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Abstract
In the last two decades attention to causal (and formative) indicators has grown. Accompanying
this growth has been the belief that we can classify indicators into two categories, effect
(reflective) indicators and causal (formative) indicators. This paper argues that the dichotomous
view is too simple. Instead, there are effect indicators and three types of variables on which a
latent variable depends: causal indicators, composite (formative) indicators, and covariates (the
“three Cs”). Causal indicators have conceptual unity and their effects on latent variables are
structural. Covariates are not concept measures, but are variables to control to avoid bias in
estimating the relations between measures and latent variable(s). Composite (formative) indicators
form exact linear combinations of variables that need not share a concept. Their coefficients are
weights rather than structural effects and composites are a matter of convenience. The failure to
distinguish the “three Cs” has led to confusion and questions such as: are causal and formative
indicators different names for the same indicator type? Should an equation with causal or
formative indicators have an error term? Are the coefficients of causal indicators less stable than
effect indicators? Distinguishing between causal and composite indicators and covariates goes a
long way toward eliminating this confusion. We emphasize the key role that subject matter
expertise plays in making these distinctions. We provide new guidelines for working with these
variable types, including identification of models, scaling latent variables, parameter estimation,
and validity assessment. A running empirical example on self-perceived health illustrates our
major points.
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Introduction
Over a century ago Spearman (1904) analyzed a group of indicators hypothesized to be
functions of individuals’ intelligence, the first instance of factor analysis. In his analysis
Spearman treated the latent variable as a determinant of the measures (i.e., effect or
reflective indicators). Treating the intelligence indicators as effect indicators made sense
because the scores should theoretically respond to changes in intelligence rather than vice
versa. As factor analysis spread to diverse subject matters, researchers typically maintained
the implicit assumption that their measures were effect indicators. Analyses involving
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classical test theory, item response theory, and structural equation models (SEMs) nearly
always share the same assumption.

The assumptions underlying effect indicators appear reasonable when measuring most
attitudes and beliefs. For some topics, however, such as exposure to stressful life events,
socioeconomic status, or the amount of social interaction, the assumptions underlying effect
indicators become questionable. For instance, a set of stress indicators including changing
jobs, getting married or divorced, and moving to a new home do not conform to the idea that
the latent variable (exposure to stress) causes the indicators. One might prefer to think of
these life events as causes of stress, in which case the measures are best considered causal
indicators of exposure to stress.

H. M. Blalock (1964, 1974), a sociologist, appears to be the first to describe the distinction
between what he called cause and effect indicators. A few studies followed that examined
some of the identification problems associated with causal indicators (Land, 1970), how to
estimate the effects of blocks of variables or indicators (Heise, 1972; Marsden, 1982), and
paradoxes about the behavior of multiple causal indicators verses multiple effect indicators
(Bollen, 1984). In addition, the idea of causal indicators spread from sociology to marketing
where the similar but not identical idea of formative indicators was adopted (Fornell &
Bookstein, 1982). Formative indicators, or composite indicators (Grace & Bollen, 2008),
operate as contributors to a composite variable that is a linear combination of the composite
indicators.2 Sometimes the composite variable is referred to as a “latent” variable, but the
researcher assumes the composite indicators perfectly determine the composite (i.e., the
latent variable’s disturbance is zero).

Following the work of Bollen and Lennox (1991) an awareness of causal indicators as an
alternative to effect indicators has rapidly expanded. This has led to a number of empirical
studies that include causal indicators as components of the estimated models (e.g., Atkinson
& Lennox, 2006; Fayers & Hand, 1997, 2002; Perreria, Deeb-Sossa, Harris, & Bollen, 2005;
Glanville & Paxton, 2007). In addition, our understanding of many of the methodological
aspects of working with causal indicators has increased.

The ability to distinguish between causal and effect indicators is one area that has seen some
progress. A number of researchers have outlined and refined conceptual checks that
differentiate causal and effect indicators (Bollen, 1989; Cohen, Cohen, Teresi, Marchi, &
Velez, 1990; Bollen & Lennox, 1991; Edwards & Bagozzi, 2000; Diamontopoulos &
Winklhofer, 2001; Fayers & Hand, 2002; Jarvis, MacKenzie, & Podsakoff, 2003; Williams,
Edwards, & Vandenberg, 2003). In addition, researchers have developed empirical tests
involving vanishing tetrads to distinguish between causal and effect indicators (Bollen &
Ting, 2000). Establishing the identification of models involving causal indicators has been
another active area of research (Bollen, 1989; MacCallum & Browne, 1993; Bollen &
Davis, [1994] 2009a, 2009b). Finally, researchers have explored how to assess the validity
of causal indicators (Bollen, 1989; Diamantopoulos & Winklhofer, 2001; Fayers & Hand,
2002).

In addition, to causal and composite indicators, covariates are another type of variable that
can enter these nontraditional measurement models. These are virtually absent from
discussions of causal or composite indicators. Of course, covariates are present in models
that exclusively consist of observed variables, but our emphasis is on covariates in models
with at least some latent variables. In this context, covariates are variables that are not

2We use the term “composite indicators” to refer to the variables that are the components of a composite variable. This terminology
departs from the usual notion that an “indicator” is in reference to a latent variable as the composite variable is observed.
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measures of a latent variable, but they are nonetheless important to include to avoid bias
estimates of the relations between latent variable(s) and indicators. One might think of the
impact of some covariates as being less immediate, or more distal, than causal indicators,
but their associations with the latent variable and its causal indicators necessitates their
inclusion to avoid potential omitted variable bias. For instance, we might hypothesize that
certain demographic groups are more likely to be exposed to stress so that variables
representing these groups have direct effects on stress exposure even after controlling for
causal indicators such as job loss, divorce, moving, etc. Failing to take account of these
demographic groups could bias our estimates of the impact of job loss, divorce, moving, etc.
on stress exposure.

Confusion remains about the similarities and differences between causal indicators,
composite (formative) indicators, and covariates. For instance, in a recent exchange in
Psychological Methods concerning causal indicators the authors base some of their
arguments about causal indicators on properties of composite indicators (see Howell,
Breivik, & Wilcox, 2007; Bollen, 2007). As another example, a search for formative
indicators on the Mplus forum produces numerous questions indicating uncertainty about the
properties of causal and formative (composite) indicators. SEMNET, the primary listserv for
SEM work, regularly has questions on how to identify and estimate models with causal or
formative indicators. Though some authors have discussed composite indicators (e.g., Grace
& Bollen, 2008), they do not distinguish these from causal indicators, formative indicators,
and covariates.

