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Abstract

Traditional survival analysis was developed to investigate the occurrence and timing of a single

event, but researchers have recently begun to ask questions about the order and timing of multiple

events. A multiple event process survival mixture model is developed here to analyze non-

repeatable events measured in discrete-time that may occur at the same point in time. Building on

both traditional univariate survival analysis and univariate survival mixture analysis, the model

approximates the underlying multivariate distribution of hazard functions via a discrete-point

finite mixture in which the mixing components represent prototypical patterns of event

occurrence. The model is applied in an empirical analysis concerning transitions to adulthood,

where the events under study include parenthood, marriage, beginning full-time work, and

obtaining a college degree. Promising opportunities, as well as possible limitations of the model

and future directions for research are discussed.
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Survival analysis is a useful tool for understanding both the occurrence and the timing of

events. While survival analysis was originally developed to investigate the human lifetime,

it is equally applicable to questions regarding the occurrence of any type of event, and there

are numerous applications in the social and behavioral sciences. For example, clinical

psychologists investigating the occurrence of affective illnesses or therapy termination

benefit from the survival analysis framework (e.g. Corning & Malofeeva, 2004), as do

developmental researchers who investigate the transition from one developmental stage to

another (e.g. Ha, Kimpo, & Sackett, 1997), and researchers following students’ entrance and

exit from school (e.g. Bowers, 2010).
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Event history data is rather unique in that it aims to determine both if and when an event

occurs, yet there are often individuals who do not experience the event within the time frame

of the study. Traditional linear and logistic regression techniques are not suited for this kind

of missing data problem, termed censoring. For censored individuals, it is unknown when

they will experience the event, or in some cases whether they will experience the event at

all. Survival analysis techniques were formulated to analyze this type of data (Singer &

Willet, 2003; Lee & Wang, 2003). The basic statistical concepts of survival analysis depend

on whether the time variable measuring the state of the event is continuous or discrete.

Continuous-time survival methods assume event times can be measured exactly – thus there

should be no “ties” in the dataset where two or more people have the same event time.

While it may be logical to think of time as a continuous variable, this assumption is often

unrealistic in practice. This is especially true for data collected in the social and behavioral

sciences, as researchers frequently ask for the year or age of an event rather than the exact

date. Also, events can sometimes only occur at discrete points in time (e.g. number of

therapy sessions before dropout). In addition, discrete-time methods can be used to

approximate the results of a continuous-time survival analysis (Vermunt, 1997), and are

conceptually and computationally simpler. As such, the remainder of the paper focuses on

models where time is measured on a discrete scale.

Moving beyond traditional survival analysis, researchers have recently begun to ask

questions about the order and timing of multiple events. Multivariate survival models, such

as recurrent event models, parallel data models, and competing risks models, relax the

standard requirement that all time variables are univariate and independent (see Hougaard,

2000). For example, Gabadinho et al. (2011) discuss a technique called trajectory mining

and provide an R package for analyzing sequences of events such as career or family

trajectories. While there has been great progress on the analysis of multivariate event history

data using these kinds of models, there is a demonstrated need for new analytic methods in

investigating the order and timing of different non-repeatable events which may occur at the

same point in time and do not necessarily occur in a sequential manner. Many researchers

investigating several such events have resorted to completing a separate survival analysis for

each event, and have not directly examined the interdependence of the events. For example,

Schwartz et al. (2010) investigated how positive youth development influenced tobacco,

alcohol, illicit drug, and sex initiation by conducting four separate survival analyses.

Similarly, Scott et al. (2010) examined the influence of gender and marital status on the first

onset of mood, anxiety, and substance use disorders by conducting several survival analyses.

While analyzing each event separately can be useful, it gives no insight on how the events

are related to each other.

Vermunt (1997) provides a general log-linear framework for modeling event history data

with mixture models and builds off the work of Mare (1994) who presented a bivariate

survival mixture model for analyzing event times of clustered observations, for example

siblings or couples. Vermunt also suggests that multiple processes measured in discrete-time

may be modeled by specifying one of the events as the dependent variable and treating

others as time-varying covariates. However, researchers must rotate the dependent variable

and run multiple models in order to investigate the reciprocal relationships. Malone et al.
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(2010) used a different approach for discrete-time data called dual-process discrete-time

survival analysis, which expands on associative latent transition analysis (Bray, Lanza, &

Collins, 2010). This approach models two time-to-event processes concurrently by linking

the processes to each other, similar to a cross-lagged panel design. They used the model to

test the gateway drug hypothesis by using a highly constrained latent transition matrix to

model and test the cross-links between time to illicit drug use and time to licit drug use.

In addressing the need for a model which can be expanded for more than two events and

which is developed specifically for the situation where the events may occur at the same

point in time for an individual, we have two main objectives. The first objective of this

paper is to introduce a discrete-time Multiple Event Process SUrvival Mixture (MEPSUM)

model, a latent variable approach to analyzing the interdependencies between multiple non-

repeatable events which are measured in discrete-time. The approach is mathematically a

generalization of single-event discrete-time survival mixture analysis (Muthén & Masyn,

2005), but is conceptually different in some ways and has several advantages in addition to

incorporating multiple events. The second objective of the paper is to demonstrate the

usefulness of the model through an empirical analysis, which was the motivation behind this

work. The analysis concerns the timing and occurrence of four different markers of

adulthood: parenthood, marriage, full-time work, and obtaining a college degree from

individuals in the National Longitudinal Study of Adolescent Health (Add Health).

