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Abstract
Researchers commonly collect repeated measures on individuals nested within groups such as
students within schools, patients within treatment groups, or siblings within families. Often, it is
most appropriate to conceptualize such groups as dynamic entities, potentially undergoing
stochastic structural and/or functional changes over time. For instance, as a student progresses
through school more senior students matriculate and more junior students enroll, administrators
and teachers may turn over, and curricular changes may be introduced. What it means to be a
student within that school may thus differ from one year to the next. This paper demonstrates how
to use multilevel linear models to recover time-varying group effects when analyzing repeated
measures data on individuals nested within groups that evolve over time. Two examples are
provided. The first example examines school effects on the science achievement trajectories of
students, allowing for changes in school effects over time. The second example concerns dynamic
family effects on individual trajectories of externalizing behavior and depression.
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In psychology and allied disciplines, researchers commonly collect repeated measures on
individuals who are nested (or clustered) within groups. In but a few examples, a study
might track siblings within families, adolescents within peer groups, patients within group
treatment programs, or students within schools. Often it is expected that individuals within
the same group will be more similar to one another than individuals from different groups.
For instance, both selection and socialization effects tend to increase within-group similarity
and between-group differences in friendship groups. Likewise, siblings within a family share
both a common environment and common genes. Put in statistical terms, the observations
obtained for individuals within groups tend to be dependent, or correlated. Unfortunately,
many statistical models (such as ANOVA and linear regression) assume independent
observations (or, more technically, independent residuals). Such models are thus poorly
suited to the analysis of repeated measures data on individuals clustered within groups.
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One statistical model that does not assume independence of observations is the Multilevel
Model (MLM; a.k.a. mixed effects model, or hierarchical linear model; see Goldstein, 2011;
Hox, 2010; Raudenbush and Bryk, 2002; Snijders and Bosker, 2012). The MLM is an
extension of the general (or generalized) linear model that was expressly developed to
capture sources of dependence in nested data. More specifically, dependence is modeled in
MLMs through random effects that represent distinct sources of variability in the data (see
Singer and Willett, 2003, and Hedeker and Gibbons, 2006, for overviews of longitudinal
MLMs). For repeated measures data on individuals clustered within groups, a typical MLM
would include sources of random variation at the group level, the person level, and the
observation level. First, a random effect for the group (or a random intercept at the group
level) is included in the model to account for between-group differences on the dependent
variable. Sometimes, an additional random effect (or random slope) is also included at the
group level to allow for group-level variation in time trends. Second, random effects for the
individual are included to account for person-to-person differences in the repeated measures
and how they change over time. Finally, a residual term is included at the observation level.

This modeling strategy is perfectly reasonable in many instances, but it may not always
conform optimally to our theoretical model of change over time. In particular, the modeling
strategy described above assumes that the group is a stable entity that either exerts a constant
effect on the individual over time (in the case that only a random intercept is included at the
group level) or an effect that changes systematically with time (in the case that a random
time slope is also included at the group level). In many cases, however, groups may undergo
structural and/or functional changes over time that are more stochastic in nature, producing
time-varying group-effects that are not captured well by conventional model specifications.

For instance, suppose we wish to model growth in achievement for students nested within
schools. Though the brick and mortar of the school may be constant, a significant proportion
of the people within the school turn over from year to year (especially students, but also
teachers, staff, and administrators), and changes may also occur in the school curricula.
Though much of the school culture may be carried over from one year to the next, we might
also expect some drift to occur over time. A similar argument can be made when examining
the development of siblings within a family. We might expect structural changes to the
family, such as the entrance or exit of family members (due to birth, death, divorce, etc.), to
alter the effect of the family on siblings. We might also expect events, such as the onset of a
disability, or the entry or exit of a parent from the work force, to “shock” the family system
and potentially alter family functioning. The natural evolution of the group, or its members,
may also alter group effects. A nascent peer group, for instance, may establish and
consolidate behavioral norms over time, progressively increasing within-group homogeneity
(a kind of “snowball effect” of group membership).

It is useful to distinguish the type of group dynamics described above from another case that
has received greater attention in recent literature: where individuals move between groups
over time, such as when repeated measures are collected on students who transition between
teachers or schools. The approach most commonly used to accommodate this kind of group
mobility is the cross-classified random effects model (Luo & Kwok, 2012; Palardy, 2010;
Raudenbush, 1993; Raudenbush & Bryk, 2002; Rowan, Correnti & Miller, 2002). As
typically specified, these models assume that groups exert independent effects that are
encountered by individuals at different points in time as they transition between groups.
Here, however, we are concerned with how to model group effects when each individual is
at all times a member of a single group (i.e., there is no group mobility) and groups evolve
over time while nevertheless maintaining their fundamental integrity. For example, although
changes may occur in family structure and circumstances over time, the Smith family
remains distinct from the Jones family. As with Theseus’ Paradox, the question could be
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raised at what point a group can or should be considered distinct and new from what it was
before. Indeed, this very question was raised by Goldstein et al (2000) in considering how to
model data from individuals residing within dynamic household structures.1 From a
pragmatic point of view, however, it matters not whether we consider the group “new” at
each point in time or “the same,” so long as we allow for the possibility that the group effect
will neither be constant (as assumed in a hierarchical model with only a random intercept at
the group level) nor independent (as assumed in a typical cross-classified random effects
model).

In this paper, we review and demonstrate several variations of the MLM which allow for
stochastic group-effects that are time varying but correlated. We refer to these models as
“dynamic group models” to reflect the fact that not only are individuals changing with time,
but so are groups and therefore group effects.2 Dynamic group models are three-level
models for repeated measures data and, as such, can be specified and fitted within many
standard software packages. They differ from more conventional MLM specifications,
however, by allowing group effects to vary and covary over time according to specific
structures (e.g., autoregressive). Applications using similar specifications for group-level
effects are rare in the literature, but important exceptions include Leckie and Goldstein
(2009, 2011), who evaluated across-cohort correlations in school effects,3 and Paddock et al.
(2011), who recommended allowing for autoregressive group effects in open enrollment,
rolling treatment group data. We regard these model specifications as more widely
applicable and our hope is that the review provided here will enable more researchers to
recognize the potential utility of dynamic group models.