Past literature has concentrated on heightening awareness among researchers that not all
indicators are effect (reflective) indicators. This has supported a dichotomous view of
indicators with the traditional effect indicator and the causal indicator as the two categories.
Our paper takes the presence of indicators that influence latent variables for granted. But we
argue that such variables are not all the same. In other words we seek to move beyond the
idea that there are variables that are not effect indicators and to concentrate on better
understanding the types of observed variables or indicators that affect latent variables.
Distinguishing these different types of variables has two benefits for applied research. It
allows a more complete framework for considering respecifications in models that do not fit
the data and it provides a more precise link with theory. As we will show, the different types
of variables have distinct theoretical interpretations and careful consideration of the
differences among them may inform the substantive understanding of the object under study.

We have two purposes with this paper. First, we propose a distinction between causal
indicators, composite (formative) indicators, and covariates, and explore the ramifications of
the differences in the types of indicators. We also discuss indexes and scales in light of these
distinctions between indicators. Second, we provide an overview of the advances in our
understanding of working with causal and composite indicators versus covariates and, in the
process, provide readers with a new guide for using such variables in their research. As we
repeatedly emphasize subject matter expertise is at least as important as empirical
techniques in determining the type of indicator. We limit the amount of technical details in
our discussion and where possible refer readers to the relevant literature. We develop an
empirical example throughout the paper to provide concrete illustrations of working with
covariates, and causal, composite, and effect indicators.3

We divide the paper into six sections. We first provide an overview of our empirical
example, before turning to a discussion of how to distinguish between covariates and effect,

3Following the conventions of prior literature, we assume that the latent variables and the endogenous observed variables are (or
approximate) continuous variables. In our discussion exogenous observed variables could be dichotomous or continuous.
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causal, and composite indicators. In the third section we review approaches to deciding
whether variables are best treated as covariates, composite, causal, or effect indicators. In
the fourth section we discuss the identification, options for scaling latent variables, and
estimation of models involving causal or composite indicators and covariates. In the fifth
section we consider methods for evaluating the quality of causal and composite indicators.
Finally, in the sixth section we explore a few additional complications that can arise when
working with these variables.

A Model for Latent Perceived Health
For our empirical example we create a model of perceived health. The data come from the
General Social Survey (GSS). The GSS is a nationally representative repeated cross-
sectional survey conducted roughly every year between 1972 and 1994 and then every other
year since. Each cross-section consists of a multi-stage stratified random sample of non-
institutionalized adults age 18 and older involving approximately 1,500 to 3,000
respondents.

In 1991 the GSS asked a series of questions to a subset of respondents concerning their
health. We selected the following five questions to use as illustrations in various models: (1)
ill enough to see the doctor in the last year, (2) hospitalized or disabled in the last year, (3)
hospitalized or disabled in the last five years (not including last year), (4) self-reported
health, and (5) satisfaction with health (see Table 1 for descriptive statistics). In addition, we
selected a few demographic variables (age, sex, and race) that are likely to have an impact
on perceived health and are therefore important to include as covariates or control variables.

For illustrative purposes we consider a set of three models. One model treats all five
measures as effect indicators (see Figure 1, Panel A). This is perhaps the default model most
researchers would begin with. The second model treats the first three indicators as causal
indicators and the final two indicators as effect indicators (see Figure 1, Panel B). This
model, commonly referred to as a multiple indicator-multiple cause or MIMIC model
(Jöreskog & Goldberger, 1975), is most consistent with our theoretical understanding of the
relationships among the indicators. The third model treats the first three variables as
composite indicators and the last two indicators as effect indicators (see Figure 1, Panel C).
In Figure 1, Panel C we use a hexagon to represent a composite variable, an exact linear
function of the three composite indicators (Grace and Bollen (2008) introduced this
notation). It could just as well be represented as a variable in a rectangular box since a
composite is simply a linear combination of its component observed variables. However, to
emphasize its special role as a weighted combination of other observed variables, we use the
hexagon.4

Researchers often adjust for potential confounding effects by including covariates that act as
control variables in their models. We illustrate this in some of our models by allowing the
demographic covariates to have a direct effect on latent health. In the MIMIC models and
the models with a composite variable we also allow the demographic covariates to correlate
with the causal or composite indicators.

4If we were to remove the composite variables from this model and had the xs directly influencing the ys, the path diagram could
represent a multivariate regression with two dependent variables and uncorrelated errors. The presence of the composite makes for a
difference in that the weights for the xs determine the composites and those weights need not come from regression estimates. For
example, a researcher might use equal weights for the composite indicators to form the composite scale.
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Types of Indicators and Covariates
In this section we distinguish between effect, causal, and composite indicators, and
covariates. Researchers tend to treat causal, composite, and formative indicators as
essentially the same. As our later discussion explains, this has led to considerable confusion.
The distinction between effect indicators and the latter three variables is sharp whereas the
difference between causal indicators, composite indicators, and covariates is less clean. In
the next series of subsections we describe each type of variable and then discuss how to
distinguish between them.

Effect Indicators
Effect indicators are the most common type of indicators in social and behavioral science
research. An effect indicator model is illustrated in Figure 2, Panel A. The dashed lines
represent additional observed variables. The model equations are

(1)

where ypi is the pth observed variable or indicator that depends on the latent variable η1i, and
αp are intercepts. The structural coefficients λp1 give the expected impact of a one-unit
difference in η1i on ypi. We assume E[εpi] = 0 for all i and p, and COV(η1i, εpj) = 0 for all i,
p, and j.

Effect indicators are chosen or created to correspond to the theoretical definition of the
concept that the latent variable represents, as such effect indicators may be considered
“manifestations” or “demonstrations” of the latent variable The effect indicators of the same
latent variable have conceptual unity in that they all correspond to the same dimension of a
concept. This common dependence on a single latent variable generally creates an
association among the effect indicators (Bollen, 1984). Factor analysis, item response
theory, reliability, and validity work in the social sciences all implicitly assume effect
indicators.

Causal Indicators
Causal indicators are another general class of indicators. An equation to represent them is

(2)

where η1i is a latent variable for the ith case, xqi is the qth observed variable or indicator,
and αη is the intercept. The coefficients, γ1q, are structural coefficients that give the
expected impact of a one-unit difference in xqi on η1i while holding constant all other xs.
The term “structural” is important in that it signifies an effect that the researcher assumes to
be an invariant causal effect (Goldberger, 1973, pp. 2–6; Bollen, 1989, p. 4). Whether
coefficients can reasonably be interpreted as causal must be justified separately from the
SEM in which they are embedded. For further discussion see Wright (1934, p. 193) and
Pearl (2000, pp. 135–138).

