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Abstract
Low sensitivity (LS) to the acute effects of alcohol is a known risk-factor for alcoholism. However,
little is known concerning potential information-processing routes by which this risk factor might
contribute to increased drinking. We tested the hypothesis that LS participants would show biased
attention to alcohol cues, compared to their high-sensitivity (HS) counterparts. Participants
performed a task in which alcoholic and nonalcoholic beverage cues were presented bilaterally
followed by a target that required categorization by color. Response times were faster for targets
appearing in alcohol-cued than nonalcohol-cued locations for LS but not for HS participants. Event-
related potential markers of early attention orienting (P1 amplitude) and subsequent attention
reorienting (ipsilateral invalid negativity [IIN] amplitude) indicated preferential selective attention
to alcohol-cued locations among LS individuals. Controlling for recent drinking and family history
of alcoholism did not affect these patterns, except that among HS participants relatively heavy recent
drinking was associated with difficulty reorienting attention away from alcohol-cued locations. These
findings suggest a potential information-processing bias through which low sensitivity could lead to
heavy alcohol involvement.
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Theories of addiction focusing on cognitive-motivational processes hypothesize that substance
abuse often is accompanied by enhancement in the motivational salience of drug-related
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stimuli, such that encountering drug cues activates appetitive/approach motivational states that
enhance the likelihood of use (e.g., Carter & Tiffany, 1999; Franken, 2003; Robinson &
Berridge, 2001, 2003; Stewart, DeWitt, & Eikelboom, 1984). The tight coupling of motivation
and attention (e.g., Engelmann & Pessoa, 2007; Lang, 1995) suggests that users also should
preferentially attend to substance-related cues, a hypothesis supported by numerous studies in
the alcohol literature showing, for example, that heavy compared to moderate social drinkers
(e.g., Cox, Yeates, & Regan, 1999; Duka & Townshend, 2004; Townshend & Duka, 2001)
and alcohol dependent compared to non-dependent drinkers (e.g., Cox, Hogan, Kristina, &
Race, 2002; Fadardi & Cox, 2006; Lusher, Chandler, & Ball, 2004; Ryan, 2002; Sharma,
Albery, & Cook, 2001) show a bias in attending to alcohol-related (relative to nonalcohol-
related) cues. Such biases are troubling because heightened attention to alcohol cues is known
to increase alcohol-related risk processes, such as motivation to drink (e.g., Field & Eastwood,
2005).

In general, such biases in motivation and attention are theorized to develop over time as a
function of increasing alcohol use (see Carter & Tiffany, 1999; Robinson & Berridge, 2001,
2003; Stritzke, Breiner, Curtin, & Lang, 2004). However, recent research in our lab suggests
that a specific risk factor for alcohol abuse – namely, low sensitivity to alcohol’s acute effects
(see Schuckit, 1994; Schuckit & Smith, 2000) – can predict enhanced reactivity to alcohol-
related cues beyond what can be attributed to previous alcohol involvement. In two previous
experiments (Bartholow, Henry, & Lust, 2007; Bartholow, Lust, & Tragesser, in press), low-
sensitivity (LS) individuals (relative to high-sensitivity [HS] individuals) showed enhanced
reactivity to alcohol cues in the P3 component of the event-related brain potential (ERP),
reflecting enhanced activation of the appetitive motivational system (e.g., Carretié et al.,
2000; Ito, Larsen, Smith, & Cacioppo, 1998; Schupp et al., 2000). Importantly, although LS
individuals often drink more than their HS counterparts, these findings have emerged even
after controlling for differences in alcohol use and other risk factors such as family history of
alcoholism and impulsivity.

Previously, we have argued that enhanced P3 reactivity to alcohol cues might represent an
endophenotype (i.e., state-independent, intermediate phenotype linking underlying genetic
vulnerability with clinical outcomes; see Cannon & Keller, 2006; Gottesman & Gould, 2003)
for alcohol abuse, and that LS individuals’ P3 responses could reflect an inherited
predisposition for alcohol cues to engage the appetitive motivational system (see Bartholow
et al., in press). The purpose of the current experiment was to continue to examine how low
sensitivity manifests as a unique risk factor, beyond family history of alcoholism or previous
alcohol use, by investigating a possible vulnerability of LS individuals to biased attentional
processing of alcohol-related cues.