In what follows, we detail the specification of dynamic group models and how they can be
applied in practice. By way of introduction, we first describe more conventional MLM
specifications for three-level over-time data. We then show how an alternative specification
of the three-level MLM accommodates dynamic group effects. Finally, we provide two
empirical demonstrations. In the first demonstration, we examine over-time science
achievement data on students nested within schools. In the second demonstration, we
examine trajectories of externalizing behavior and depression for siblings nested within
families.

Stable Group Models
As a starting point, let us consider a relatively simple multilevel model for repeated
measures data on individuals who are clustered within groups (e.g., students tracked across
grade levels, where students are nested within schools). Supposing that the outcome changes
linearly with time, we can write this model as follows:

(1)

where j indexes group, i indexes individual, and t indexes the observation. The first two
terms in Equation (1) are the fixed effects, which trace out the average trajectory of change
over time, i.e., E(ytij | timetij) = β0 + β1timetij. The term β0 can thus be interpreted as the
expected value of y when time is zero (often coded to indicate the earliest time point).

1Goldstein et al (2000) suggested the use of a multiple membership model to account for household transitions but we regard this
model as less than ideal for three reasons. First, it requires one to decide at what point a household is “new.” Goldstein et al. chose to
designate a household as new with any change in composition, but also remarked that one might reasonably exclude certain events
from defining a new household, such as the birth of a child. Second, household effects are assumed to be independent. Third, one must
define weights for membership in each household and it may not always be clear how best to do this for any given analysis.
2We use the term “dynamic” simply to refer to groups that evolve over time and not in reference to autoregressive models or
dynamical systems models (e.g., Chow et al., 2009).
3We thank the reviewers of a prior version of this manuscript for drawing our attention to Leckie and Goldstein’s (2009, 2011) work.
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Likewise, β1, represents the average rate at which y changes with time in the population.
The remaining terms in Equation (1) are the random effects (or residuals). Appearing first is
uj, representing the group effect and intended to account for stable mean-level differences in
y across groups. The next two terms of the model are the random effects for the person. The
random intercept, r0ij, captures individual differences in the level of y at time zero (around
β0 + uj) whereas the random effect of time, r1ij, captures individual differences in the rate of
change of y (around β1). Last, we have the residual, etij, which captures time-specific
variation in y around individuals’ growth trajectories (i.e., scatter around the individual
trajectories due to noise, measurement error, or omitted time-varying covariates). Typically
these time-specific residuals are assumed to be homoscedastic and independent over time
(net of the underlying growth trajectory for the individual), although these assumptions can
be relaxed when necessary (see Kwok, West, & Green, 2007, for further discussion). It is
also conventional to assume that the distributions of the random effects are independent and
normally distributed, or

The model in Equation (1) can be extended in a variety of ways. For instance, it could be
modified to allow for nonlinear growth. Additionally, predictors (other than time) could be
entered at any of the three levels of the model, for instance time-varying covariates, person-
level predictors, or group-level predictors. Of particular concern here is the specification of
the group effects. In Equation (1) the group effect is constant over time, implicit in the
absence of a t subscript for the effect. We thus refer to this model as a “stable group” model.
The assumption that group effects are constant may, however, be implausible for
longitudinal data. As noted previously, groups are often both structurally and functionally
dynamic. In turn, the effect of the group on the individual may also vary over time.

A more complex version of the stable group model is somewhat less restrictive in this
regard. In this version of the model we add a random slope for time at the group level. This
addition might be motivated by the idea that, like individuals, groups follow trajectories
(e.g., some peer groups increase in their average level of deviance over time whereas others
decrease). The model in Equation (1) would assume these group-level trajectories to differ
only in their intercepts, whereas the addition of a random slope would permit group-level
variation in the time trends as well (see Raudenbush & Bryk, 2002). In the simple case of
straight-line growth, the augmented model would be

(2)

The group effect for a given observation is now a linear function of time, or u0j + u1jtimet. It
is possible, although not common, for the time variables governing the trajectories of
individuals and groups to differ. For instance, in examining growth trajectories of
achievement for students nested within schools, the relevant time variable for the individual
may be grade, whereas the relevant time variable for the school may be calendar year (where
students from different cohorts enter the school at different years). The measure of time
associated with u1j would then differ from the measure associated with r1j.

Despite the time-contingent nature of the group effect in Equation (2), this model is still not
fully satisfying for evaluating individual change within dynamic groups. In particular, the
groups are still conceived of as stable entities (e.g., Rockbridge High School is Rockbridge
High School, even if ¾ of the student body turns over between freshman and senior years,
administrators and teachers come and go, and curricula standards evolve). Time-varying
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group effects are only an implication of the fact that groups follow their own trajectories
(e.g., Rockbridge High School is on an upward achievement trajectory), and not due to
changes in the structure or function of the group itself. Such changes may occur
stochastically, rather than systematically, in which case a random time slope at the group
level will not adequately capture the process. For these reasons we continue to refer to the
model in Equation (2) as a stable groups model. In the next section, we suggest the use of
dynamic group models as a more attractive alternative.

Dynamic Group Models
In dynamic group models, we reformulate the MLM to explicitly recognize the time-varying
nature of group effects, and we allow for various temporal structures for these effects.
Continuing with the simple example of straight-line growth, a dynamic group model can be
specified as follows

(3)

Note that this model is strikingly similar to the stable group model in Equation (1), but with
the important exception that the group effect, utj, is now subscripted by t to indicate that it is
time varying. Simply put, given T time points, we have T values for the effect of being in
group j. These values are assumed to be normally distributed and related to one another
across time, i.e.,

where uj is the vector of time-specific group effects, uj = (u1j, u2j, …, uTj)′. At the group
level, this specification parallels the model introduced by Leckie and Goldstein (2009, 2011)
for assessing school effects across independent cohorts of students.

With this specification, the covariances among the observed repeated measures implied by
the dynamic groups model include contributions from both group- and individual-level
change processes. In particular, Equation (3) implies the following form for the lagged
covariances among the observed repeated measures for an individual:

(4)

where t ≠ t′ and σutt′ designates the element of Σu corresponding to times t and t′. This
equation shows that the covariance at any given lag is dependent on both the group effect
covariance σutt′ and a set of terms (in brackets) based on the underlying growth process for
the individual.4 In Equation (4) these terms are implied by the linear growth model specified
in Equation (3), whereas other functional forms of growth (e.g., quadratic) would imply a
different set of terms (see Bollen & Curran, 2006). When considering two separate
individuals from the same group, the model-implied lagged covariance simplifies to

(5)

Thus, the covariance between the repeated measures of the group members depends on
when they were assessed (e.g., the proximity in time with which they were members of the

4If one does not assume independence of the time-specific residuals, then additional terms would enter this equation from the error
structure specified at the observational level.
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same group). This time-dependence is an attractive property of dynamic group models,
given that the groups are expected to evolve over time.