The disturbance, ζ1i, includes all other determinants of η1i not included in the equation. We
assume E[ζ1i] = 0 for all i, and COV(xqi, ζ1j) = 0 for all q, i, and j. (e.g., Bollen, 1984, 1989).
This model assumes that the observed variables influence a single latent variable (see Figure
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2, Panel B). Like the effect indicators, the causal indicators have conceptual unity in that
they should correspond to the definition of the dimension of the concept that the latent
variable represents. The inclusion of the disturbance ζ1i means that the causal indicators do
not completely determine the latent variable.

Composite Indicators
Composite indicators are weighted elements that form a composite variable for which there
is no disturbance term. That is, the composite variable is an exact linear combination of the
composite indicator variables. But beyond having no disturbance, the composite indicator
coefficients are not structural or causal coefficients. Rather their coefficients are weights to
apply to form the composite variable that is made up of them. To clearly separate these
composite indicators from the causal indicators, we represent their coefficients with w, a
symbol to stand for a weight that is applied to the variable that follows it, or in the case of
the intercept it stands for a constant. Figure 2, Panel C pictures a model with composite
indicators. The equation for this path diagram is

(3)

where C1i is a composite variable for the ith case. Formative indicators as originally defined
by Fornell and Bookstein (1982) are the same as composite indicators: “…when constructs
are conceived as explanatory combinations of indicators (such as ‘population change’ or
‘marketing mix’) which are determined by a combination of variables, their indicators
should be formative” (442). Current usage of formative indicators is ambiguous in that
sometimes it refers to causal indicators as defined above and other times as its original
meaning of composite indicators as defined in this subsection. We stay with the terms of
causal indicators and composite indicators to avoid this confusion.

Composite indicators do not necessarily have conceptual unity, but can be an arbitrary
combination of variables. Heise’s (1972) sheaf coefficient is an example of the use of
composite indicators. He proposed the sheaf coefficient as a convenient way of combining
the effects of several variables into a single composite whose standardized coefficient can
then be compared to the standardized coefficient of other single or composite variables in
the model. Combining the effects of dummy variables indicating ethnic group into a sheaf
coefficient is one example from Heise (1972), but a researcher can form any set of variables
into a composite. Furthermore, the sheaf coefficient is not necessary in an analysis with
composite indicators in that the researcher can interpret the variables’ influences in their
original metric.

Covariates (Controls)
Sometimes there are variables that are not measures of a latent variable, but they are
associated both with the latent variable and its indicators in such a way that their omission
would bias estimates of the relations between latent variables and indicators. We refer to
these as covariates. Covariates regularly appear in models that include only observed
variables, so their use and meaning extends beyond the measurement context of concern to
us. We remind the reader that our focus on covariates is in the context of measurement
models.

Some but not all covariates might cause the latent variable, even though they are not causal
indicators of the latent variable. For instance, researchers often include demographic
variables in a model as covariates rather than as causal or composite indicators. Age, sex,
and race may all directly influence a latent variable even though we would not consider
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them indicators of the latent variable. Nonetheless, it is important to include covariates,
which may have less proximate impacts than the causal indicators, to avoid the potential for
omitted variable bias. If a model includes both covariates and causal indicators, then one can
interpret some of the xs in equation (2),

(4)

as covariates rather than causal indicators. For example, in our perceived health model we
sometimes include the covariates of age, sex, and race along with the causal indicators.
Sometimes the covariates’ coefficients are structural in that they represent separate
(typically more distal) causes of the latent variable. Other times the covariates are entered to
control for omitted variable bias and their coefficients might not have a clear causal
interpretation.

In other models a researcher might specify covariates as causes of the causal indicators such
that the covariates would have only indirect or both direct and indirect effects on the latent
variables. However, other times researchers can treat the covariates and the causal indicators
as correlated exogenous variables without specifying direct effects among them. It is
unlikely that covariates would be included among a set of composite indicators in that
composite variables are intended to form the composite whereas covariates are intended to
control for omitted factors that might bias structural coefficients.

Distinguishing the Three Cs and Effect Indicators
The last section made preliminary distinctions between the different types of variables. This
section brings into sharper focus the differences and similarities of covariates and of effect,
causal, and composite indicators. As we make clear, theory and substantive knowledge are
critical to separating the indicators from each other. We begin by discussing the Three Cs:
covariates, and causal and composite indicators. Then we contrast these with effect
indicators.

Contrasting the Three Cs
A formal distinction between the causal indicators, composite indicators, and covariates is
not always easy. Instead, we can provide informal guidelines to distinguish between causal
indicators, composite indicators, and covariates while recognizing that there are situations in
which the lines between these blur. The theoretical framing of the analysis is the primary
factor in determining the variable type.

Consider causal indicators first. Causal indicators are variables that correspond to the
conceptual meaning underlying a latent variable. The latent variable represents a dimension
of a concept that has been defined. The causal indicators are variables that measure that
dimension of the concept as so defined. If we were to define general socioeconomic status
(SES) as the overall standing of a person in the stratification system of a society, then
education, income, and occupational prestige would be causal indicators of SES. Or in our
running example if we define perceived overall health as an individual’s overall perception
of his or her well-being, we have indicators of whether the person has seen a doctor in the
last year, has been hospitalized or disabled in the last year or in the four years prior to last
year. These three variables correspond to the latent variable of perceived health and hence
are plausible as causal indicators. We also see these variables as causes of perceived health
such that a difference in any one of these variables plausibly causes a change in perceived
health. The issue of whether indicators are causal or effect indicators is a separate issue that
we turn to later. But for the moment assuming that these variables influence the latent
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variable, we would consider them as causal indicators since they correspond to the
theoretical definition of the latent variable and are hypothesized to cause changes in
perceived health.

Another aspect of causal indicators is that their impacts on a latent variable should be
relatively stable across different outcomes of the latent variable. This invariance is an
essential part of a structural effect. For instance, suppose that we have three causal
indicators of η1i as in

(5)

and that η1i affects η2i and η3i

(6)

where we assume that the model is identified by having additional effect indicators of η2i
and η3i that are not shown. By setting β21 = 1 and α2 = 0 we can provide a scale for η1i.5 If
x1i, x2i, and x3i are causal indicators, then their coefficient estimates should not vary beyond
sampling error in the model shown compared to a model where only η2i is included or only
η3i is included. Of course, some differences would be imposed through differences in the
scaling of η1i, but the only other source of difference should be sampling fluctuations. In
other words, the outcomes of η1i should not have much influence on the coefficients (i.e.,
the γs) of the causal indicators. If they do fluctuate beyond the amount expected by chance,
then this is evidence that the model structure is misspecified or that these are not causal
indicators of a single latent variable.