The remainder of the introduction is organized into four sections. In the first section, the

motivating example mentioned above is introduced. The second section outlines the basic

concepts of traditional univariate discrete-time survival analysis, in order to introduce the

discrete-time multiple event process survival mixture model in the third section. The fourth

section regards model description and evaluation tools, and these are illustrated in the

empirical analysis concerning transitions to adulthood that follows.

Motivating Example

Researchers have long established that the events experienced by individuals over their

lifetimes are interdependent. For example, individuals may make decisions on whether they

would like to continue their education based on their family status, such as whether they are

married and have children (Marini, 1984). More broadly, life course research is guided by

the notion that an individual’s development involves the order and timing of multiple social

roles over time where the meaning of a given social role is dependent upon the presence or

absence of other roles (Elder, 1985). Yet instead of investigating the multidimensional

nature of the life course, researchers typically focus on one aspect of the life course, such as

timing of an individual’s first child; then they examine this event in isolation from other life

course events using traditional methods such as linear and logit regression and univariate

event history models. However, as the significance of a role depends on the role

configuration, dissecting the life course in such a way limits our understanding of the life

course as a dynamic phenomenon (Macmillan & Eliason, 2003).

In aiming to understand the dynamic, multidimensional nature of the life course, the

MEPSUM model is applied to the timing of four different transitions into adulthood. The
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purpose of this analysis is both to demonstrate the model’s applicability to life course theory

and to build on prior research by examining the latent classes which reveal pathways to

adulthood, or patterns of the events over time (Shanahan, 2000; Shanahan, Miech, & Elder,

1998). The life course pathways found from this model are prototypical and are not expected

to be the only pathways through the life course, but they provide a glimpse at the underlying

multivariate distribution of pathways, of which there are likely thousands of possibilities.

Additionally, this example is useful in examining the ability of the model to detect

differences in pathways taken by different social groups. By examining the

multidimensional nature of the life course, the model gives insight into the possible

mechanisms leading to differences in life course pathways. It is possible that a covariate

influences the multivariate distribution of the risk of multiple events in a way that does not

lend itself to be discovered by traditional methods that analyze events one at a time. For

example, a covariate might increase the risk of transitioning into family roles for those who

do not pursue college education but decrease the risk of transitioning into family roles for

those pursuing a college education. Thus, the added complexity of the MEPSUM model has

potential to increase our understanding of multiple transitions over time.

Discrete-Time Survival Analysis

Before introducing the MEPSUM model in more detail, it is useful to outline the basic

concepts of univariate survival analysis. Let T denote the event time, and j the discrete time

point, with j =1, 2, …, J. There are many methods of characterizing the probability

distribution of the event time. The simplest way is to define the probability of experiencing

an event at a specific time period:

(1)

Another option is the survival function, which is defined as the probability that an individual

survives longer than j and is denoted Sj:

(2)

with Sj = 1 at j = 0. The survival function is often used to find descriptive measures of the

event history, such as the median lifetime: an estimate of the time period when the event has

occurred for fifty percent of the population. Such descriptive measures are important when

there is censoring, as measures such as the sample mean will not be useful in describing the

center of the distribution when the event time is not known for all individuals.

An equally useful function known as the lifetime distribution function defines the

probability that an individual has experienced the event by time j:

(3)
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Importantly, the number of individuals who experienced the event at T = j is unknown if

there are censored individuals. Thus, neither the survival function nor lifetime distribution

function can be directly estimated, as fj is unknown.

The hazard probability h is the first function that can be estimated with both censored and

uncensored individuals. It is the conditional probability that the event occurs at j given that it

did not occur prior to j:

(4)

The hazard for time j is estimated as the number of events that occur at j over the number of

individuals in the risk set. It thus tells us the unique risk of event occurrence for each time

period among those eligible to experience the event, which is exactly what we want to

know: whether and when events occur. It is estimable with censored individuals as it is a

conditional probability computed only using individuals eligible to experience the event, and

can be computed for every time period when event occurrence is recorded. Under an

assumption of noninformative censoring, we can assume the estimated hazard function

applies to the entire population, as all non-censored individuals at each time period are

representative of all individuals who would have remained in the study if censoring had not

occurred.

It is important to note that the hazard function can be re-written in terms of fj and Sj:

(5)

This relationship is useful in obtaining an estimate of the survival function when there are

censored individuals, as Equation (4) can be rearranged to show:

(6)

Given this relationship and the fact the survival function is equal to one at j = 0 (no

individual experienced an event before the beginning of the time variable) this leads to the

idea that the survival probability at time period j is the product of the hazard probabilities for

each of the earlier time points:

(7)

The lifetime distribution function can similarly be estimated indirectly from the hazard

probabilities, or by the simple relationship between Dj and Sj given in Equation (3).

The next step of a survival analysis is to model the probability distribution and add

covariates to the model to examine their influence. In line with Singer and Willet (1993), a

logit link function will be used for the remainder of the paper, but other link functions such

as the complementary log-log link are equally applicable to all of the survival methods
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discussed hereafter. The unstructured hazard function at time j without covariates is then

given by:

(8)

where αj is the intercept parameter for time j. This model represents the log-odds of event

occurrence as a function of the time period only.

There are almost countless ways to expand on the simple unstructured discrete-time hazard

model discussed here (e.g. Singer & Willet, 2003; Allison, 1999). For example, instead of

allowing an intercept for each time period which places no constraints on the shape of the

hazard, it is possible to have a polynomial representation of time. When the number of time

periods is large or some time periods have very small risk sets, it can be advantageous to fit

a more parsimonious model. For simplicity purposes, the remainder of the paper will focus

on the unstructured hazard with a logit link function, but the equations that follow can be

easily generalized to alternative functions as mentioned above. Finally, it is also possible for

both time invariant as well as time varying predictors to be added to the model. Traditional

univariate survival analysis thus provides an important conceptual and analytic framework

from which to evaluate if and when one non-repeatable event occurs.