In fitting a dynamic group model, a key objective is to determine the associations among the
group effects over time, contained within the covariance matrix Σu. For generally stable
groups, we might expect relatively little change in the group effect over time, and hence a
high correlation from one time point to the next. For more dynamic groups, however, we
might expect the group effect to change more rapidly, such that the over-time correlation
decays rapidly with increasing time lags. Thinking about group effects in this way clarifies
the restrictiveness of the static group model in Equation (1). Equation (3) reduces to
Equation (1) if we assume utj = uj. Put another way, we can say that the two models are
equivalent if the group effect is constant and therefore perfectly correlated over time. For
instance, with four time points, the structure of Σu implied by Equation (1) can be factored

into the group-effect variance, , and the correlation matrix of the group effects as follows:

(5)

For many applications, such a correlation structure (correlations of unity over time) would
strain credulity. The model in Equation (2) is again more realistic in this regard, as it permits
group effects to vary linearly with time (i.e., utj = u0j +ujtimet), implying a more complex
pattern of correlation. But often it may be most reasonable to assume that group effects vary
stochastically with time, and it may then be preferable to determine the specific correlation
structure for the group effects that is most consistent with theory and most optimal for the
data at hand.

One option is to specify a completely unrestricted covariance matrix for the group effects.
That is, we could attempt to estimate each unique element within the Σu matrix without the
imposition of any constraints. This specification was used by Leckie and Goldstein (2011) in
their model for assessing school effectiveness. Although this option is appealingly free of
assumptions about the temporal structure of Σu, it is also unlikely to be viable in applications
with many repeated measures because the number of unique elements in Σu expands rapidly
with the number of time points T. In particular, the number of unique elements in Σu is T (T
+1)/2. Even with just four time points, there are 10 unique variance-covariance parameters at
the group-level to estimate (not to mention the other variance-covariance parameters still to
be estimated at lower levels of the model). The data demands to reliably estimate so many
parameters may be considerable. At a minimum, the number of groups in the sample would
need to exceed the number of elements estimated in Σu, but a far greater number may be
required to obtain reliable estimates. In our experience, the model may fail to converge, or
may converge to a degenerate solution (in which some parameters are linearly dependent
and the estimated matrix is non-positive definite).

Additionally, an unrestricted specification of Σu, by definition, provides little insight into the
structure of the group effects and how they change over time. For instance, Leckie and
Goldstein (2011) identified a pattern of group effect correlations consistent with an
autoregressive decay process, but they did not actually fit this structure to estimate the
autoregressive parameter. We argue that fitting a restricted covariance structure is more
parsimonious, feasible, and informative. A variety of possible structures is illustrated in
Table 1, but this list is not intended to be comprehensive. Different software programs offer
different options for covariance structures at the group level, and not all of the specifications
shown in Table 1 may be available within all programs.
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Each of the structures shown in Table 1 assumes the variance of the group effect is the same
at each point in time and that the repeated measures for the group are taken at equal
intervals. Relaxing the first assumption, some software programs permit the application of
heterogeneous variance versions of these same covariance structures (e.g., a heteroscedastic
Toeplitz or heteroscedastic autoregressive structure), and these may be particularly useful in
instances when group differences are thought to become dampened or, alternatively,
amplified over time. Regarding the assumption of equal intervals of measurement, it is
important to recognize that this assumption operates at the group rather than individual
level. When the relevant time metrics differ between the individual and group levels, data
may be at unequal intervals at the individual level but still equal in spacing at the group
level. Additionally, even at the group level, not all groups must be measured at the same
occasions, so that unequal spans which can be viewed as a consequence of missing data are
permissible (e.g., where any one group is observed at only a subset of possible occasions).
Our empirical examples illustrate both of these points. Finally, some alternative covariance
structures could allow for group-specific and variable time intervals (e.g., a continuous-time
autoregressive structure). Nevertheless, the structures shown in Table 1 are available in
current software and likely to be useful in a variety of applications.

The choice of a covariance structure should be motivated by both theoretical expectations
and empirical fit. Some covariance structures, such as the first-order autoregressive (AR)
and autoregressive moving average (ARMA), assume that the correlations among the group
effects decay rapidly toward zero as the time lag increases. A first-order AR pattern arises
when the current state of the group effect is dependent on the immediately prior state. For
instance, if the siblings within a family display higher than average psychopathology at one
point in time, this may portend higher than average psychopathology at the next time point
as well. When it is expected that external “shocks”, such as family disruptions, produce
some of these carry-over effects, then the ARMA model may be preferable.

In other cases, it may be expected that there will always be some ambient non-zero
correlation, making AR or ARMA processes less plausible. Continuing with the example of
family effects on psychopathology, one might speculate that such a non-zero correlation
could reflect the presence of a constant genetic liability shared by the siblings. The Toeplitz,
or stabilizing banded (SB) structures would be more consistent with this theoretical
expectation, as they neither impose an assumption of rapid decay nor a lower asymptote of
zero for the correlation among family effects over time. The compound symmetric (CS)
structure is an extreme form of this pattern where the correlation stabilizes at its ambient
value at the first time lag. Constant correlations over time are rarely observed at the
individual level, however, and we speculate that this structure may often be unrealistic at the
group level as well (Fitzmaurice, Laird & Ware, 2004, p. 168).

Aside from theoretical plausibility, another important criterion for deciding on a covariance
structure is empirical fit. All of the covariance structures listed in Table 1 are nested in their
parameters relative to an unrestricted structure, permitting the use of likelihood ratio tests to
evaluate how well they fit the data. In our experience, however, we have found that the
unrestricted model will not always be estimable, rendering such tests impossible. Many of
the restricted covariance structures are, however, also nested relative to one another,
permitting tests of relative fit. Specifically, the Toeplitz, SB, and CS structures are nested in
their parameters (via restrictions setting certain bands of the covariance matrix to be equal),
as are the Toeplitz, ARMA, and AR structures (ARMA reduces to AR when γ = ρ, and both
AR and ARMA structures impose nonlinear restrictions on the Toeplitz). When comparing
between non-nested structures (e.g., SB versus AR), information criteria, such as Bayes
Information Criterion (BIC) and Akaike’s Information Criterion (AIC), can be used to
inform model selection.