Covariates are a second type of variable. Covariates are variables which are associated with
the latent variable and the indicators in such a way that their omission would bias estimates
of the relations between the indicators and latent variables. Covariates are not linked to the
latent variable through its theoretical definition. Typically, each covariate is a “stand alone”
variable that needs to be controlled to prevent omitted variable bias in the structural
coefficients of the causal indicators. In those situations where a covariate is a cause of the
latent variable, the effects of covariates are often less proximate, or more distal, than causal
indicators.

Returning to our example of overall perceived health, we hypothesize that whether the
person has seen a doctor in the last year (x1i), has been hospitalized or disabled in the last
year (x2i) or in the four years prior to last year (x3i) are three causal indicators of overall
perceived health. But in addition, we include age (x4i), sex (x5i), and race (x6i) as covariates
that might affect overall perceived health. Age, sex, and race are potential causes of
perceived health, but we do not treat them as measures or causal indicators of it. Formally,
our statistical model with the three causal indicators (x1i, x2i, x3i) and three covariates (x4i,
x5i, x6i) is

(7)

5Later in the paper we discuss scaling the latent variable by setting a coefficient for the causal indicator to one.
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and the causal indicators appear in the equation the same as the covariates. Each coefficient
is a structural coefficient. It is the theoretical context that permits us to describe one group of
xs as causal indicators and another group of xs as covariates.

If we switch to a different latent dependent variable, we generally would expect to use a
different set of causal indicators. A new latent dependent variable originates from a different
concept. The indicators that correspond to the new latent variable are likely to differ from
those of the previous latent variable, though there are instances where the same causal
indicator influences more than one latent variable. Starting a new job, for example, is a
plausible causal indicator of exposure to stress but also a possible causal indicator of a
separate latent variable of work boredom. But more frequently a new latent variable leads to
a new set of indicators.

In contrast, it is more likely that there is overlap in covariates for two different latent
dependent variables. Covariates such as age, race, or gender have effects on many outcomes,
which is why they might be part of an equation even with a new latent variable. Since these
covariates are predicting a different outcome, we would not expect their coefficients to be
the same as they were for the first dependent variable.

Composite indicators are a third type of variable. The primary question is whether a
researcher hypothesizes that these indicators have direct causal or structural effects on a
latent variable. If the answer is yes, then these are not composite indicators but are causal
indicators or possibly covariates. Another question is whether the researcher wants to form a
composite (scale or index) that is an exact linear combination of the indicators. If yes, then
composite indicators are most likely. This latter condition implies that the error variance of
the composite is set to zero. If a model and the error variance are identified, then the null
hypothesis that the error variance is zero could be tested.6 A zero error variance is more
plausible for composite indicators than for causal indicators. In addition, being causal
indicators assumes that there is conceptual unity among the measures. No conceptual unity
implies no causal indicators.

But there are more subtleties to the problem. For instance, suppose that a researcher has a
model with several covariates with direct structural effects on a dependent variable. For
instance, suppose that η2i is the outcome variable that has age, sex, race, and education as
covariates with direct effects on it as in

(8)

When these explanatory variables are in the model with direct effects on η2i, they are
covariates as per the preceding definition. In a follow-up analysis the researcher might be
curious about the combined effect of age, sex, and race in contrast to education. To examine
this, the analyst combines age, sex, and race into a composite. The group of variables need
not have conceptual unity except in the loosest sense of the word, but the researcher wants to
assess their joint impact using a composite as in

(9)

6Though theoretically possible it is highly unlikely that causal indicators would completely explain the variance of the latent variable.
There has been some confusion over the testing of zero variances in SEMs concerning hypothesis tests on boundary points. If a model
is estimated without inequality constraints forcing the variances to be positive, the tests are relatively straightforward. See Savalei and
Kolenikov (2008) for clarification of this issue.
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and to compare the coefficients of the composite to the coefficient of education as in

(10)

Setting the coefficient of the composite to one helps to identify the model. If one were to
standardize the coefficients in this model, then they would be closely related to the “sheaf
coefficients” discussed by Heise (1972). In this example the composite is a convenient way
of combining variables that have only a vague unity in being demographic variables. As
such we would not expect the coefficients from the composite equation (9) to stay the same
or even to have the same relative magnitude of effects if we were to change the outcome
variable from depression (η2i) to something else. This is true even taking account of any
changes in the scaling of the outcome variable.

The researcher is not assuming a causal influence from the indicator to the composite, but
rather the composite is a convenient weighted sum of the indicators. It is even possible that
the weights for the composite indicators are set equal to the structural coefficients of the
covariates from equation (8) where they were covariates. But this does not change their
status as composite indicators. As long as there is a composite variable that is an exact linear
combination of observed variables as in equation (9), these observed variables are composite
indicators. If the composite is not in the model and the observed variables have direct effects
on the outcome variable as in equation (8), then they are covariates.

Figure 3 is a path diagram to illustrate these points more fully. Figure 3a has three composite
indicators (x1, x2, x3), two composites (C1, C2) and two outcome variables (y1, y2). The same
three composite indicators form the two different composites. Each composite is associated
with a different outcome (either y1 or y2). The weights (coefficients) for the composite
indicators differ depending on the composite (either C1 or C2). The weights (coefficients)
could be optimized to predict a particular outcome As the outcome changes so do the
weights. The exception would be if the weights were fixed in advance, such as is implicit
when indexes or scales are used and the composite indicators are equally weighted or
weighted in a predetermined way. In these situations, the weights are not free to vary.

If we modified this diagram to have a single composite with y1 and y2 as two effects of it,
this would represent strong assumptions about the composite. First, it would suggest that all
of the impact of the composite indicators (x1, x2, x3) on y1 and y2 are mediated through the
single composite. However, as discussed above the composite is a convenient summary of
the effects of several variables. It is not intended as a mediating latent variable (with
disturbance) that in turn influences several outcomes. Second, it would assume that a single
set of weights for the composite indicators works well for both y1 and y2. In addition, it
would assume that such a model would fit the data even with the implicit restriction that the
composite has zero error variance.