Model for Multiple Events

A discrete-time Multiple Event Process SUrvival Mixture (MEPSUM) model is now

developed to examine multiple non-repeatable events. A finite mixture is used to

approximate the multivariate hazard distribution of the events (consistent with Heckman &

Singer, 1984; Nagin, 1999; and Nagin & Land, 1993). The components of the mixture, or

latent classes, represent local regions within the multivariate distribution, providing a

succinct summary of individual differences in patterns of event occurrence over time. In

other words, the model provides a non-parametric way to capture associations between

events through the identification of latent classes of individuals with similar risk, or hazard,

for multiple events over time. Although it may be tempting to interpret these classes literally

(i.e., as qualitatively distinct population subgroups), we regard it as more likely that the

underlying multivariate hazard distribution is in fact continuous in nature. Thus, the classes

merely provide a statistically expedient way to represent this distribution in a simple,

mathematically tractable form that captures evidence in the data of how the events are

related to each other. The model is easily expanded beyond two events and enables

researchers who aim to analyze multiple events to utilize all individuals in their dataset,

including those with censored event times.

Substantively, the model allows researchers to understand both the order and timing of the

events through examination of the hazard functions both within each latent class and across

latent classes. Additionally, both the survival function and lifetime distribution function for

each event can be compared across latent classes, as these functions may be estimated

indirectly from the fitted hazard functions through Equation (3) and Equation (7). Predictors

Dean et al. Page 6

Psychol Methods. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



can be incorporated into the model to investigate potential influences on the risk for multiple

events over time.

Suppose the event history variable yipj for person i represents whether a process of type p (p

= 1, 2, …, P) occurs at time period j (j = 1, 2, …, Jip) and the response vector yi holds the

event history variable across all time periods and processes [(yi11, …, yi1Ji1), (yi21, …,

yi2Ji2),…,(yiP1,…,yiPJiP)]’. The total number of time points under study for event process p

is represented by Jp. Note the flexibility of the model in that the number of time periods

studied can vary between processes, the width of the time periods can vary within processes,

and the length of the vector can vary between individuals.

Let yipj = 0 if the non-repeatable event for process p did not occur for individual i at that

time period or earlier and yipj = 1 if the event occurred at that time period. By framing the

data in this way, individuals only contribute data at j for process p when they are in the risk

set at j for process p (i.e., when the event has not yet occurred), similar to a standard

univariate survival analysis. For example, consider two event processes (e.g. onset of

depression and onset of an anxiety disorder), which are both measured annually from 10

years old to 14 years old. An individual who responds at age 15 with no history of either

disorder would have the event history ( 0 0 0 0 0 ) for each process. In contrast, consider an

individual who is measured at age 13 who was diagnosed with an anxiety disorder at age 11.

The event history for depression would only include data from ages 10 to 13 ( 0 0 0 0 ), and

the event history for anxiety would only include data from ages 10 to 11 ( 0 1 ). Individuals

with an unknown event time are said to be censored, and the model assumes that this data is

missing at random. This assumption of noninformative censoring is important, for we can

then assume all non-censored individuals at each time period are representative of all

individuals who would have remained in the study if censoring had not occurred. This

allows generalization to the entire data set and thus the original population.

The risk of event occurrence (yipj = 1), or the conditional probability of event occurrence

given it did not occur before, for event process p in time period j within latent class k is

represented by hpjk. Within latent class k, hpjk is modeled using a simple unstructured

discrete-time hazard function with time-specific intercept αpjk:

(9)

A more complex version of the model could include both effects of time-invariant and time-

varying covariates directly in the hazard function above, which would create direct effects of

the covariates on the hazard functions. Note that adding such direct effects substantially

increases the complexity of the model and can create difficulties for interpretation. If

necessary, direct effects should initially be entered as class-invariant, as any parameter that

varies over latent classes provides information to identify and discriminate the latent classes

(Petras & Masyn, 2010).

It is also possible to structure the hazard function, such as imposing a quadratic form.

However, caution is needed before imposing such a structure. Basing this structure on the

shape of the total-sample estimated hazard function may be incorrect, as it is possible that
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this shape will not hold within or across latent classes, as will be seen in the empirical

example that follows. Additionally, it is possible that different events have different

parametric forms. Results from the MEPSUM model with unstructured hazard functions can

serve as a guide to possible parametric forms of the hazard functions.

The model assumes that all marginal associations among the hazard functions are captured

though between-class differences, so that the observed hazard indicators are independent

within latent class. This implies the probability of a specific response vector within a given

latent class k can be obtained by simply multiplying the probability of all of the responses:

(10)

The indicator variable yipj functions as a device for selecting the appropriate probability by

which to multiply. When the event occurs (yipj = 1) for process p at time period j, the model

multiplies by hpijk, versus event nonoccurrence for process p at time period j when the model

multiplies by (1 - hpijk).

The overall probability of response pattern yi is a weighted average across all of the latent

classes of the probability of being in latent class k given by πik and probability of yi given

latent class k as defined in Equation (10):

(11)

where πik is modeled using standard multinomial logistic regression. With time-invariant

predictors Xi, this is given by:

(12)

where the last class is a reference class with γ0K = 0 and , and . This

leaves us with the final equation for the probability of an event history response vector:

(13)

and the likelihood function:

(14)

which is used to find optimal parameter estimates. In large sample surveys, individuals are

often drawn with unequal selection probabilities and the contribution of individual i may be
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weighted by a sample weight, which is often computed as the inverse probability of

selection into the sample or through a function that also takes other features of the survey

into account (Kish, 1965; Lohr, 2009).