Bauer et al. Page 7

Psychol Methods. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Choosing an appropriate temporal structure for Σu is important for two reasons. First, by
estimating the parameters within Σu we gain insights into the nature of group effects and
how they change over time. Second, even if group effects are of little theoretical interest,
misspecifying the structure of Σu could result in problems elsewhere in the model. Several
studies have shown that misspecification of the random effects leads to biased estimates of
the variance components, biased standard error estimates for fixed effects, and confidence
intervals with inaccurate coverage rates (Berkhof and Kampen, 2004; Ferron, Dailey, and
Yi, 2002; Kwok, West, and Green, 2007; Lange and Laird, 1989; Moerbeek, 2004). Thus,
by choosing an appropriate structure for Σu we not only gain insight into the nature of group-
level influences, we also improve our estimates and inferences for other model parameters.

When modeling individual repeated measures, it is common to begin by fitting a relatively
simple base model (or unconditional growth model) and proceed to a more complex full
model incorporating predictors of individual change (or conditional growth model). A
natural question is at which stage of the modeling sequence to determine the covariance
structure for the group effects. Some authors suggest that all fixed effects of potential
interest should be included in the model used to select a covariance structure (e.g.,
Fitzmaurice, Laird & Ware, 2004). In this case, it may be preferable to select the fixed
effects for the model based on use of the full information maximum likelihood estimator
(FIML; which allows for likelihood ratio tests among models nested in their fixed effects),
and then switch to the restricted maximum likelihood estimator (REML) to test between
nested covariance structures (reducing small sample bias in the covariance parameter
estimates; Goldstein, 2011, p. 42). Another potentially useful strategy, which we illustrate
below, is to evaluate and compare estimates of group effects and their covariances in both
the base and full models to observe the influence of the predictors on group effects over
time. Because the group effects represent deviations from the model-implied means at each
time point, we recommend that the base model include such terms as are necessary to
capture the primary time trends in the data. We now turn to two empirical examples showing
how dynamic group models can be applied in practice.

Example 1: Schools as Dynamic Groups
For our first example, we evaluate individual trajectories of change in science achievement
during high school (10th to 12th grades). One objective of the analysis is to see whether
science achievement can be predicted by fundamentalist attitudes toward religion and
science. Another objective is to understand how schools influence student achievement and
how stable these effects are over time. We use data drawn from the Longitudinal Study on
American Youth (LSAY; Miller, Hoffer, Suchner, Brown, and Nelson, 1992), which began
in 1987, and includes two longitudinal cohorts of students. When the study began, the first
cohort of students was in 10th grade, whereas the second cohort began 10th grade three years
later, in 1990. For the most part, students from the second cohort ultimately attended the
same high schools as students in the first cohort. For our demonstration, we include only
data from schools attended by members of both cohorts, providing us with a six-year span of
data for any given high school.5 By fitting dynamic groups models we can evaluate the
stability of school effects on science achievement over this six year period. It should be
noted that our longitudinal design differs from other school effectiveness research in which
school effects are compared across cohorts assessed at a single age (e.g., Leckie &
Goldstein, 2009, 2011).

5This is not a requirement of the model; that is, we could have chosen to include schools with less than the full six years of data. For
the majority of the omitted schools, however, very few student records were available (most of these schools were added due to
students moving into areas not originally sampled).
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In addition to cohort and grade level, the three other variables used in our analysis are
science achievement, socioeconomic status (SES), and fundamentalist attitudes. Science
achievement was assessed annually for each student and quantified as a scale score (with
scores calibrated using item response theory to allow comparisons across cohorts; M=63.79,
SD=11.09). The average of the two parents’ Duncan Socioeconomic Index scores was used
as the measure of SES (Stevens and Featherman, 1981; M=40.83, SD=16.32). Finally, a
summary measure of fundamentalist attitudes toward religion and science was created as the
mean of four items administered to the students’ parents in 1988, namely “We need less
science, more faith,” “The theory of evolution is true” (reversed), “Science undermines
morality,” and “The bible is God’s word” (M=2.54, SD=.50). The analysis sample included
all observations with valid values for these predictors as well as a valid school code. In total,
our analysis sample consisted of 51 schools with an average of 69 students (ranging from 19
to 149), for a total of 3498 students (2091 from the first cohort and 1407 from the second
cohort) and 7756 observations.

Two sets of models were fitted to the data. Within each set of models, the general form of
the model was the same but the covariance structure for the school effects was varied. The
first set of models aimed to evaluate the basic pattern of growth in science achievement over
high school and included fixed effects of grade, cohort, and cohort × grade. More
specifically, these models were of the form

(6)

To facilitate interpretation, the variable grade was centered at 10th grade and cohort was
coded as 0=first, 1=second. We will refer to this set of models collectively as Model 1.

The second set of models included our predictor of interest, fundamentalist attitudes, as well
as the control variable SES. Within-school effects were assessed by performing school-mean
centering, and between-school effects were assessed by including the school means (grand-
mean centered) as additional predictors (Enders and Tofighi, 2007; Kreft, de Leeuw, and
Aiken, 1995). These models were of the form

(7)

where β4 and β5 capture within-school effects of SES and attitudes, and β6 and β7 capture
between-school effects of SES and attitudes, respectively. The set of models with this form
are referred to collectively as Model 2.6

For both Model 1 and Model 2 we compared a variety of possible covariance structures for
the school effects to determine the optimal structure for the data. In particular, we fit each of
the dynamic group structures shown in Table 1. For comparison purposes, we also fit the
two stable group structures described earlier: a model with random intercepts across schools
and a model with both random intercepts and slopes across schools. The former model
assumes that the school effect is perfectly correlated over time whereas the latter model

6It is common when including predictors in growth models to allow them to affect growth rates as well (i.e., including interactions of
these predictors with time), but to retain a relatively simple model we did not do so here. Other analyses (not reported) identify a small
between-school effect of SES on growth rates such that students within schools with higher mean SES show greater gains over time.
Attitudes and within-school differences in SES were not predictive of growth rates.

Bauer et al. Page 9

Psychol Methods. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



assumes that the school effect changes linearly in accordance with a school-level trajectory.
All models were fit using the MIXED procedure in SAS 9.2 with restricted maximum
likelihood estimation (REML).