Spatial cueing paradigms often have been used to investigate the manner in which early
attention processes affect visuospatial information processing (Posner & Rothbart, 1980).
Typically, one side (either left or right) of the visual field is cued as a likely target location and
then a target appears in either the cued location (i.e., valid trials) or in the uncued location (i.e.,
invalid trials). Target responses typically are faster for valid than for invalid trials (e.g., Nobre,
Sebestyen, & Miniussi, 2000; Posner, Snyder, & Davidson, 1980), indicating that attention
had been allocated to the cued locations prior to target onset. Simultaneously, given that
attention had been oriented to cued locations, invalid trials require disengaging attention from
the current (cued) location and re-orienting to the (uncued) target locations, resulting in a slower
reaction time.

In the current study, ERPs were used to identify the stage(s) of information processing at which
the hypothesized preferential processing of alcohol cues emerges in LS individuals. In
particular, biases in processing of alcohol-related cues might arise during initial attention
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orienting, later attention maintenance/re-orienting, or both. Two ERP components are of
particular relevance for investigating these two processing stages. First, the posterior, visually-
evoked P1 component is a positive deflection typically peaking around 100 ms post-stimulus
and generated in extrastriate cortex (Di Russo et al., 2001; Hillyard & Anllo-Vento, 1998). In
spatial cueing paradigms the P1 typically is larger for valid than for invalid trials (e.g., Handy,
Green, Klein, & Mangun, 2001; Hopfinger & Mangun, 1998; Mangun & Hillyard, 1991),
reflecting the location to which attention is oriented.

The second component of interest here has been characterized in experiments in which target
waveforms were more negative at sites ipsilateral to the target presentation side for invalid
trials relative to valid trials (Hopfinger & Mangun, 2001; Hopfinger & Ries, 2005). This so-
called “ipsilateral invalid negativity (IIN)” is visible at lateral temporal-parietal regions 200–
300 ms following target onset. According to neuroimaging and lesion data, posterior temporal-
parietal regions are involved in reorienting attention away from invalidly-cued locations and
toward target locations (Chambers, Payne, Stokes, & Mattingley, 2004; Corbetta et al., 2000;
Posner, Walker, Friedrich, & Rafael, 1984). Thus, it is presumed that IIN amplitude reflects
the extent of attentional disengagement from an invalidly-cued location and shifting of
attention to a new location (Hopfinger & Mangun, 2001; Hopfinger & Ries, 2005). When a
target appears in an uncued hemifield, the hemisphere ipsilateral to the target side is involved
in disengaging attention from the cued location and moving attention to the uncued location
(in which the target appeared). Conversely, when a target appears in a cued hemifield and
attention has been allocated to the cued side, no disengagement and reorienting of attention
are needed and thus no IIN should be visible.

In the current study, alcoholic and nonalcoholic beverage cues were presented simultaneously,
one to the left and one to the right side of fixation. Targets were presented either in the same
location as the preceding alcohol cue (AT condition) or as the preceding nonalcohol cue (NAT
condition). Given that motivationally-salient stimuli tend to capture attention (Engelmann &
Pessoa, 2007), and that alcohol cues appear to have particular motivational significance for LS
individuals (Bartholow et al., 2007, in press), we predicted that LS individuals’ attention would
be biased toward alcohol cues, as indicated by (a) faster responses to targets in the AT than in
the NAT condition; (b) larger target-evoked P1 for AT trials than for NAT trials (due to
spontaneous attention capture by alcohol cues); and (c) no IIN on AT trials but a robust IIN
on NAT trials, reflecting LS participants’ maintenance of early orienting and difficulty
disengaging from alcohol-cued locations. Moreover, if low sensitivity represents a risk factor
distinct from previous alcohol use and familial alcoholism (see Bartholow et al., 2007), these
predictions should hold irrespective of differences in recent alcohol consumption or family
history. Figure 1 illustrates this predicted alcohol-related attentional bias for LS participants.