The model may be fit using latent variable modeling software such as Mplus (Muthén &

Muthén, 1998-2010) or Latent Gold (Vermunt & Magidson, 2005), which obtain maximum-

likelihood model parameter estimates using an Expectation-Maximization (EM) algorithm.

Researchers should be aware of an issue that commonly arises with modeling the probability

of a binary outcome with a logit link: the logit is undefined if the probability is exactly zero

or one. This could occur in time periods where there is no risk of event occurrence. To

address this issue, Mplus implements default bounds on the logits of ±15, while Latent Gold

utilizes a Bayesian approach, including a Dirichlet prior for the latent and conditional

response probabilities that serves to smooth parameter values away from the boundary

solution.1 No matter what software program is selected, researchers should remain cognizant

of the methods employed by the program to address this issue. It should also be noted that

mixture models in general are susceptible to converge at local rather than global maxima.

Multiple starting values should be used, and the convergence pattern should be monitored

(McLachlan & Peel, 2000; Hipp & Bauer, 2006). Example data and code for fitting the

model are given at www.unc.edu/~dbauer.

Importantly, the single event version of this model with unstructured hazard functions,

presented by Muthén & Masyn (2005), is not identified without covariates, as there is not

enough information in one event process for the model to differentiate latent classes. An

unfortunate side effect is that the classes revealed from a single event mixture model are

then necessarily dependent upon the covariates entered into the model and different sets of

covariates may result in nontrivial differences in the formation of the latent classes. In

contrast, a major benefit of the MEPSUM model for multiple events is that it can have

positive degrees of freedom for multiple classes, even with unstructured hazard functions

and in the absence of covariates. This is due to the fact that with multiple event processes,

the observed variables are independent within event process, but are not independent across

processes, which can result in positive degrees of freedom. The latent variable is thus able to

capture interdependencies between the hazard functions of the different process through the

addition of latent classes. Identification of the model without covariates thus allows

investigation of the stability of the latent classes, through comparison of model results with

and without covariates.

However, as in all models, empirical underidentification may still be a concern. When there

is little dependence between event history indicators across processes, the resulting

information matrix can be so empirically near non-positive definite that the software fails to

reach a solution or results in boundary estimates.2 Researchers should carefully monitor the

estimation process and parameter values that are output, and start values may assist in the

convergence process. In our limited experience applying the model to date, we have

1By implementing such a prior, the estimation method is not truly maximum-likelihood estimation but instead posterior mode
estimation, which can be seen as a penalized form of maximum-likelihood.
2See Abar & Loken (2012) for discussion of identification issues in latent class models.
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generally found the model is identified with at least three event processes, even with

unstructured hazard functions and without covariates. One may draw insight from related

literature on latent class analysis and growth mixture modeling to formulate an appropriate

model building strategy (e.g. Petras & Masyn, 2010; Bandeen-Roche, Miglioretti, Zeger, &

Rathouz, 1997; Collins & Lanza, 2010; Vermunt & Magidson, 2002).

Class Enumeration and Model Evaluation

Models with different number of latent classes may be evaluated and compared using

information criteria such as Akaike information criterion (AIC), Bayesian information

criterion (BIC), and sample-size adjusted BIC (SABIC) as well as classification indices

measuring the degree of uncertainty of classification or separation of the clusters (Akaike,

1974; Schwarz, 1978; Bozdogan, 1987; Fraley, & Raftery, 1998; Celeux, Biernacki, &

Govaert, 1997; Vermunt & Magidson, 2002). The Lo-Mendell-Rubin likelihood ratio test

and parametric bootstrap likelihood ratio test are other common approaches to selecting the

number of classes and evaluating model fit (Lo, Mendell, & Rubin, 2001; McLachlan, &

Peel, 2000; Nylund, Asparouhov, & Muthén, 2007). Researchers may also examine the

results to determine whether a class is redundant or whether the probability of belonging to a

class is very small, as parameter estimates in a low probability class may not be stable due to

the small number of individuals contributing data to that class.

In evaluating model fit, a researcher cannot compare the estimated latent classes to observed

subpopulations, since the classes are unobserved and inferred from the data. However, one

model evaluation and selection tool is the ability to compare the sample observed functions

with the marginal model implied functions weighting over latent classes. The aggregate

model implied lifetime distribution function for process p is found by weighting the

marginal within-class function by the probability of class membership :

(15)

The standard residual lifetime distribution (SRD) can be then be computed across all event

processes in order to evaluate the difference between the marginal population-level model

implied functions and the sample observed functions. A smaller SRD implies closer fit

between the sample observed lifetime distribution function and the model implied

population-level function. With P event process, each with JP events, this is given by:

(16)

where Dpj is the sample observed lifetime distribution function for process p.

Computing the model implied hazard functions weighting over latent classes is less

straightforward, as the number of people eligible to experience the event in each class will
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decrease unevenly due to differential risk of event occurrence. Therefore, the population

average hazard functions must be computed by weighting the marginal within-class hazard

functions not only by the probability of event occurrence, but also by the number eligible to

experience the event at time j within a latent class k. The number eligible to experience the

event is equal to the survival probability at time j – 1, and the model implied hazard function

weighting over latent classes is then given by:

(17)

The standard residual hazard across all event processes is given by:

(18)

where hpj is equal to the sample observed hazard function for process p. Again, this function

is useful in determining the difference between the marginal population-level model implied

functions and the sample observed functions. Ideally, SRH would be very close to 0, which

is likely when the form of the hazard functions is left unstructured.