Table 2 presents comparative fit statistics for both the static and dynamic groups models.
Results were consistent across Models 1 and 2 – the dynamic group models displayed
universally superior fit to the two stable group models, as indexed by both AIC and BIC.
The best fit to the data was obtained with the stabilizing banded structure, with the
correlation between school effects stabilizing at lag 4 [i.e., SB(4)]. Further supporting
adoption of the SB(4) structure, likelihood ratio tests conducted for CS, SB(2), SB(3), SB(4)
and Toeplitz structures indicated significant improvements in fit between each successive
pair of models except SB(4) and Toeplitz. The SB(4) structure is thus retained as optimal for
the data.

The estimates obtained from the SB(4) models are presented in Table 3, and Figure 1
displays the estimated mean trajectory of each cohort. Model 1 provides information on the
basic growth pattern in the two cohorts (without the inclusion of substantive predictors). The
results indicate that the second cohort has higher average science achievement scores in 10th

grade. The scores of the second cohort increase more slowly over time, however, so that the
two cohorts display comparable average levels of science achievement at grade 12. The
single largest variance component is for the student-level intercept, indicating that individual
differences between students make up the largest source of variability in baseline science
achievement scores. The school effect variance is, however, also of significant magnitude,
indicating that science achievement scores vary between schools.

The estimated correlations among the school effects (obtained by rescaling the covariance
estimates in Table 3) are shown in Figure 2. Note the high correlation of .93 between
adjacent years and the eventual stabilization of the correlation across years at .74 at the
fourth lag. This pattern implies that high-performing schools tend to stay high performing
from one year to the next (and low-performing schools tend to stay low-performing) but that
over longer periods of time there is some drift in how a given school influences student
performance.

Turning to Model 2, we see that there is a significant student-level effect of fundamentalist
attitudes towards religion and science, controlling for socioeconomic status. Thus, within a
given school, students whose parents hold more fundamentalist attitudes score more poorly
on science achievement tests than other students. The between-school effect of attitudes is
similarly negative but more difficult to pinpoint, as indicated by its large confidence
interval. Part of the reason why the confidence interval is so large is that attitudes and SES
are highly correlated at the school level (r = −.81), reflecting that poorer communities tend
to hold more fundamentalist religious beliefs and making it difficult to partial the effect of
one predictor from the other. The within-school correlation of fundamentalist attitudes and
SES is, by contrast, much smaller (r = −.18), permitting reasonably precise estimates at the
student level. Additionally, of course, the larger standard errors at the school level reflect the
fact that there are far fewer schools (N=51) than students (N=3498).

Comparing the variance estimates of Models 1 and 2 in Table 3, we can see that the variance
components at the student level remain quite large even after accounting for attitudes and
SES, but the variance component at the school level is much reduced. Indeed, these two
variables explain approximately 31% of the across-schools variance in students’ science
achievement. The inclusion of these predictors also diminishes the correlations among the
school effects, as shown in Figure 2. The year-to-year correlation is now .90, decaying to a
value of .62 by the fourth lag. These lower correlations indicate that part of the stability of
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the school effects observed in Model 1 was due to the influence of presumably stable school
differences in SES and fundamentalist attitudes. From a substantive perspective, is also
interesting to note that our results are quite consistent with those of Leckie and Goldstein
(2009), who found that (value added) school effects were correlated .64 across cohorts
separated by five years, despite differences in sampling, fitted models, and covariate sets.

To summarize, the advantages of the dynamic groups model for this data, relative to a more
conventional model specification, are threefold. First, the dynamic groups model with SB(4)
covariance structure provided a better fit to the data. Thus, empirically, it better captures the
nature of group effects and how they change over time. Second, the dynamic groups model
likely provides more accurate inferences about the fixed effects. As previously noted,
standard error estimates can be biased when implementing a non-optimal covariance
structure. For this example, the standard error estimates obtained for Model 2 from the
SB(4) structure are 25% larger, on average, than the standard error estimates obtained from
the random intercept structure (results not shown). Likewise, the standard errors are 13%
larger than those obtained from the random intercept and slope structure. To the extent that
the standard error estimates obtained from these more conventional specifications are
negatively biased, the resultant confidence intervals would be too narrow and the risk of
Type I errors would be elevated. Finally, the third and perhaps most important advantage of
the dynamic groups model is that it focuses attention and provides additional information on
the nature of group effects and their stability over time. For this example, we obtained quite
high lag 1 correlations but more moderate lag 4 and 5 correlations, and these findings may
have important substantive implications (see Leckie & Goldstein, 2009). We shall now turn
to a second example which illustrates these same advantages in a much different data
analytic context: the development of psychopathology for siblings nested within families.

Example 2: Families as Dynamic Groups
In this example, we investigate how families influence child trajectories of externalizing
behavior and depression across adolescence. Previous research indicates that children of
alcoholics are at increased risk for a variety of social, emotional, and behavioral problems
(Chassin, Rogosch, and Barrera, 1991; Connell and Goodman, 2002; Hussong et al., 2010;
Puttler, Zucker, Fritzgerald & Bingham, 1998; Sher, 1997; West and Prinz, 1987). Beyond
the observable influence of parent alcoholism, however, families influence psychological
functioning through myriad additional pathways only some of which will be measured in a
given data set. When repeated measures are collected on multiple siblings, dynamic group
models offer the opportunity to estimate the magnitude of these effects and their stability (or
instability) over time.

In the current demonstration, we examine trajectories of self-reported externalizing behavior
and depression for children of alcoholics and matched controls in the Michigan Longitudinal
Study (MLS; see Zucker, Fitzgerald, Refior, Puttler, Pallas and Ellis, 2000). Continuous
scale scores were obtained for externalizing (M=.30, SD=.79) and depression (M=-1.27,
SD=1.06) by applying item response theory models to subsets of the Child Behavior
Checklist/Youth Report Form items (Hussong et al., 2011; see also Bauer and Hussong,
2009). We included annual assessment data from children who were between 11 and 17
years of age. We also required complete data on the predictor set which included age (see
Table 4), gender (71.1% male children) and three measures of lifetime history of parental
impairment (either parent): alcoholism (77.5% of families), diagnosis of major depression or
dysthymia (24.6% of families), and diagnosis of antisocial personality (ASP; 16.4% of
families). In interpreting the effects of these predictors it is important to note that ASP
almost exclusively co-occurred with parental alcoholism (Zucker, Ellis, Bingham, Fitzgerald
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and Sanford, 1996). In total, our analysis sample was comprised of 2468 repeated measures
from 588 children in 280 families.