In contrast, Figure 3b has three causal indicators (x1, x2, x3), one latent variable (η1), and
two effect indicators (y1, y2). Here the causal indicators (x1, x2, x3) and the two effect
indicators (y1, y2) correspond to the same concept that is represented by the latent variable.
The disturbance variable for the latent variable is not zero since there are other influences
that affect the latent variable. In addition, in this causal indicator model we would expect the
coefficients of the causal indicators to be stable regardless of whether only y1 or only y2
were used (other than differences due to the change of scaling of the latent variable). If
changes were observed, it would be a symptom of a structurally misspecified model (Bollen,
2007).7
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This difference between composite and causal indicators provides insight into a recent
article (Howell, et al, 2007) and comment (Bollen, 2007) in this journal. Howell, et al.
(2007) suggested that formative indicators were more susceptible to instability of
coefficients depending on the outcome. Bollen (2007) argued that these coefficients would
only change beyond sampling and scaling effects if there were structural misspecifications
in the model. We could explain these different perspectives as the differences we would
expect for composite (formative) versus causal indicators. The coefficients of composite
indicators can change by outcome variable. The coefficients of causal indicators should be
stable and if they are not it is a symptom of something wrong in the model.

Another contrast between causal and composite indicators is that there is some arbitrariness
in what variables go into a composite. Unlike causal indicators where their inclusion is
based on whether a variable measures the concept represented by the latent variable, the
inclusion of variables in a composite is more arbitrary than being closely guided by a
theoretical definition. In the previous example, a researcher could have included education
as part of the demographic composite since there is not an explicit standard of what should
be in or out of such a composite.

Returning once again to our example of overall perceived health, we hypothesize that
whether the person has seen a doctor in the last year (x1i), has been hospitalized or disabled
in the last year (x2i) or in the four years prior to last year (x3i) are three causal indicators of
overall perceived health. But in addition, we include age (x4i), sex (x5i), and race (x6i) as
covariates that might affect overall perceived health. Age, sex, and race are potential causes
of perceived health, but we do not treat them as measures or causal indicators of it.
Formally, our statistical model with the three causal indicators (x1i, x2i, x3i) and three
covariates (x4i, x5i, x6i) is

(11)

and the causal indicators appear in the equation the same as the covariates. Each coefficient
is a structural coefficient. It is the theoretical context that permits us to describe one group of
xs as causal indicators and another group of xs as covariates. At other times, the covariates
are not directly influencing the latent variable, but are such that they must be taken into
account to avoid biased estimates of the causal indicators’ effects.

It is possible that the relation between causal indicators and their latent variable differs
across categories or values of covariates. The causal indicators might have a different impact
on the latent variable for men versus women or for young versus old. This would be
analogous to Differential Item Functioning (DIF) in the IRT literature except here we are
dealing with causal indicators rather than effect indicators. One way to test for this would be
to form interactions between the suspected covariate and the causal indicator to test if the
causal indicator has significantly different effects across values of the covariate. Multiple
group analysis where the researcher forms separate groups (e.g., male vs. female) and tests
the equivalency of the effects of the causal indicators would be another way to test the
invariance of causal indicators’ effects on the latent variable.

The distinction between composite indicators and covariates is different. As we described
above, composites are linear combinations of their composite indicators where there is no
disturbance for the composite. The coefficients associated with composite indicators are best

7It is theoretically possible, but extremely unlikely that the disturbance variance in Figure 3b is zero, which would then make the η1
variable completely determined by its causal indicators. In this hypothetical case the coefficients of the causal indicators would remain
structural even though the disturbance is absent.
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understood as weights rather than the structural coefficients. Since the composite acts as
convenient summary device, it does not make sense to consider including covariates among
a set of composite indicators. Researchers select variables to construct a composite with the
intent to estimate the joint (usually standardized) coefficient of the group of variables on an
outcome rather than to estimate the net effect of the composite indicators on the composite
controlling for other variables.8 When we have a composite, then all of the indicators going
into it are composite indicators. A covariate would then be a variable that does not enter the
composite, but that does influence other endogenous variables in the model.

In brief, composite (formative) indicators are the indicators that form the composites and
composites are an exact linear function of the composite indicators so that the implicit error
variance is zero. Causal indicators are structural determinants of a latent variable that
correspond to the definition of the latent variable and that do not completely determine it. In
the context of our measurement models, covariates do not correspond to the definition of the
concept that the latent variable represents, but they are variables that need to be controlled to
prevent bias estimates of the causal indicators’ effects on the latent variable.

Distinguishing Effect Indicators
The preceding contrasts causal indicators, composite indicators, and covariates. We have not
yet compared these to effect indicators. The most basic difference between the three Cs and
effect indicators is that the latent variable is a function of causal indicators, composite
indicators, and covariates while the reverse is true for effect indicators.9 Covariates and
composite indicators are the easiest to distinguish from effect indicators and we treat them
first.

Covariates influence a latent variable and must be controlled when assessing the impact of
other variables (e.g., causal indicators) on the latent variable. Given this role as determinants
of the latent variable and not representatives of the concept of a latent variable, most of the
time there is little danger of mixing up covariates with effect indicators.

Composite indicators may consist of quite dissimilar variables with little conceptual unity
even though the researcher is interested in their aggregated effect. Because of this,
composite indicators might be positively, negatively, or even unrelated to each other. In
addition, the coefficients or weights of the composite indicators are not structural
coefficients of the effects of the composite indicators on the composite. Effect indicators
should follow the theoretical definition of the concept that the latent variable represents and
the latent variable determines the values of the effect indicators. The factor loadings from
the latent variable to the effect indicators are structural coefficients in that the latent variable
causes a change in the effect indicators. Generally effect indicators will be associated due to
this common dependency on the same latent variable.10

Causal indicators often are the most difficult to separate from effect indicators. Most
importantly, causal and effect indicators are measures that correspond to a theoretical
definition of the concept represented by a latent variable. Hence, they are indicators that

8It is possible that a researcher might claim that some composite indicators are really covariate controls, but it is difficult to imagine
when this would occur.
9In addition, the three Cs involve allowing many more covariances to be estimated than do effect indicators. This is because the three
Cs are typically exogenous observed variables that are allowed to correlate whereas effect indicators are endogenous variables with a
common dependence on a latent variable. These additional covariance parameters are a small cost to pay for a properly specified
model.
10In special cases of correlated errors or factor complexity greater than one, it is possible for effect indicators not to be associated. But
it is highly unusual for such complications to destroy the usual associations found when effect indicators measure the same latent
variable.
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have conceptual unity, something not necessary for covariates or composite indicators. To
distinguish causal and effect indicators the key question is whether the indicators influence
the latent variable or vice versa. Unfortunately no definitive statistical tests exist to
adjudicate between the two types of indicators. There are, however, a number of conceptual
and empirical checks that can help determine how best to model a set of indicators.