The model implied functions defined above may also be used in a descriptive manner to

evaluate the overall effects of covariates, by first computing the predicted probabilities of

class membership based on different levels of covariates, and then using those predicted

probabilities to weight the within-class functions. These steps contrast with the functions

given above in that the predicted probabilities are now computed conditional on the level of

the covariates, e.g. . With an appropriate sample size and categorical covariates, one

can also stratify the sample in order to compute sample observed functions for specific

levels of the covariates, and can then calculate standard residual lifetime distribution and

standard residual hazard based on these functions. Resulting model implied functions allow

one to evaluate overall differences in the risk for multiple events over time for different

levels of a covariate, as will be illustrated in the example that follows.

Methods

The data for the empirical example come from Wave I and Wave IV of the National

Longitudinal Study of Adolescent Health (Add Health; Harris et al., 2009). Add Health

began in the 1994-1995 school year with a nationally representative sample of adolescents

from 80 high schools and 52 middle schools in the United States selected with unequal

probability of selection.3 The individuals were then followed from adolescence into

adulthood through four in-home interviews. Parental interviews were also completed during

the first wave. The last interview, Wave IV, was completed in 2008, when the majority of

the sample was twenty-four to thirty-two years old. At each wave, information was gathered
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on respondents’ social, economic, psychological, and physical well-being. Wave IV in-home

interviews were completed for 15,701 individuals.

Four role status variables were examined: marriage, college graduation, full-time work, and

parenthood (Shanahan, 2000). For each age from 18-30, a binary variable for each status

was created indicating whether the individual occupied the status for the first time at that age

(coded 1), or had not occupied the status by that age (coded 0). Once the individual occupied

one of the role statues, they no longer contributed data for the remaining ages for that status

(coded as missing). To account for the fact that a small percentage of individuals occupied

one of the roles before they were eighteen years old, the binary variable for age 18 will

represent whether the individual occupied the status for the first time at age 18 or younger.

In essence, this is structuring the first time period to be wider (from birth to age 18) than any

of the other time periods, which all represent one year.

The role status variables were taken from the Wave IV Add Health interview. The month

and year of the individual’s first marriage was used to find the age of the respondent when

they first married. The year of the respondent’s first degree (associate’s degree, bachelor’s

degree, or graduate degree) after high school was used to determine the age at which the first

post-high school degree was obtained, by using the age the respondent was for the majority

of that year. The date of birth of the respondent’s oldest child was used to determine the age

at which the respondent first became a parent. The age when the person first began full-time

work was directly measured in the Add Health interview. The sample observed hazard

probabilities for each event process are listed in Table 1 and displayed in Figure 2. The

sample observed lifetime distribution function for each event process is also displayed in

Figure 2. Throughout this work, sample observed functions were calculated with Wave IV

sample weights to account for unequal probability of selection.

Three predictors were examined, each of which was assessed during Add Health Wave I:

gender, ethnicity, and parental education. Consistent with prior literature, it was

hypothesized that all three predictors have a significant influence on heterogeneity in the

hazard functions over time (e.g. Mahaffy, 2003). Only a small number of categorical

covariates was examined so that model implied functions could be compared to observed

functions of the sample stratified by the different levels of the covariates, in order to

investigate the ability of the model to detect group differences. Gender was measured as a

two-category item of male (46.83%) and female (53.17%). The measurement of ethnicity

was simplified to four categories of Caucasian (52.87%), African-American (20.62%),

Hispanic (15.92%), and other (10.59%), included as three dummy coded variables in the

analysis with Caucasian as the reference category. Parent education was measured as the

highest level of education achieved by either parent on a three point scale of less than high

school (12.85%), high school degree (25.33%), or any schooling beyond high school

(61.82%) and was entered into the model with high school degree as the reference category.

Sampling weights given by Add Health accounting for the unequal probability of selection

3We are aware of the nested structure of the data and the potential for dependence within schools, but the clustering effect is likely to
be quite small – especially given the time lag – and the example is intended to be primarily pedagogical. Future research should
examine clustering when necessary.
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were used. Individuals with missing data on any of the covariates (<1.5%) or sample

weights (<1 %) were excluded from the analysis, resulting in a final analysis sample of N =

14,557.

The discrete-time MEPSUM model was fit to the data in Mplus 6.12 using maximum

likelihood and accounting for sample weights.4 The first model was run on the four event

processes across the thirteen time points, without covariates, including one to six latent

classes with unstructured hazard functions as defined in the introduction. To ensure a global

maximum likelihood solution, at least 1,000 random sets of starting values were used for

each model, with the best 500 retained for final optimization, and the resulting solutions

monitored to ensure the final loglikelihood was replicated.

Results

To select the number of classes, a number of criteria were investigated as discussed in the

model evaluation section of the introduction. Information criteria continued to decrease as

the number of latent classes increased (Table 2) and might have suggested more than six

classes were needed if such models were fit, based on selecting the model with the lowest

BIC or AIC. This may be partly due to the large sample size, supporting the extraction of

additional latent classes. However, the relative decrease of both the BIC and AIC was small

after four classes suggesting a more parsimonious model may be preferable (Figure 1). After

examining the hazard and lifetime distribution functions more carefully, we selected the five

class solution as it was able to more effectively describe heterogeneity in the risk of the

events over time than the four class solution but the same was not true when increasing from

a five class to a six class solution. The five class solution will first be described, and will

then be compared to the six class solution to describe why the five class solution was

chosen.