The number of families with one, two, three, four and five children in the analysis sample
was 68, 134, 61, 16 and 1, respectively. Siblings were not always assessed within the same
visit, but visits often took place within the same calendar year, and this is the time metric we
use for evaluating family effects. Assessments included in this analysis took place over a
period of 12 calendar years, from 1997 to 2008. The modal number of years of data for a
given family was 5 years, with a range from 1 to 11 years. Table 5 displays the number of
families providing outcome data for at least two siblings across each pair of years. These
frequencies suggest that it should be possible to differentiate temporal patterns in family
effects from child-level trajectories or time-specific noise.

Trajectory models were estimated separately for externalizing behavior and depression.
Following the same strategy as the last example, we fitted two sets of models. The first set
of models, referred to collectively as Model 1, included no predictors other than age. Based
on a visual examination of the time plots and model comparisons, individual trajectories for
both outcomes were modeled as quadratic functions of age. Thus, for externalizing behavior
(ext), Model 1 was an unconditional growth model of the form

(8)

and, likewise, for depression (dep) it was

(9)

where t, i and j index the repeated measure, child, and family, respectively. To facilitate
interpretation, the variable age was centered at 14 years, the midpoint of the age range. The
intercept is then interpretable as the expected value at age 14, and the linear trend is the
expected rate of change at age 14. The quadratic trend indicates whether the rate of change
is accelerating or decelerating over time.

Holding the fixed effects of the model constant, we evaluated a variety of covariance
structures for the random family effect. Two stable group model structures were considered.
The first of these models included only a random intercept for family, implicitly assuming a
constant family effect over years, whereas the second model added a random effect of
interview year, to allow for the possibility that the strength and direction of family-mediated
effects could worsen over time for some families while improving for others. Several
dynamic group model structures were also considered, including Toeplitz, SB, CS, AR and
ARMA.7

Model 2 was a conditional growth model and included the child- and family-level predictors
of interest. Main effects were included for each predictor and interactions between the
predictors and age were tested and retained if significant. The final form of Model 2 for
externalizing behavior was

(10)

whereas for depression Model 2 was

7The unstructured covariance structure was not evaluated given concerns with sparseness of data for some elements of the covariance
matrix (as seen in Table 5).
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(11)

where pAlc, pDep, and pASP are indicator variables scored one if the family includes a
parent with a lifetime history of alcoholism, depression/dysthymia, or ASP, respectively,
and scored zero otherwise. Equations (10) and (11) are equivalent in form with the caveat
that the quadratic fixed effect on externalizing is moderated by gender whereas no such
effect was detected for depression. We again evaluated the optimal covariance structure for
the family effects over years on each outcome.

Fit statistics for Models 1 and 2 are reported in Table 6 for externalizing behavior and Table
7 for depression. In fitting alternative covariance structures for the family effects, we found
that the Toeplitz, SB(>1) and ARMA covariance structures consistently resulted in non-
positive definite solutions, suggesting that the complexity introduced by these structures
could not be empirically supported by the data. Since these structures did not result in proper
solutions they are not reported in Tables 6 and 7. Of the simpler covariance structures
(random intercept only, random intercept and slope, AR, and CS) the AR structure fit best
for both outcomes.

The parameter estimates obtained from fitting Models 1 and 2 to externalizing behavior,
using the AR covariance structure for the family effects, are displayed in Table 8. Model 1
provides baseline estimates of the average growth function and the variance/covariance
parameters for the random effects. Of particular concern are the variance for the family
effect and the autocorrelation parameter, both of which are sizeable and statistically
significant. The autocorrelation parameter indicates a year to year correlation of .82 in
family effects on externalizing behavior. The AR structure further implies that the over-time
correlation in family effects decays exponentially with the time elapsed, as shown in Figure
3. The decay is rapid: after five years, the correlation in family effects is .37, and after 10
years the correlation is only .14.

Examining the fixed effect estimates for Model 2, we see a complex pattern of gender
differences. These effects are clarified by plotting the simple trajectories for male and
female adolescents without impaired parents, shown in Figure 4 (Bauer and Curran, 2005).
Here we can see that the trajectory for boys is higher and flatter than the trajectory for girls.
Girls’ externalizing behavior increases over early adolescence, approaching the level
observed for boys, but then decreases. In addition to these gender differences, children of
alcoholics tend to be higher in externalizing behavior problems and parental history of ASP
augments this effect. Comparing the variance component estimates for the family effects
between Models 1 and 2, we can see that the predictors account for 37% of the between-
family variance. As these predictors are time-stable, it is not surprising that the
autocorrelation parameter is also reduced in magnitude in Model 2. Some of the family-
effect stability captured by the autocorrelation parameter in Model 1 has been explained in
Model 2 by the effects of the predictors, principally parental impairment. In other words,
parental impairment accounts for some of the stability of inter-family differences in
externalizing behavior.

Corresponding results for depression are displayed in Table 9. For this outcome, too, Model
1 indicates that there is a sizeable family effect. The autocorrelation parameter, .89, implies
a somewhat stronger sequence of correlations for the family effects over years, as shown in
Figure 3. Turning to Model 2, the fixed effects indicate that boys and girls start off with
similarly low levels of depression at age 11, but girls’ depression increases over adolescence
whereas boys’ depression does not (see Figure 4). Like externalizing, we find that being the
child of an alcoholic predicts a higher level of depression. Having an alcoholic parent who
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also has a lifetime history of antisocial personality disorder more than doubles this effect
(consistent with Puttler et al, 1998). These effects are, however, weaker for depression than
they were for externalizing. Comparing the variance component estimates from Models 1
and 2 in Table 9, we can see that the predictors have accounted for very little of the family-
level variance (6%) in depression and that the autocorrelation parameter is largely
unchanged.

In sum, the results obtained across the two outcomes suggest that family-level differences in
externalizing behavior and depression are equally strong and show similar patterns of
stability. In both cases, a high level of stability is observed in the short term, from one year
to the next, but over longer spans of time the correlation in the family effects decays rapidly.
By implication, a family that is troubled in one year is likely to continue to function poorly
in the next year or two, but may right itself over the longer term. Conversely, a family
functioning well at one point in time is not immune from later difficulties. For externalizing
behavior, but not depression, some of the stability of family effects over time can be
accounted for by parental history of impairment, particularly alcoholism and ASP. These
findings would not have emerged from the application of a more conventional MLM to the
data.8

Conclusions
Psychologists and other social and health science researchers routinely collect longitudinal
data on individuals clustered within groups. These groups can be expected to evolve in both
structure and function over time, yet the models most often used to analyze repeated
measures data assume that groups are entirely stable entities. In this paper we proposed a
variation on the multilevel model that allows for dynamic group effects. These models allow
for the effect of the group on the individual to change from one time point to the next, and
they allow researchers to evaluate whether and why group effects are stable over time.