The first conceptual check involves conducting a mental experiment in which one imagines
changes in the latent variable and subsequent changes in the indicators, and vice versa
(Bollen, 1989, pp. 65–67; Edwards & Bagozzi, 2000, pp. 157–160; Diamontopoulos &
Winklhofer, 2001, p. 271; Fayers & Hand, 2002, p. 238; Jarvis et al., 2003, p. 203; Williams
et al., 2003, p. 906). If one imagines that a change in the latent variable should lead to a
change in all of the observed indicators, then it would be best to treat the indicators as effect
indicators. Alternatively, if one imagines a change in any given observed variable should
result in a change in the latent variable, then it would be best to treat that indicator as causal.

Consider the five measures of perceived health we introduced above. Each measure seems to
tap the concept of a person’s subjective assessment of their well-being. That is, the five
measures have conceptual unity. It seems reasonable to imagine that an increase in
perceived health is likely to lead to an increase in a respondent’s self-rated health and
satisfaction with health. But, this is less clear with the other three measures. If a respondent
visits a doctor, becomes hospitalized or disabled, then one might imagine a change in their
perceived health, but a change in perceived health will not necessarily lead to all three
outcomes. As a result, we might consider treating self-rated health and satisfaction with
health as effect indicators and the three measures related to visiting a doctor or the hospital
as causal indicators.

Another conceptual check involves evaluating how interchangeable or essential the
indicators are in measuring the latent variable (Bollen & Lennox, 1991, p. 308;
Diamontopoulos & Winklhofer, 2001, p. 271; Fayers & Hand, 2002, p. 245; Jarvis et al.,
2003, p. 203). Given a set of effect indicators of a unidimensional concept represented by
one latent variable, dropping a single indicator does not affect the relationships between the
remaining indicators or their relationships with the latent variable. In this sense, one might
consider effect indicators with roughly the same reliability and validity as interchangeable or
non-essential, though we could distinguish which indicator is most closely related to the
latent variable. This is not the case with causal indicators. Consider, for example, a latent
variable for social interaction measured by time spent with friends, family, strangers, and
coworkers. Leaving out one of the indicators alters the latent social interaction variable,
potentially in a significant way. In addition, the omission of one or more of these causal
indicators might bias the coefficients of the remaining causal indicators, assuming that the
omitted ones correlate with the included. In contrast to effect indicators, causal indicators
are not interchangeable and are usually essential.

A final conceptual check involves considering the expected level of association among the
indicators (Bollen, 1984; Cohen et al., 1990; Bollen & Lennox, 1991; Diamontopoulos &
Winklhofer, 2001; Jarvis et al., 2003). A set of effect indicators positively associated with a
latent variable should all have positive correlations with each other. Causal indicators do not
require such an association. Returning to our empirical example involving perceived health,
one would expect a positive correlation among self-rated health and health satisfaction, but
it’s not clear whether one would expect a strong relationship between going to the doctor
and being hospitalized.
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Summary
Table 2 is a summary of the contrasts between covariates and effect, causal, and composite
indicators. The columns of the table list the type of variable. The rows list possible
characteristics of the variable types. A check means that the characteristic is necessary for a
type of variable. No mark means that it is not needed. To illustrate, the first row is
“Conceptual Unity” and only effect indicators and causal indicators are checked. This means
that to be one of these types of indicators, the variable must correspond to the definition of
the concept that is represented by the latent variable. Composite indicators and covariates
need not correspond to the concept. Similarly, effect and causal indicators should have
“stable coefficients across outcomes” of the latent variable. Sampling fluctuations or scaling
differences should account for any differences. All but effect indicators have the latent
variable or composite as a function of the indicator. A composite indicator is the only type
where the error variance for the receiving variable should be zero. Effect indicators are the
only ones predicted to necessarily correlate with each other. Finally, the next to last row lists
whether omitting the indicator type leads to bias. This refers to whether the parameter
estimates of the remaining variables change if an indicator type is left out. This is most
clearly seen with causal indicators and covariates which are essential to maintain unbiased
estimation.11 Composite indicators’ weights or coefficients are somewhat arbitrary and
sometimes might even be assigned a value (e.g., equal weights) in advance. With fixed
weights, the weights of the other composite indicators do not change if one or more
composite indicators are absent. However, if there are other variables in the model with
estimated coefficients, then the values of these coefficient estimates are likely to shift
depending on what composite indicators are included. Or if the researcher estimates the
weights of the composite indicators, then these estimates are likely to shift depending on
which composite indicators are included. It is for these reasons that we check the row for
possible bias if a composite indicator is in or out of a model.

Empirical Checks of Causal versus Effect Indicators
If the conceptual checks prove inconclusive or the researcher requires empirical evidence to
support treating variables as causal or effect indicators, then there are two empirical checks
to help distinguish these types of indicators. The first check involves examining the patterns
of association among the indicators (Bollen, 1984; Cohen et al., 1990, pp. 187–188; Bollen
& Lennox, 1991, p. 307; Diamontopoulos & Winklhofer, 2001, p. 271; Jarvis et al., 2003, p.
203). As described in the conceptual check, one would expect positive correlations among
effect indicators positively associated with a latent variable. In contrast, with a set of causal
indicators any type of correlation (including no correlation) is possible. Therefore, if one
finds low or negative correlations among a set of indicators with positive relations to the
latent variable, then this is evidence of either poor effect indicators or of causal indicators.
Checking the associations among the indicators, however, may not be useful if the
researcher suspects a mixture of causal and effect indicators among a set of variables,
correlated errors among the indicators, or that the indicators may measure more than one
concept (multidimensionality).

To illustrate these points we return to our indicators of perceived health. We find a
moderately strong positive correlation (r = 0.56) between self-rated health and health
satisfaction (see Table 3). We do not, however, find a clear pattern of correlations among the
other variables. We see that visiting a doctor has a moderate correlation with being
hospitalized or disabled last year (r = 0.34) and essentially no correlation with being

11If a causal indicator or covariate is uncorrelated with the other exogenous variables in the model, then its omission would not bias
results. Or if the direct effect of one of these variables on the latent variable were zero, then its omission would not bias the other
coefficients.
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hospitalized in the four years prior to the last year (r = 0.01). Furthermore, being
hospitalized last year has a negative correlation with being hospitalized in the previous four
years (r = −0.23).