Hazard functions for the five class solution, representing the unique risk of event occurrence

at a given age or the probability of event occurrence given the event had not yet occurred are

displayed in Figure 3. The lifetime distribution functions, displaying the cumulative

probability of event occurrence by a given age, are shown in Figure 4. The median event

time for an event process within a latent class occurs when the lifetime distribution function

is equal to 0.50 (Table 3).

In the five class solution, the first class  is characterized by high early risk of

work , followed by an increasing risk of transition into family roles. The risk of

marriage starts low  and increases rapidly to a high risk of 0.80 at age 29. The

median event time for marriage is in between ages 21 and 22, with nearly a 1.00 cumulative

probability of marriage by age 30. The risk of parenthood also starts low , and

increases in a linear fashion, though the risk is never as high as that for marriage for any

4The MLR estimator was used which computes parameter estimates which are robust to non-independence of observations, by
utilizing a sandwich estimator for the standard errors (Muthén & Muthén, 1998-2010). The robust maximum likelihood estimator is
the only option in Mplus for mixture models with sampling weights.
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specific age (e.g. ). By age 30, the model implied probability of being a parent is

0.86 for this class, with the median parenthood age between ages 24 and 25. The risk of

college graduation is low throughout all of the time periods (maximum is ), with a

small cumulative probability of graduating college by age 30 . This first class

will be labeled a “work then family” pathway (WF).

The second class  is characterized by a moderate risk of transitioning into both

college and work roles in the mid-twenties, followed by an increasing risk of transitioning

into parent and marriage roles in the later twenties. Specifically, the risk of college peaks

around ages 22  and the risk of work also peaks around ages 22 to 24

. The median age for both beginning full-time work and for college

graduation is between ages 21 and 22. The risk of transitioning into marriage is relatively

low in the early twenties  but increases into the late twenties . Risk of

parenthood similarly is low in the early twenties , but steadily increases

throughout the twenties . The median age of marriage is between 23 and 24 with

nearly a 1.00 probability of marriage by age 30, and the median age of parenthood is

between 26 and 27, with high probability of parenthood by age 30 . This second

class will be labeled a “college then family” pathway (CF).

The third latent class  is characterized by moderate risk of college and work in

the mid-twenties, similar to the CF pathway mentioned previously, only the risk of

transitioning into any family role is low throughout the entire period under study. The risk of

college is moderate, at least above 0.20, for all ages after 21. The risk is especially high at

age 22  and age 30 . The median college graduation age is between

21 and 22, with a 0.99 probability of graduating college by age 30. The risk of work is

similarly moderate for all time periods after age 21 (e.g. ), with a 0.98

probability of transitioning into full-time work by age 30. The risk of transitioning into a

parent role is less than 0.03 for all ages, and the risk of marriage is similarly low, peaking at

0.11 at age 28. By age 30, there is a 0.38 cumulative probability of transitioning into

marriage and only a 0.09 cumulative probability of transitioning into parenthood. This will

be labeled a “college and work” pathway (CW).

The hazard functions for the fourth latent class  look remarkably different than

the other classes, in that the risk for all events decreases over time and the risk of

transitioning into a parent role is especially high at early ages. At age 18, the risk of

beginning full-time work is 0.59 and the risk of parenthood is 0.35. The median age for

beginning full-time work is less than age 18, with a cumulative probability of beginning full-

time work of 0.95 by age 30. While decreasing in magnitude, the risk of parenthood remains

high in comparison to the other latent classes (e.g.  compared to  in the

WF pathway). The cumulatively probability of becoming a parent is 0.70 as early as age 20
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and reaches 0.90 by age 24. The risk of marriage is also the highest at age 18 

and decreases throughout the time period under study , with the median marriage

time between ages 24 and 25. The risk of college graduation is very low throughout the

entire time period (maximum ), with a small cumulative probability of graduating

college by age 30 . This class will be labeled “early parenthood” pathway (EP).

In the fifth class , the risk for transitioning into family roles as well as the risk of

college is extremely low throughout all of the time periods, and the risk of work is highest at

early ages and then decreases. The risk of work is 0.54 at age 18, and quickly and steadily

decreases, with a risk of less than 0.10 of beginning full-time work for each age after 23.

The median age for transitioning into full-time work is less than age 18, with a 0.90

cumulative probability by age 30. The risk of marriage is never higher than 0.05 for any age,

nor is the risk of parenthood or college graduation. The cumulative probability of

transitioning into marriage is 0.23 by age 30, and is 0.26 for parenthood. The cumulative

probability of graduating college by age 30 is 0.13. As this class is characterized almost

completely by the transition into a work role only, this class will be labeled “work” (W).

Examining results for the six class solution revealed a substantively redundant latent class,

resulting in the five class solution being selected as the final solution. In the six class

solution, the main difference is that the third class from the five class solution – the “college

and work” pathway – split into two separate classes, which were nearly identical. Thus, the

increase in complexity from a five to a six class solution was not warranted in that it did not

substantially increase our ability to describe heterogeneity in the hazard functions. The five

class solution was selected as the optimal number of classes, and covariates were then

entered into the model to predict class membership.5 By selecting the number of classes

without covariates and then comparing the solution to that obtained with covariates

predicting class membership, the stability of the model can be investigated. In the model

with covariates predicting class membership only, an assumption is made that all effects of

covariates on the hazard functions are transmitted through the latent class variable, which

should hold as long as the number of latent classes is sufficient to fully capture

heterogeneity in the hazard functions. If the size or substantive interpretation of the classes

changes, this may indicate that too few classes have been selected and that the assumption

that the covariates only influence class membership is violated (Petras & Masyn, 2010;

Marsh, Lüdtke, Trautwein, & Morin, 2009).