We provided two empirical examples of the use of dynamic group models with repeated
measures data. Though the contexts of the two examples were radically different, in both
cases dynamic group models fit the data significantly better than traditional stable group
models. Further, the dynamic group models shed new light on the impacts of groups on
individuals over time. Interestingly, school effects on student achievement were more stable
than family effects on children’s externalizing behavior. At a time lag of five years, school
effects on science achievement were still correlated .74 (Figure 2, Model 1), whereas family
effects were correlated .56 for depression and only .37 for externalizing behavior (Figure 3,
Model 1). This difference in stability is perhaps not surprising. Schools are large institutions
with a great deal of inertia, whereas families are small groups that are potentially more
vulnerable to stochastic events (such as changes in economic circumstances, changes in
family structure, maturational events, etc.).

It is important to emphasize that the model specifications presented in this paper assume no
mobility of individuals between Level 2 units. For any given student, all observations are
made while the student is a member of a single school. Likewise, each sibling is assumed to
reside within the same household across all assessments. In the event that there is mobility
or cross-over between groups, it may be necessary to combine elements of the dynamic
groups model with a multiple membership model (as in Goldstein et al., 2000) or a cross-
classified random effects model (Luo & Kwok, 2012; Palardy, 2010; Raudenbush, 1993;

8Unlike the LSAY analysis, however, for this analysis differences in both the fixed effects estimates and their standard errors were
negligible between the AR model and random intercept or random intercept and slope models. Nevertheless, the dynamic groups
model provided additional insights about the covariance structure relative to these more conventional model specifications.
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Raudenbush & Bryk, 2002; Rowan, Correnti & Miller, 2002). Such extensions would offer
the exciting opportunity to model dynamic group effects when the group membership of the
sampled individuals is also unstable over time.

Additional research is also needed to determine the sample sizes and other data
characteristics under which dynamic group models will perform optimally. Based on our
experience, we anticipate that sample size requirements will increase with the complexity of
the group-effects covariance structure and that at modest sample sizes it may not always be
possible to uniquely estimate all of the parameters of more complex structures (e.g., one
may often obtain a non-positive definite solution). Such difficulties can also arise with more
conventional growth models and, in practice, are often taken to imply that a simpler
covariance structure should be specified (e.g., Huttenlocher et al, 1991; Peugh, 2010).
Simulation studies are needed to evaluate this practice with dynamic group models. For the
time being, however, it is important to recognize that the general multilevel model, of which
dynamic group models represent a specific case, is both well-studied and widely accessible
in commonly used statistical software. Further, specific code for fitting the dynamic groups
models from our example analyses are provided at <web site to be determined; supplemental
file>. We therefore believe that the models proposed and illustrated here can be put to
immediate use. Groups are fluid and dynamic entities, and the models we use to analyze
grouped data over time should reflect that reality.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Estimated mean trajectories of students from the two cohorts (based on Model 2, lag-4
stabilizing banded covariance structure); markers annotated to indicate the grade-levels of
the students.
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Figure 2.
Over-time autocorrelation of school effects on students’ science achievement. Model 1
includes grade and cohort as predictors; Model 2 also includes within- and between-school
effects of socioeconomic status and attitudes towards religion and science.
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Figure 3.
Over-time autocorrelation of family effects on children’s externalizing behavior (top panel)
and depression (bottom panel). Model 1 includes age as a predictor; Model 2 also includes
the effects of gender and parental history of alcoholism, depression/dysthymia, and
antisocial personality disorder.
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Figure 4.
Expected trajectories of externalizing behavior (top panel) and depression (bottom panel) for
boys and girls without impaired parents.
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Table 1

Alternative Covariance Structures for Group Effects in Dynamic Group Models, Shown for Four Time Points

Name Structure for Σu Description

Fully Banded (Toeplitz)A1,B1 One parameter is estimated for each time lag; the correlation of
the group effects one time point apart is a, two time points apart
is b, three time points apart is c, etc.

Stabilizing Banded (SB)B2 Assumes the over-time correlation for the group effects
stabilizes at a set value at a particular distance in time, here
shown to stabilize at lag 2 to the value b.

Compound Symmetric (CS)B3 Assumes that the over-time correlation for the group effects, a,
is the same at every time lag.

First-Order Autoregressive (AR)A3 Assumes that the over-time correlation for the group effects
decays exponentially toward zero with the time lag, i.e., the
autocorrelation is ρd where d is the distance in time between
assessments.

First-Order Autoregressive Moving
Average (ARMA)A2

As above, assumes that the over-time correlation for the group
effects decays rapidly toward zero in accordance with the
autoregressive and moving average parameters ρ and γ.

Note. Structures that share the same superscript letter (A or B) are nested in their covariance parameters. More restricted structures have higher
numbers (e.g., the AR structure, A3, is nested within the ARMA structure, A2, as well as the Toeplitz structure, A1).
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Table 3

Parameter Estimates and 95% Confidence Intervals (CIs) Obtained by Fitting Stabilizing Banded School
Effects Structure (Stabilizing at Lag 4) to the LSAY Data, Predicting Science Achievement

Model 1 Model 2

Parameter Estimate 95% CI Estimate 95% CI

Fixed Effects

  Intercept 60.48* (59.32, 61.65) 60.54* (59.55, 61.54)

  Grade 2.49* (2.18, 2.80) 2.49* (2.17, 2.80)

  Cohort 1.48* (.54, 2.42) 1.32* (0.39, 2.25)

  Grade × Cohort −0.62* (−1.09,−.15) −0.61* (−1.09, −0.13)

  Student Socioeconomic Status 0.13* (0.10, 0.15)

  Student Fundamentalist Attitudes −2.68* (−3.37, −1.98)

  School Socioeconomic Status 0.12 (−0.09, 0.33)

  School Fundamentalist Attitudes −8.38* (−16.42, −0.34)

Variance/Covariance Parameters

  Within-Time Residual 10.12* (9.48, 10.82) 10.12* (9.48, 10.82)