Method
Participants

Forty-six undergraduates (22 women) at the University of Missouri reporting no history of
major medical or psychiatric disorders participated in exchange for course credit. Participants
were recruited on the basis of self-reported sensitivity to the effects of alcohol using 5 items
from the Alcohol Sensitivity Questionnaire (see next section) that previous work has indicated
best differentiate HS and LS individuals (Williams, Sher, & Bartholow, 2009), which were
administered during a mass web-based survey completed several weeks prior to the experiment.
Respondents whose preliminary sensitivity scores fell within the lower 25% of all responses
(i.e., needing fewer drinks to experience alcohol-related effects) were recruited for the potential
HS group; those whose responses fell within the upper 25% were recruited for the potential
LS group.
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Self-report Measures
Alcohol sensitivity questionnaire (ASQ)—Upon their arrival at the lab, participants’
sensitivity to the effects of alcohol was measured with the entire 16-item ASQ (O’Neill, Sher,
& Bartholow, 2002; see also Bartholow et al., 2007, in press). The first 10 items relate to
experiences typically associated with the ascending limb of the blood alcohol concentration
(BAC) curve, such as feeling high or ‘buzzed,’ becoming more talkative, more flirtatious, etc.
(i.e., positive, stimulating effects). For each item, respondents first indicate whether they have
ever experienced the given effect (e.g., “Do you ever become more talkative after drinking
alcohol?”), and if they have, the minimum number of standard drinks they could consume before
experiencing that effect. The remaining 6 items tap experiences typically associated with the
descending limb of the BAC curve, such as feeling nauseated, vomiting, or passing out (i.e.,
negative, sedating effects). These items are structured like the first 10, except that participants
estimate the maximum number of standard drinks they could consume without experiencing
the effect. An overall sensitivity score is calculated by averaging the number of drinks a
participant reports across all effects (here, α = 0.94). For each participant, a given item is
included in their score only if they endorse that effect. Given that men generally report lower
sensitivity than women, ASQ scores were stratified by sex to ensure roughly equal
representation of men and women in the sample. Within-sex median splits (of the ASQ score)
were used to determine HS and LS groups. Table 1 shows mean alcohol sensitivity scores of
men and women included in the HS and LS groups.1

Alcohol use and problems—Participants were asked to report their alcohol use within the
past 30 days by estimating the number of drinks they typically consume per occasion (quantity)
and the number of drinking occasions they typically experience per week (frequency; see Table
1). For current purposes a drinking quantity/frequency composite (drinking Q/F) was computed
as the product of each participant’s drinking quantity and frequency scores. Participants also
completed a 24-item measure of alcohol-related negative consequences (e.g., “Have you been
arrested for drunken driving or driving while intoxicated?”) and alcohol abuse or dependence
symptoms (e.g., “Have you had ‘the shakes’ after stopping or cutting down on drinking?”).
Response options included Never; Yes, but not in the past year; In the past year but not in the
past 3 months; and Yes, in the past 3 months: once; twice; 3 times; 4+ times,” (scored 0, .3, .
5, 1, 2, 3, & 5, respectively). An alcohol problems index was computed for each participant as
the sum of scores across all 24 items (α = .87; see Table 1).

Family history of alcoholism—Familial risk for alcoholism was assessed using Mann,
Sobell, Sobell, and Pavin’s (1985) family tree questionnaire. Participants list each of their first-
and second-degree relatives and indicate for each one whether they are (or were) a nondrinker,
a nonproblem drinker, or experienced problems from drinking. For current purposes,
participants were considered to be at increased familial risk if any first- or second-degree
relatives were identified as having an alcohol problem (n = 21), and at low familial risk if no
relatives were identified as such (n = 25).