In this case, the size of the classes as well as the parameter estimates remained stable after

the covariates were entered into the model. As another check on the model, if we compare

the aggregate model implied lifetime distribution functions and the sample observed lifetime

distribution functions, we find that the average difference between the two sets of functions

is small, SRD < 0.001. The difference between the aggregate model implied hazard

functions and sample observed hazard functions is also small, SRH = 0.001. Thus, the model

5The ‘auxiliary’ command of Mplus can be used as an exploratory first step in model building, as the means of covariates across latent
classes can be examined without the covariates having an effect on the latent classes and latent class membership.
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is capturing the observed overall risk of event occurrence well, as is expected with

unstructured hazard functions.

Because the covariates predict class membership, their effects can be interpreted to indicate

how the odds of experiencing each pattern of event histories are influenced. A complete list

of all possible odds ratios is given in Table 4, with confidence intervals listed below the

estimate, computed with a Bonferroni correction for multiple comparisons with α = 0.05.

This table reveals that gender, ethnicity, and parental education all significantly influence

latent class membership, as several confidence intervals do not include 1 for each group of

predictors.

For brevity purposes, we can generalize over these findings, and we see that females are

generally more likely to be in the early parenthood pathway, and males are generally more

likely to be in the work pathway. The model implies that African-Americans are generally

more likely to be in the work pathway and the early parenthood pathway than Caucasians.

Similarly, Hispanics are more likely to be in the work pathway and the early parenthood

pathway than the college then family pathway than Caucasians. No differences between

those of other ethnicities and Caucasians were found in terms of predicting class

membership. Parental education had an extremely consistent effect, in that the odds for

individuals who had at least one parent with a college degree of being in a college pathway

compared to any other pathway were significantly higher than for individuals who had a

parent with a high school degree only.

The influence of covariates may also be examined by comparing aggregate model implied

lifetime distribution functions weighting over latent classes conditional on different levels of

the covariates in the model, as discussed in the previous section. In this analysis, we focused

on the effect of parental education and computed model implied lifetime distribution

functions across different levels of parental education, holding gender constant at male and

ethnicity constant at Caucasian (Figure 5, left column). The most dramatic difference

between these functions is in terms of the cumulative probability of graduating college;

individuals with a parent with a college degree have a much higher probability of graduating

college by age 30  than individuals with a parent with a high school degree

 or no parent completing a high school degree  as implied by the

model. Related, the model predicts individuals who have a parent with a college degree have

a smaller probability of beginning full-time work at earlier ages (e.g. ) than

individuals who have a parent with a high school degree  or no degree

, but that there are no virtually no differences after age 24. The model implies

that individuals who have a parent with a college degree also have a smaller risk of

parenthood across all ages, and a smaller risk of marriage at earlier ages, but that the

cumulative probability of marriage by age 30 is similar across parental education groups

(range for 30 ).

Stratifying the Add Health sample by parent education and examining only Caucasian males

for comparison purposes resulted in a sample size of 222 for neither parent with a high
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school degree, 944 for at least one parent with a high school degree only, and 2,536 for at

least one parent with a college degree. The trends described by the model implied functions

were found in the stratified sample observed functions in that those who had a parent with a

college degree were much more likely to graduate college (D30 = 0.50) than for individuals

who had neither parent graduate high school or at least one parent graduate high school but

who had no further education (D30 = 0.07 and D30 = 0.22, respectively) (Figure 5, right

column).

Note, however, that the model underestimated differences between these groups in that it

overestimated the probability of graduating college for those with neither parent graduating

high school (model implied ; sample estimated D30 = 0.07). The trend was also

consistent between the model implied and sample observed functions for work, with

individuals with a parent with a college degree having a delay in the transition to full-time

work (D18 = 0.39 versus parent with a high school degree D18 = 0.62). Also as implied by

the model, individuals with a parent with a college degree had a smaller probability of

parenthood across all ages as well as a smaller probability of marriage at early ages. Overall,

the average difference between the model implied functions and the sample observed

functions across the three parental educations categories was small, SRD = 0.03.

It is unclear whether the differences found between the sample observed lifetime distribution

functions and the model implied functions weighting over latent classes are due to utilizing

relatively few classes to capture the multivariate distribution of events, or due to possible

minor misspecifications in the multinomial model for class membership, such as the

omission of interaction effects. However, considering the small number of covariates

included in the model, and the relatively simple expression of covariate effects, the model

appears to be relatively stable and to be reproducing the observed patterns well.

Discussion

A discrete-time multiple event process survival mixture (MEPSUM) model was introduced

in this paper, which allows researchers to investigate the order and timing of multiple non-

repeatable events that can occur at the same point in time. Both to be consistent with theory,

as well as to understand how the events are related to each other, it is important to consider

the relationship between the hazard functions rather than to dissect the events in order to

apply more traditional methods. This model is proposed as an indirect application of mixture

modeling, as it is employed as a mathematical device – a way to summarize the risk of

multiple events. Thus, rather than subjectively classifying individuals based on their

response patterns and examining the resulting hazard functions within those groups, the

model recognizes uncertainty in group membership and allows the examination of predictors

on latent classes (Nagin, 1999).

Importantly, the MEPSUM model is a data-driven method, and the inclusion of auxiliary

information is essential to understanding the utility of the latent classes which are derived

from the model (Petras & Masyn, 2010). To the extent that the events are related, the model

will require multiple latent classes to capture these associations, regardless of whether event

times differ qualitatively or quantitatively across individuals. This interpretation of the latent
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classes is similar to growth mixture models, in which classes may or may not represent

qualitatively distinct groups (Bauer & Curran, 2003). The classes obtained from a MEPSUM

model provide a glimpse of prototypical multivariate pathways, and thus of how event times

are related, but they should not be regarded as representing all possible pathways.