An alternative empirical check involves testing for vanishing (zero) tetrads among a set of
indicators using Bollen and Ting’s (2000) confirmatory tetrad analysis. A tetrad refers to the
difference between the product of a pair of covariances and the product of another pair
among four random variables. With four variables we can derive three tetrads

(12)

where τghij refers to the tetrad defined by σghσij − σgiσhj and σij refers to the population
covariance between the ith and jth indicators (notation based on Kelley (1928)). A vanishing
tetrad refers to those tetrads that equal zero. Different model structures often imply different
sets of vanishing tetrads. This fact allows one to test the overall fit of a model by testing the
implied vanishing tetrads. If an implied vanishing tetrad is significantly different than zero,
then this constitutes evidence against the hypothesized model.12

Since testing for vanishing tetrads only involves the covariances among the indicators, it is
particularly useful in helping to determine how to treat a set of indicators. A model
consisting of four effect indicators implies three vanishing tetrads, while a model consisting
of four causal indicators implies no vanishing tetrads [see Bollen & Ting (2000, p. 7) for a
derivation]. Models with a mixture of causal and effect indicators as well as models
allowing for correlated disturbances also often imply different sets of vanishing tetrads and
can be tested. In addition, Bollen and Ting (2000) demonstrate how to work with models
including less or more than four indicators.

Bollen (1990) provides a simultaneous vanishing tetrad test statistic that enables a researcher
to test whether two or more tetrads are zero. It is the basis for confirmatory tetrad analysis
(Bollen & Ting, 1993) in general, and can be used for the vanishing tetrad test for causal
indicators. The test is constructed as

(13)

where N is the sample size, t is a vector of the independent sample tetrad differences, and

 is the inverse of the covariance matrix of the limiting distribution of t as N goes to
infinity. The T statistic asymptotically approximates a chi-square statistic with df equal to
the number of independent vanishing tetrads considered in the test. A non-significant result
suggests that the observed tetrad differences are not significantly different than zero,
indicating that the data are consistent with the vanishing tetrads implied by the hypothesized
model.

Bollen (1990) and Bollen and Ting (1993) explain how to estimate the covariance matrix,
Σtt, in equation (13). Bollen and Ting (1998) and Johnson and Bodner (2007) propose
bootstrap methods to which the statistic can be compared. Hipp and Bollen (2003) extend

12Bollen and Ting (2000) note that testing for vanishing tetrads for causal versus effect indicators is less useful as an exploratory tool
when there are a large number of indicators. The sheer number of possible combinations of causal and effect indicators would lead to
a massive number of tests. Often conceptual formulations restrict the plausible possibilities to a more reasonable number.
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the analysis of vanishing tetrads to models involving dichotomous or ordinal observed
variables. SAS macros are available to implement these tests (Hipp, Bauer, & Bollen, 2005;
Ting, 1995).

For our example involving five variables related to perceived health we performed vanishing
tetrad tests using the SAS macro for three candidate models (see Figure 1). We consider two
models: (1) a model treating all of the variables as effect indicators and (2) a MIMIC model
with three causal indicators and two effect indicators. Given the conceptual unity of the five
indicators and that we expect structural relations to the latent overall perceived health
variable, we rule out composite indicators. We also run a set of vanishing tetrad tests that
include our demographic covariates.

We begin with the model treating all of the variables as effect indicators. Following Bollen
and Ting (2000), one can determine algebraically that a model with five effect indicators has
15 tetrads, all of which vanish (are zero). Only five of the fifteen tetrads, however, are
independent, which gives us 5 implied vanishing tetrads to test. For the MIMIC model we
can also determine algebraically that there are 2 implied vanishing tetrads that are a subset
of the vanishing tetrads for the all effect indicator model. This indicates that we can perform
nested tetrad tests for the MIMIC model nested within the model with all effect indicators.

Determining the implied vanishing tetrads algebraically becomes more difficult when we
add covariates to the model. Fortunately, the SAS macro automates this procedure and
determines the number of implied vanishing tetrads based on the implied covariance matrix.
In practice, for this to work correctly it is important to include a number of significant digits
when entering implied covariance matrices into the SAS macro (for our tests we used 8
significant digits). Bollen, Lennox, and Dahly (2009) provide a step-by-step guide to using
the SAS macro for conducting tetrad tests.

We find a significant chi-square for the model treating all of the variables as effect
indicators, but a non-significant chi-square for the MIMIC model (see Table 4). The
significant chi-square for the effect indicators model is evidence that the model does not fit
the data well. By contrast the non-significant chi-square for the MIMIC model suggest that
this model is consistent with the data. The nested test between the MIMIC model and the
effect indicators model is also significant, which suggests the MIMIC model is preferred.
We see the same pattern of results when we add the demographic covariates to the model.

It is important to keep in mind that empirical checks can provide support for the presence of
one type indicator over another, but they do not provide conclusive evidence. In our
example, the MIMIC model has a better fit with the data, but it does not preclude the
possibility that other models treating the indicators differently could fit the data equally as
well (or even better). One must rely on substantive theory in conjunction with empirical tests
to select the most appropriate form for the indicators.

Model Identification and Estimation
In our discussion of identification we focus on causal indicator models as they create more
problems than either effect indicators models or models with composite variables. The main
challenge to estimating models with causal indicators lies in identifying all of the model
parameters. In this section, we briefly review what happens with respect to model
identification when a latent variable measured by causal indicators emits 1 or 2 or more
paths. When no paths are emitted, the model is virtually never identified.

The parameters of a SEM include regression coefficients, factor loadings, and the variances
and covariances of latent variables and error variables. Identification concerns whether
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unique values of the model parameters exist that we can determine using information
provided by the distribution of the observed variables. Typically we use the population
means (μ) and the population covariance matrix (Σ) to identify the model parameters.

In general, for any SEM one can form an implied mean vector (μ(θ)) and an implied
covariance matrix (Σ(θ)) where θ contains all of the parameters in the model. The moment
structure hypotheses are given by

(14)

If the model is correctly specified, then these equalities should hold exactly. Bollen (1989)
provides general expressions of μ(θ) and Σ(θ) that hold for any SEM. In terms of (14), the
question of identification is whether it is possible to uniquely solve for each parameter in θ
in terms of μ and Σ, the means, variances, and covariances of the observed variables.

If, as shown in Figure 4, Panel A, a latent variable measured by causal indicators affects one
other variable it is possible to identify some of the parameters by removing the latent
variable and allowing the indicators to have direct effects on the outcome (Bollen, 1989, pp.
312–313; MacCallum & Browne, 1993; Bollen & Davis, [1994] 2009a). The equations for
this model are

(15)

where we have set α1 = 0 and λ11=1. These restrictions provide the latent variable η1i with a
metric and anchor its mean, a requirement for all latent variables.