1To ensure that any differences in attention to alcohol cues between HS and LS participants could not be attributable to differences in
the valence of alcohol effects endorsed by each group, we examined the total number of positive and negative alcohol effect items endorsed
on the ASQ using a 2 (Group) × 2 (Sex) × 2 (Item valence) analysis of covariance, including the drinking quantity/frequency composite
variable as a covariate. A main effect of Group indicated that LS participants generally endorsed more items of both types than HS
participants, F(1, 26) = 12.03, p < .01. The Group × Item valence interaction was not significant, F(1, 26) = 1.43, p = .24. However, it
is interesting to note that LS participants as a group endorsed many more negative items (105) than did HS participants (72), whereas
positive item endorsement was more similar between groups (87 and 77, respectively). Thus, any evidence of biased attention to alcohol
cues among LS participants cannot be attributed to LS individuals experiencing more positive and/or fewer negative alcohol effects than
HS participants.
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Modified Dot-Probe Task
A computerized task was used to assess biased allocation of attention to alcohol cues.
Participants were asked to focus on a black fixation cross shown on a gray background
presented in the upper center of the screen, which remained throughout the task. On each trial,
pictures of one alcohol beverage (e.g., beer bottle, wine glass) and one nonalcohol beverage
(e.g., lemonade, water) were presented simultaneously in the upper-left and upper-right corners
of the screen for 250 ms. These cues were followed 268 ms later by a target (i.e., stimulus onset
asynchrony was 518 ms), shown for 50 ms. Targets consisted of a blue and white or green and
white 3 × 3 checkerboard pattern that appeared in one of the spaces previously occupied by a
beverage cue. Participants’ task was to categorize the target’s color by pressing a key with the
index or middle finger of their right hand (counterbalanced across participants) as quickly as
possible. The intertrial interval was 1000 ms. The task consisted of 640 trials. However, only
448 of these trials included a target; the remaining 192 trials were cue-only trials included to
reduce response-related anticipatory processes. An equal proportion of alcohol and nonalcohol
cues, and blue and green targets, appeared on the left and right sides of fixation.

ERP Recording and Data Analysis
Electroencephalographic (EEG) data were recorded from 29 standard scalp locations
(American Encephalographic Society, 1994) using an electrode cap (Electro-cap International,
Eaton, OH). Electrodes (tin) were referenced online to the right mastoid and an average mastoid
reference was derived offline. The recording locations included 5 midline sites (Fz, FCz, Cz,
CPz, and Pz), 12 lateral sites to the left of the midline (Fp1, F3, FC3, FT7, C3, T3, CP3, TP7,
P3, T5, O1, and left mastoid) and their homologous sites to the right of midline. Vertical and
horizontal eye movements (EOG) were monitored using electrodes placed above and below
the left eye and 2cm external to the outer canthus of each eye, respectively. EEG and EOG
signals were amplified with a Neuroscan Synamps amplifier (Compumedics, Inc., Charlotte,
NC) and filtered on-line at .05 to 30 Hz at a sampling rate of 500 Hz. Impedances were
maintained at or below 5 kΩ. Blinks measured at VEOG were corrected from the EEG using
a regression-based procedure (Semlitsch et al., 1986). Epochs with horizontal eye movements
exceeding ± 25 µV between the 100 ms pre-stimulus and 400 ms post-stimulus and those
containing scalp and mastoid potentials exceeding 100 µV were excluded from analyses prior
to averaging waveforms according to participant, electrode and stimulus conditions. Only
waveforms obtained during correct-response trials were included in the averages.

For the P1 analysis, we selected four electrodes located in the temporal-occipital areas (T5,
T6, O1, and O2) as these were the locations at which P1 effects were largest, consistent with
previous work (e.g., Hopfinger & Mangun, 1998). We averaged potentials combined for the
left-side and right-side locations and measured mean amplitudes within a time window between
124 and 166 ms post-stimulus, which represents 20 ms before and after average P1 peak latency.
The IIN is reported to be largest at lateral temporal-parietal sites (e.g., Hopfinger & Ries,
2005), which was the case here. Thus, IIN analyses focused on the waveforms obtained at the
T5 and T6 electrodes. The IIN was computed as the average amplitude within 220–280 ms
post-stimulus (30 ms before and after average peak latency) at electrodes ipsilateral to the target
side.

