × (p − 1) matrix such that V’⊥V⊥

= Ip−1 and V’⊥1p = 0p−1. For c ∈ {α, I}, A1c = (1p1’p − xcIp) is p × p, symmetric and full
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rank, with one positive eigenvalue (p − xc) and p − 1 negative eigenvalues of −xc.

Corresponding orthonormal eigenvectors are v0 and V⊥. Also A1c = V1Dg[(p − xc),

−xc1p−1]V’1, with V’1V1 = Ip.

Proof of Proposition 1

A1c is a difference of p × p matrices and A’1c = (1p1’p − xcIp)’ = A1c. The fact that V’1V1 =

Ip follows from the definitions of v0 and V⊥. It is easy to directly verify that A1cv0 = (p −

xc)v0 and that A1cV⊥ = −xcV⊥, which proves the eigenvalue and eigenvector properties. The

restriction −(p − 1)−1 < rI < 1 ensures (p − xI) > 0 and xI > 0. It also implies −∞ < rα < 1,

which ensures (p − xα) > 0 and xα > 0.

Proposition 2

For c ∈ {α, I}, A2c = F’ΣA1cFΣ is p × p, symmetric full rank, with one strictly positive

eigenvalue, λ2c,1, and p − 1 strictly negative eigenvalues, {λ2c,2, … , λ2c,p}.

Proof of Proposition 2

As a product of full rank p × p matrices, A2c is p × p and full rank. Also A’2c = (F’ΣA1cFΣ)’

= A2c. Hence the spectral decomposition may be written A2c = V2cDg(λ2c)V’2c. If

 then

(A21)

This demonstrates that A2c and Dg[(p−xc), −xc1p−1] are congruent. Consequently Sylvester’s

Law of Inertia (Lancaster, 1969, p. 90) allows concluding that A2c has one positive and p −

1 negative eigenvalues.

Proposition 3

.

Proof of Proposition 3

(A22)

and
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(A23)

Proposition 4

, with Xcj ~ χ2(ν), independently of Xcj’ if j ≠ j’.

Proof of Proposition 4

The fact that tr(AB) =tr(BA), when the matrices conform, allows writing

(A24)

If Z1 ~ Nν,p(0, Iν, Ip) then Y0 = Z1F’Σ. Note that Z1 = {z1,i j} is a collection of independent

standard Gaussian variables. With V2c the orthonormal eigenvectors of A2c, define Z2c =

Z1V2c, with Z2c ~ Nν,p(0, Iν, Ip). Therefore

(A25)

A diagonal element of Z’2cZ2c is z’2c,jz2c,j, with z2c,j the (ν × 1) column j of Z2c. Using the

fact that postmultiplying by a diagonal matrix scales the columns allows writing

(A26)

The independent standard Gaussian nature of the elements of Z2c allows concluding that

(A27)

with Xcj independent of Xcj’ if j ≠ j’. Without loss of generality, assume that λ2c,1 is the

single positive eigenvalue of A2c. The proof is completed by splitting the summation:
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(A28)

Proof of Corollary 1

If Σ is compound symmetric then the eigenvectors of A1c and Σ coincide, which implies

V’1VΣ = V’ΣV1 = Ip. In turn,

(A29)

If  then Xc+ ~ χ2[ν(p − 1)]. Furthermore

(A30)

Note the identity .

References

Arnold, SF. The theory of linear models and multivariate analysis. Wiley; New York: 1981.

Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika. 1951; 16:297–334.

Davies RB. The distribution of a linear combination of χ2 random variables. Applied Statistics. 1980;
29:323–333.

Feldt LS. The approximate sampling distribution of Kuder-Richardson reliability coefficient twenty.
Psychometrika. 1965; 30:357–370. [PubMed: 5216223]

Glueck DH, Muller KE. On the trace of a Wishart. Communications in Statistics: Theory and Methods.
1998; 27:2137–2141.

Johnson, NL.; Kotz, S. Continuous univariate distributions—2. Houghton Mifflin; Boston: 1970.

Johnson, NL.; Kotz, S.; Balakrishnan, N. Continuous univariate distributions—1. 2nd ed. Wiley; New
York: 1994.

Johnson, NL.; Kotz, S.; Balakrishnan, N. Continuous univariate distributions—2. 2nd ed. Wiley; New
York: 1995.

Kristof W. The statistical theory of stepped-up reliability when a test has been divided into several
equivalent parts. Psychometrika. 1963; 28:221–228.

Lancaster, PL. Theory of matrices. Academic Press; New York: 1969.

Mathai, AM.; Provost, SB. Quadratic forms in random variables. Marcel Dekker; New York: 1992.

Morrison, DF. Multivariate statistical methods. 3rd ed. McGraw-Hill; New York: 1990.