  Student Intercept (I) 93.71* (88.93, 98.90) 87.97* (83.45, 92.88)

  Student Grade Slope (S) 4.71* (4.02,5.59) 4.70* (4.02, 5.58)

  Student I,S Covariance −1.27 (−2.75, 0.21) −1.42 (−2.86, 0.02)

  School Variance 14.57* (10.07, 22.95) 9.99* (6.81, 16.08)

  School Covariance, Lag 1 13.56* (9.16, 22.13) 8.99* (5.92,15.28)

  School Covariance, Lag 2 12.83* (8.51, 21.55) 8.20* (5.23, 14.68)

  School Covariance, Lag 3 12.28* (8.01, 21.19) 7.63* (4.73, 14.38)

  School Covariance, Lag 4+ 10.79* (6.67, 20.40) 6.18* (3.46, 14.06)

*
p < .05
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Table 4

Observation Frequency by Child Age

Child Age Frequency

11 168

12 289

13 350

14 408

15 418

16 420

17 415

Total 2468
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Table 6

Comparative Fit of Models with Different Covariance Structures for Family Effects over Time on Child
Externalizing Behavior

Stable Dynamic

Intercept Intercept + Slope CS AR

Parameters 8 10 9 9

Model 1: Includes Age Trends Only

−2LL 4850.2 4845.0 4847.6 4825.9

AIC 4866.2 4865.0 4865.6 4843.9

BIC 4895.3 4901.3 4898.3 4876.6

Model 2: Includes Age and Child- and Family-Level Predictors

−2LL 4753.5 4748.9 4752.0 4736.5

AIC 4769.5 4768.9 4770.0 4754.5

BIC 4798.6 4805.2 4802.7 4787.2

Note: Parameters refers to the number of unique variance/covariance parameters estimated in the model, −2LL is the log-likelihood of the model
multiplied by a factor of −2 (i.e., the model deviance), AIC is Akaike’s Information Criterion, BIC is Bayes’ Information Criterion. Bolded entries
indicate best fit. Covariance structures were specified as defined in Table 1: CS = compound symmetric, AR = first-order autoregressive.
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Table 7

Comparative Fit of Models with Different Covariance Structures for Family Effects over Time on Child
Depression

Stable Dynamic

Intercept Intercept + Slope CS AR

Parameters 8 10 9 9

Model 1: Includes Age Trends Only

−2LL 6259.0 6253.8 6257.3 6251.5

AIC 6275.0 6273.8 6257.4 6269.5

BIC 6304.0 6310.2 6308.0 6302.2

Model 2: Includes Age and Child- and Family-Level Predictors

−2LL 6235.9 6232.7 6234.2 6227.9

AIC 6251.9 6252.7 6252.3 6245.9

BIC 6280.9 6289.0 6284.9 6278.6

Note: Parameters refers to the number of unique variance/covariance parameters estimated in the model, −2LL is the log-likelihood of the model
multiplied by a factor of −2 (i.e., the model deviance), AIC is Akaike’s Information Criterion, BIC is Bayes’ Information Criterion. Bolded entries
indicate best fit. Covariance structures were specified as defined in Table 1: CS = compound symmetric, AR = first-order autoregressive.
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Table 8

Parameter Estimates and 95% Confidence Intervals (CIs) Obtained by Fitting First-Order Autoregressive
Family Effects Structure to the MLS Data, Predicting Externalizing Behavior

Model 1 Model 2

Parameter Estimate 95% CI Estimate 95% CI

Fixed Effects

  Intercept .390* (.324,.456) −.133 (−.272,.006)

  Age .009 (−.008,.025) .055* (.027,.084)

  Age2 −.015* (−.022,−.008) −.034* (−.047,−.021)

  Male .217* (.096,.338)

  Age × Male −.070* (−.104,−.036)

  Age2 × Male .028* (.012,.043)

  Parental Alcoholism .415* (.291,.540)

  Parental Depression/Dysthymia .098 (−.027,.223)

  Parental ASP .207* (.049,.364)

Variance/Covariance Parameters

  Within-Time Residual .210* (.191,.232) .212* (.193,.235)

  Child Intercept (I) .281* (.224,.363) .265* (.213,.338)

  Child Linear Age Trend (L) .008* (.005,.015) .008* (.005,.014)

  Child Quadratic Age Trend (Q) .001* (.000,.004) .001 (.000,.004)

  Child I,L Covariance .013* (.001,.024) .016* (.006,.027)

  Child I,Q Covariance −.006* (−.012,−.000) −.007* (−.013,−.002)

  Child L,Q Covariance −.002* (−.003,−.000) −.001 (−.002,.000)

  Family Variance .136* (.096,.208) .086* (.056,.151)

  Family Autocorrelation .819* (.723,.915) .757* (.613,.901)

*
p < .05;

ASP = Antisocial Personality Disorder
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Table 9

Parameter Estimates and 95% Confidence Intervals (CIs) Obtained by Fitting First-Order Autoregressive
Family Effects Structure to the MLS Data, Predicting Depression

Model 1 Model 2

Parameter Estimate 95% CI Estimate 95% CI

Fixed Effects

  Intercept −1.267* (−1.357,−1.178) −1.307* (−1.495,−1.120)

  Age .016 (−.006,.039) .070* (.031,.110)

  Age2 .009 (−.001,.019) .010 (−.000,.020)

  Male −.273* (−.410,−.135)

  Age × Male −.078* (−.124,−.031)

  Parental Alcoholism .207* (.024,.390)

  Parental Depression/Dysthymia .179 (−.004,.363)

  Parental ASP .257* (.028,.486)

Variance/Covariance Parameters

  Within-Time Residual .362* (.328,.401) .361* (.327,.400)

  Child Intercept (I) .506* (.411,.637) .483* (.391,.611)

  Child Linear Age Trend (L) .022* (.015,.034) .021* (.014,.033)

  Child Quadratic Age Trend (Q) .003* (.002,.006) .003* (.002,.006)

  Child I,L Covariance .030* (.009,.050) .024* (.003,.044)

  Child I,Q Covariance −.022* (−.032,−.011) −.021* (−.032,−.011)

  Child L,Q Covariance −.000 (−.002,.002) .000 (−.002,.002)

  Family Variance .230* (.162,.351) .215* (.151,.332)

  Family Autocorrelation .892* (.809,.975) .881* (.792,.970)

*
p < .05;

ASP = Antisocial Personality Disorder
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