Results
Data from 12 participants were excluded from analyses: 6 due to blink correction failure, 4
because of excessive horizontal eye movements, 1 due to a failure in response time recording,
and 1 due to missing responses to the recent drinking items. Thus, data from 34 participants
(17 in each group) were used in statistical analyses.
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As shown in Table 1, LS participants reported significantly more recent drinking than HS
participants, but the groups did not differ significantly in terms of mean number of alcohol-
related problems. Also, as in previous work (Bartholow et al., 2007,in press), LS participants
(6 at increased risk) were no more likely than HS participants (9 at increased risk) to have
familial alcoholism history, χ2 (1) = 1.07, p = .30. To determine whether predicted interactions
between group and trial type were robust to differences in recent alcohol consumption,
Drinking Q/F was included in each analysis as a covariate.2 Behavioral and ERP data were
submitted to separate 2 (Group; LS, HS) × 2 (Sex) × 2 (Trial type; AT, NAT) mixed-factorial
analyses of covariance (ANCOVAs) with repeated measures on the third factor.

Average response accuracy was 95% and did not differ significantly across groups or
conditions. Average RTs showed the predicted Group×Trial type interaction, F(1, 26) = 5.99,
p < .05. Least squares means (adjusted for the covariate) associated with this interaction are
given in Table 2. Separate paired t-tests revealed that LS participants responded more quickly
in the AT than in the NAT condition, t(16) = 2.34, p < .05, but that HS participants’ responses
did not differ reliably by condition, t(16) = −1.17, ns.

The waveforms shown in Figure 2 suggest that the P1 was larger in the AT than in the NAT
condition for LS participants, but was larger in the NAT than in the AT condition for HS
participants. This apparent group difference was confirmed by a significant Group×Trial type
interaction, F(1, 26) = 7.01, p < .05. Separate t-tests on mean P1 amplitudes within each group
showed that the difference between AT and NAT conditions was reliable for LS participants,
t(16) = 2.45, p < .05, but not among HS participants, t(16) = −0.76, ns. These results suggest
that alcohol cues (relative to nonalcohol cues) captured LS participants’ attention. No other
effects were significant in this analysis.

Waveforms depicting the IIN are shown in Figure 3. The ANCOVA on IIN amplitudes yielded
the predicted Group×Trial type interaction, F(1, 26) = 7.44, p < .05. Planned contrasts showed
that the IIN was significantly larger (more negative-going) in the NAT condition than in the
AT condition among LS participants, t(16) = 3.19, p < .01, but did not differ by condition
among HS participants, t(16) = −.02, ns. In addition, the analysis revealed a Group×Trial
type×Drinking Q/F interaction, F(1, 26) = 4.17, p = .051. Figure 4 presents mean IIN
amplitudes separately as a function of trial type and drinking Q/F levels for each group.3
Inspection of the figure shows that whereas LS participants showed the predicted pattern of
more negative-going (less positive) IIN on NAT than on AT trials regardless of recent drinking
levels, only HS participants whose recent drinking was relatively light showed no difference
across trial types (as in Figure 3). In contrast, HS participants whose recent drinking was
relatively heavier showed an IIN effect comparable to that of the LS participants.