SAS Institute. SAS/IML user’s guide, version 8. SAS Institute, Inc.; Cary, NC: 1999.

Kistner and Muller Page 15

Psychometrika. Author manuscript; available in PMC 2014 August 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



van Zyl JM, Neudecker H, Nel DG. On the distribution of the maximum likelihood estimator of
Cronbach’s alpha. Psychometrika. 2000; 65:271–280.

Kistner and Muller Page 16

Psychometrika. Author manuscript; available in PMC 2014 August 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Density of  for ν = 9. Solid line for exact and F approximate, dotted line for Gaussian

approximate, for p = 4 and compound symmetry with ρ = 0.20, σ2 = 1.
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Figure 2.
Density of  for ν = 49. Solid line for exact and F approximate, dotted line for Gaussian

approximate, for p = 4 and compound symmetry with ρ = 0.20, σ2 = 1.
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Figure 3.
Density of  for ν = 9. Solid line for exact, dashed line for F approximate, and dotted line

for Gaussian approximate, for p = 4, AR(1) with ρ = 0.80 and

.
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Figure 4.
Density of  for ν = 49. Solid line for exact and F approximate, dotted line for Gaussian

approximate, for p = 4, AR(1) with ρ = 0.80 and .
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Kistner and Muller Page 21

TABLE 1

 with Σ Known and ν = 9

Correlation ρ σ1
2 σ2

2 σ3
2 σ4

2 ′ Exact F Approx.

equal 0.5 [1 1 1 1]’ 0.2689 0.2689

AR(1) 0.5 [1 1 1 1]’ 0.5628 0.5631

AR(1) 0.2 [1 1 1 1]’ 0.9442 0.9440

AR(1) 0.8 [1 1 1 1]’ 0.0430 0.0429

equal 0.5 [1 2 3 4]’ 0.4697 0.4705

AR(1) 0.5 [4 3 2 1]’ 0.7139 0.7135
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Kistner and Muller Page 22

TABLE 2

 with Σ Known, AR(1) Correlation with ρ = 0.5 and 

rα Exact F Approx.

0.10 0.0614 0.0614

0.20 0.0899 0.0900

0.30 0.1349 0.1353

0.40 0.2072 0.2079

0.50 0.3231 0.3242

0.60 0.5010 0.5020

0.70 0.7367 0.7361

0.80 0.9418 0.9391

0.90 0.9992 0.9989
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Kistner and Muller Page 23

Table 3

Estimated Coverage Probability of Confidence Interval for ρα with Compound Symmetry and All 

95% CI for Coverage of ρα

Assume Compound Symmetry Assume General Σ

ρ ν+ 1 Quantiles Conf. Limits Quantiles Conf. Limits

0.2 10 (0.929, 0.930) (0.949, 0.950) (0.919, 0.921) (0.936, 0.937)

50 (0.946, 0.947) (0.949, 0.950) (0.944, 0.945) (0.948, 0.949)

100 (0.948, 0.949) (0.949, 0.950) (0.946, 0.948) (0.949, 0.950)

200 (0.948, 0.949) (0.949, 0.951) (0.948, 0.950) (0.949, 0.950)

0.8 10 (0.929, 0.930) (0.950, 0.951) (0.919, 0.920) (0.936, 0.937)

50 (0.946, 0.947) (0.949, 0.951) (0.943, 0.945) (0.948, 0.949)

100 (0.948, 0.949) (0.949, 0.950) (0.947, 0.949) (0.948, 0.950)

200 (0.948, 0.949) (0.949, 0.950) (0.948, 0.949) (0.949, 0.950)
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Table 4

Estimated Coverage Probability of Confidence Interval for ρα with AR(1) Correlation and

95% CI for Coverage of ρα

Assume Compound Symmetry Assume General Σ

ρ ν+ 1 Quantiles Conf. Limits Quantiles Conf. Limits

0.2 10 (0.952, 0.953) (0.973, 0.974) (0.929, 0.930) (0.934, 0.935)

50 (0.970, 0.971) (0.974, 0.975) (0.946, 0.947) (0.946, 0.948)

100 (0.972, 0.973) (0.974, 0.975) (0.948, 0.950) (0.948, 0.949)

200 (0.973, 0.974) (0.974, 0.975) (0.949, 0.950) (0.948, 0.949)

0.8 10 (0.978, 0.979) (0.992, 0.993) (0.932, 0.934) (0.932, 0.934)

50 (0.993, 0.993) (0.995, 0.996) (0.946, 0.948) (0.946, 0.947)

100 (0.994, 0.995) (0.995, 0.996) (0.948, 0.949) (0.948, 0.949)

200 (0.995, 0.995) (0.995, 0.996) (0.949, 0.950) (0.949, 0.950)
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