Ultimately, examining how the heterogeneity in classes is influenced by covariates should

be the end focus of the analysis. As Nagin and Odgers (2010) argue for a related model, the

purpose of latent groups in this model is to draw attention to differences in the causes and

consequences of different pathways rather than to suggest the population is composed of

literally distinct groups.

In the empirical example in this paper, the MEPSUM model was used to capture

heterogeneity in the hazard functions for multiple life course events. It provided information

on how life events differ in their timing and configuration across people, with five

prototypical event history patterns: work then family, college then family, college without

family, early parenthood, and work only. It also found that gender, ethnicity, and parental

education all significantly influenced the occurrence and relative timing of life transitions in

adolescence and young adulthood. The large sample size allowed stratification of the sample

by different levels of covariates and comparison of model implied functions to sample

estimated functions. Overall, there was general consistency in the functions implied by the

model and the sample observed functions, such as females having a larger probability of

parenthood at earlier ages than males. It should be noted that a relatively large sample size

may be required for this model, as it aims to model heterogeneity in multiple hazard

functions (guidelines on what exactly constitutes a “large sample size” will require extensive

simulation studies and should be the subject of future research).

A limitation of this work is that only a small number of covariates were examined in the

empirical example, both for simplicity purposes as well as so sample stratified functions

could be calculated to investigate model performance. How the model performs with

numerous covariates and with more complicated inclusions of covariates is yet to be seen.

Potentially interesting directions for future research would be to investigate model

performance with additional covariates, and consideration of how the addition of direct

effects of covariates on the hazard functions could impact the performance of the model. A

“multiple groups” version of the model could also be of interest, in which separate latent

classes are estimated within each of two or more predefined subpopulations (e.g., males and

females) and invariance tests are implemented to evaluate whether the pathways obtained

across these subpopulations are similar or dissimilar.

An additional issue in need of further consideration is the adequacy of the approximation

provided by the finite mixture form for the underlying multivariate hazard distribution.

Research conducted on a related model, the semi-parametric groups-based trajectory model

(SPGM; see Nagin, 1999), is pertinent to this question. Like the MEPSUM, the SPGM uses

a discrete-point finite mixture to approximate an underlying distribution, namely the

distribution of random effects underlying individual differences in change over time.

Simulation research on the SPGM conducted by Brame et al. (2006), Nagin (2005), and

Muthén and Asparouhov (2008) has demonstrated that a discrete-point finite mixture can

reasonably approximate various random effects distributions of low dimensionality. More
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recently, however, Sterba, Baldasaro and Bauer (2012) determined that the adequacy of the

approximation suffers when the random effects distribution is of higher dimensionality,

particularly for binary outcomes at low sample sizes. The latter results give greater emphasis

to our caution that the MEPSUM model is likely to perform best in large samples. Although

these results are informative, it is also worth noting a key difference between the SPGM and

MEPSUM. Whereas there are widely used alternative models to SPGM for capturing

individual differences in growth trajectories (e.g., multilevel growth models or latent curve

models), to our knowledge no alternative models currently exist for modeling a multivariate

distribution of hazard functions. Further research developing and comparing alternative

approaches for modeling multiple event processes should thus be encouraged.

While there are many possible directions for future research, it is our hope that the model

proposed in this paper will provide a useful framework from which to evaluate the

interdependencies of multiple event processes measured in discrete time.
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Figure 1.
Information criteria as a function of the number of latent classes
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Figure 2.
Sample observed functions
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Figure 3.
Hazard functions for five class solution
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Figure 4.
Lifetime distribution functions for five class solution
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Figure 5.
Model implied versus sample observed lifetime distribution functions, depending on

parental education
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Table 1

Number of event occurrences and sample estimated hazard probabilities

Parent Marriage College Graduation Full-time work

Age Event Hazard Event Hazard Event Hazard Event Hazard

18 1227 0.08 536 0.03 12 0.00 6229 0.40

19 712 0.05 534 0.04 95 0.01 1809 0.19

20 723 0.06 597 0.04 313 0.02 1166 0.15

21 685 0.06 678 0.05 905 0.06 1362 0.21

22 660 0.06 766 0.06 1697 0.13 1692 0.33

23 641 0.06 858 0.07 1103 0.10 1033 0.30

24 614 0.06 816 0.08 605 0.06 655 0.28

25 578 0.06 810 0.08 433 0.04 417 0.24

26 567 0.06 677 0.08 351 0.04 208 0.17

27 444 0.06 538 0.08 275 0.03 128 0.14

28 375 0.07 415 0.08 191 0.03 67 0.10

29 254 0.07 254 0.07 125 0.02 28 0.06

30 135 0.06 131 0.06 67 0.02 14 0.06
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Table 2

Model fit to data

Latent Classes −2LL Number of Free
Parameters BIC AIC Smallest

Class Entropy

1 −102521.76 52 205541.99 205147.53 N/A N/A

2 −98444.65 105 197895.81 197099.29 0.33 0.79

3 −97481.09 158 196476.75 195278.19 0.26 0.74

4 −96784.46 211 195591.54 193990.93 0.11 0.76

5 −96425.50 264 195381.66 193379.00 0.10 0.71

6 −96087.98 317 195214.68 192809.97 0.09 0.72
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Table 3

Median event time within latent classes

Class Label Work Marriage Parent College

1 WF <18 22.5 24.5 -

2 CF 21.5 23.5 26.5 21.5

3 CW 21.5 - - 21.5

4 EP <18 24.5 18.5 -

5 W <18 - - -
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