Discussion
Recent research (e.g., Cox et al., 1999, 2002; Duka & Townshend, 2004; Townshend & Duka,
2001) has indicated that heavy social drinkers and alcoholics show attention biases to alcohol
cues. The current study represents the first demonstration of such a bias among individuals at
risk for alcohol use disorder due to low sensitivity. LS individuals’ elevated risk for developing
alcoholism is well established (e.g., Schuckit, 1994; Schuckit & Smith, 2000). Also, recent
findings indicate that alcohol cues are more likely to activate appetitive motivational processes

2Similar ANCOVAs were conducted using the alcohol problems index and family history score as covariates. As with the analyses
presented in the text using the quantity/frequency covariate, controlling for these variables did not eliminate the predicted Group × Trial
type interactions for any of the dependent variables. Also, there were no significant interactions between Sex and other predictors in any
of the models.
3Note that, although presentation of this complex, 3-way interaction is facilitated by dichotomizing the drinking Q/F variable, in all
analyses the continuously-scored Q/F variable was used.
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in LS than in HS individuals (Bartholow et al., 2007, in press). The current data are consistent
with this notion, elucidating a theoretically plausible information-processing mechanism
through which LS individuals might pursue and consume more alcohol than their HS peers.
That is, LS individuals’ attention appears more likely to be drawn to alcohol cues, likely due
to their apparent motivational significance for these individuals (Bartholow et al., 2007, in
press), which then is likely to initiate appetitive/approach motivational processes that, in
theory, are likely to increase consumption (see Robinson & Berridge, 2001). Importantly,
although our analyses indicate that differences in recent drinking experiences do not account
for the effects of low sensitivity on attention bias, it is not necessarily the case that this bias
completely precedes experience with alcohol. Rather, it could be that once drinking is initiated
(e.g., during adolescence) alcohol-related experiences differentially shape the development of
information-processing biases for LS and HS individuals, putting LS individuals on a higher-
risk trajectory.

The current ERP data provided evidence of the loci and time course of events within the
information processing system associated with observed behavioral bias effects. Specifically,
the P1 response was larger for AT than NAT trials among LS participants, indicating that their
attention was captured by alcohol cues very early in processing. Also, the fact that the IIN was
smaller (less negative-going) in the AT than the NAT condition for LS participants indicates
that their initial orienting bias was maintained during a somewhat later stage (200–300 ms post-
stimulus). Specifically, LS participants disengaged attention from a current (i.e., alcohol-cued)
location and re-oriented to the opposite (i.e., target) location on NAT trials, but simply
maintained their current attentional orienting (i.e., to the alcohol-cued location) on AT trials.

Unlike the LS group, HS participants did not preferentially attend to either cued location
immediately after cue onset, as indicated by their lack of a trial type effect in the P1 component.
However, recent drinking levels influenced later attention maintenance/reorienting among HS
participants. Specifically, the 3-way interaction observed in the IIN data suggests that HS
participants whose recent drinking was heavier showed evidence of having oriented toward
the alcohol cue on AT trials, indicated by their smaller (less negative) IIN on those trials.

The pattern in the IIN data suggests an intriguing possibility concerning different potential
routes by which risk for heavy alcohol involvement could manifest via information-processing
biases. Specifically, the fact that LS participants’ ERP and behavioral responses were
unaffected by recent drinking suggests that their bias reflects a more enduring propensity, and
is consistent with the recently-proposed possibility that electrocortical responses to alcohol
cues could represent an endophenotype for alcoholism (see Bartholow et al., in press). In
contrast, HS participants’ IIN responses were influenced by recent drinking, such that those
who drank relatively more in the recent past showed evidence of difficulty re-orienting
attention away from alcohol-cued locations. This finding suggests that individuals who are not
at elevated risk due to low sensitivity can develop information-processing biases via their
drinking behavior.

LaBerge (2001, 2002) proposed a neuro-circuit theory of attention, which accounts for the roles
of different cortical areas in modulating brief (i.e., orienting) and sustained (i.e., maintenance)
attention. According to this theory, attention is sustained via motivational regulation of
attention control when stimuli are motivationally significant in some manner. The current P1
and IIN data nicely fit within this framework. Specifically, the brief attention-orienting effect
reflected in the P1 suggests more consistent orienting to alcohol cues among LS than HS
participants. Moreover, the IIN data indicated that attention was consistently sustained in the
AT condition among LS participants, supporting the notion that the regulation of attention
among LS individuals was modulated by the motivational significance of alcohol cues.

Shin et al. Page 7

Psychol Addict Behav. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We have argued that this motivational salience among LS individuals reflects a potential
genetic vulnerability (Bartholow et al., 2007, in press; see also Heath et al., 1999; Schuckit et
al., 2001). However, it should be acknowledged that to date evidence supporting this contention
is sparse, and some part of this effect could reflect an acquired response (though not necessarily
due to consumption history). Additionally, the fact that sensitivity level and family history of
alcoholism appear either uncorrelated (as in this case; see also Bartholow et al., 2007, in
press) or only modestly correlated (e.g., see Shuckit & Smith, 2000) suggests that any genetic
component of sensitivity would only partially overlap with factors that manifest in family
members’ alcohol-related problems. Recent theorizing (Newlin & Renton, 2010; Schuckit,
Smith, & Trim, 2010) and reviews (Newlin & Thompson, 1990) indicating that vulnerability
associated with family history and that associated with low sensitivity manifest differentially
on the ascending and descending limbs of the blood alcohol concentration curve, respectively,
suggests one important way in which expression of these two risk pathways differs.

In conclusion, the current findings indicate that LS individuals have a bias in attending
preferentially to alcohol-related cues. This bias cannot be attributed to differences in recent
alcohol use, alcohol-related problems or family history of alcoholism. Thus, these findings
suggest a possible route by which LS individuals are prone to increased alcohol use. Regardless
of whether attentional bias is inherited or acquired, the current findings, coupled with other
recent work addressing the clinical significance of the incentive salience of drug cues (e.g.,
Cox et al., 2002; Field & Eastwood, 2005), supports attentional retraining interventions aimed
at rectifying alcohol related cognitive biases by prohibiting attention allocation to alcohol cues
or redirecting attention to nonalcohol stimuli (see Wiers et al., 2006).
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Figure 1.
A schematic depiction of the conditions and predicted attention bias for alcohol cues among
LS participants. The letter “A” denotes alcohol cues and the letter “N” denotes nonalcohol
cues. The dashed ovals represent the locations to which participants presumably attend. Biased
attention to alcohol cues would be evident if (1) the P1 is enhanced and the IIN is absent when
targets appear in alcohol-cued locations (AT trials); and (2) the P1 is reduced and a robust IIN
occurs when targets appear in nonalcohol-cued locations (NAT trials).
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Figure 2.
Grand-average ERPs elicited by targets at parieto-occipital electrodes as a function of trial type
and sensitivity group. The waveforms shown here were averaged for the left and the right
electrodes, separately. The arrows indicate the P1 component.
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Figure 3.
Grand-average ERPs elicited by targets at temporo-parietal sites ipsilateral to the target side
as a function of trial type and sensitivity group. The arrow indicates the time window of interest,
in which IINs were observed.
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Figure 4.
Mean IIN amplitudes measured at temporo-parietal sites ipsilateral to the target side as a
function of trial type, participant group and drinking Q/F. Vertical bars represent ± standard
errors. Note that a less positive mean value indicates a larger (more negative-going) IIN
response. Note also that although the drinking Q/F variable was dichotomized (median split)
for ease of data presentation, the continuous recent drinking variable was used in the analysis.
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Table 2

Least Squares Mean RTs (in ms), P1 and IIN Amplitudes (in microvolts), Adjusted for the Drinking Quantity/
Frequency Composite, as a Function of Group and Trial Type.

Trial type LS (n=17) HS (n=17)

RT AT 516.54 (57.31) 514.61 (44.71)

NAT 522.59 (55.89) 510.13 (43.11)

P1 AT 3.36 (2.29) 3.67 (2.35)

NAT 2.93 (2.26) 3.85 (2.48)

IIN AT 2.89 (2.29) 1.88 (2.24)

NAT 2.09 (1.94) 1.83 (2.19)

Note: Numbers in parentheses are standard deviations. AT = targets appearing on the alcohol-cued side; NAT = targets appearing on the nonalcohol-
cued side.
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