By solving for η1i in the second equation of (15), we can combine the two equations into a
single equation

(16)

We now have an equation with a composite disturbance (ζ1i + ε1i) that is uncorrelated with
the covariates (xqi). This enables us to estimate (17) as a standard regression model using an
Ordinary Least Squares (OLS) estimator available in any statistical or SEM software
package. This demonstrates that the intercept and regression coefficients are identified, and
therefore we can estimate the effects of the causal indicators on the latent variable. We
cannot, however, separately identify the variances of ζ1i and ε1i, though we can identify the
variance of the sum (ζ1i + ε1i). In practice, this means that it is impossible to know how
much of the combined error variance is due to measurement error and how much is due to
the variance in the latent variable not explained by the causal indicators. We also cannot
estimate the variance of η1i. Finally, we have no degrees of freedom for the chi-square test
statistic for the overall fit of the model or for the various indices of fit. Nonetheless, this
model represents some progress over a model with no emitted paths in that we can identify
the effects of the causal indicators on the latent variable.

In equation (15) we assume that y1i is a suitable scaling indicator for η1i. What happens if y1i
is unrelated to η1i (λ11=0) contrary to our scaling assumption? How would we know this
since we have implicitly set λ11=1? Fortunately, we can find indirect evidence of λ11=0.
Consider the original equations for the model prior to imposing any scaling restrictions
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(17)

Substituting the equation for η1i into the equation for y1i leads to the reduced form equation
of

(18)

The compound disturbance of this equation is uncorrelated with the xs so that the OLS
estimator is a consistent estimator of the coefficients. If λ11=0, then all of the coefficients of
the covariates should be within sampling fluctuations of zero. If only a subset of the
coefficients are significantly different from zero, then λ11≠0.

An alternative way to scale the latent variable would be to set one of the γs to one, say
γ11=1. If this were done, then the coefficient of x1i would equal λ11. Suppose that x1i was a
bad choice of scaling indicator since γ11=0. If this was true but the other xs had effects and
λ11≠0, then the coefficient of x1i in the reduced form equation would not be significantly
different from 0 and the other coefficients would be. So here too we have evidence that the
scaling indicator is bad. Analogous arguments are valid if the single outcome variable is
another latent variable rather than a single effect indicator of a latent variable.

The situation improves significantly if one has a second outcome variable for the latent
variable (see Figure 4, Panel B). We can write the equations for this model as

(19)

This is a special case of the well-known MIMIC model in which all of the parameters are
identified (Hauser & Goldberger, 1971; Jöreskog & Goldberger, 1975). More generally, a
model with a single latent variable that has both causal and effect indicators is identified if
there are at least two effect indicators with uncorrelated errors13 and at least one causal
indicator (Jöreskog & Goldberger, 1975). This rule establishes that the MIMIC model for
perceived health is identified. In addition, Bollen and Davis ([1994] 2009a) generalize this
rule to cover models with multiple latent variables measured by causal indicators, which
they term the exogenous X rule. Heuristically, identification by the exogenous X rule is
established if: (1) “Each latent variable has at least one effect indicator that loads only on it
(a ‘unique indicator’) and their errors are uncorrelated,” (2) “Each latent variable directly
affects at least one other effect indicator and errors for these variables are uncorrelated with
the errors of the unique indicators,” (3) there are least m causal indicators and the matrix of
coefficients for the effects of the causal indicators on the latent variables has rank(m), and
(4) “the structural model relating the causal indicators to the latent variables and the latent
variables among themselves has an identified structure” (Bollen & Davis, [1994] 2009a, pp.
503–505).

Another advantage of having a second effect indicator is that the model is overidentified as
long as there is more than one causal indicator and no correlated errors. This allows one to

13More accurately, we assume that the effect indicators are conditionally uncorrelated net of the latent variable so that we also
exclude direct effects between the effect indicators.
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compare the hypothesized model to the saturated model with the chi-square test of model fit
and to consider various other indices of model fit.

So far we have restricted our discussion to models with one or two effect indicators for the
latent variable. Analogous results hold if the outcome variables of the latent variable
measured by causal indicators are themselves latent variables. The 2+ emitted paths rule
requires each latent variable to emit at least two paths to other variables, either latent or
observed (MacCallum & Browne, 1993; Bollen & Davis [1994] 2009a, 2009b). In this case,
the outcome latent variables should be measured by at least two effect indicators.

To summarize this section, if the latent variable measured by causal indicators has no
outcome variable, then there is little a researcher can do to estimate the effects of the causal
indicators on the latent variable. If there is at least one outcome, such as an effect indicator
or another observed variable, directly influenced by the latent variable, then it is possible to
identify and estimate the coefficients of the causal indicators on the latent variables. With
two or more outcome variables with uncorrelated errors and no direct effect between the
outcome variables, the situation is even better and a researcher can proceed as with any
other SEM including testing the overall model fit and calculating a variety of fit indices
using any of the standard SEM software packages.

Options for Scaling Latent Variables Measured by Causal Indicators
All latent variables require a scale to identify and interpret parameters. The options for
scaling latent variables when working with effect indicators are well studied and understood,
but this is not the case for latent variables measured by causal indicators. In this section, we
briefly review three options and provide recommendations as to when to use them.

First, if a latent variable measured by causal indicators also emits paths to effect indicators,
then a natural choice is to scale the latent variable to one of the effect indicators. If there is
more than one effect indicator, choose the one that appears most closely related to the latent
variable. This is the approach we use in our example involving perceived health. We scale
latent perceived health to our first effect indicator, respondent’s self-rated health.

In some cases, a latent variable measured by causal indicators emits paths only to anticipated
outcomes of the latent variable. One must use theory or substantive knowledge to
distinguish outcomes from effect indicators. For instance, one might measure latent
socioeconomic status (SES) by a set of causal indicators (e.g., education, income, and
occupational status) and then model the effect of SES on political attitudes. In this case, it is
possible to scale the latent variable by setting one of the paths to the outcomes to 1, but this
may feel awkward as it sets the scale based on an outcome rather than a measure of the
latent variable. An alternative is to scale the latent variable to one of the causal indicators. In
this situation, this may make more sense as the causal indicator maintains conceptual unity
with the latent variable and therefore may provide a more interpretable metric for the latent
variable. A one-unit difference in the scaling causal indicator leads to an expected one-unit
difference in the latent variable that it scales.

Finally, some researchers scale the latent variable by setting its variance to 1 or the error
variance of the latent variable to 1. These options are only available for models in which the
latent variable emits more than one path. In models where the latent variable emits only a
single path none of the parameters will be identified if one chooses these scaling options
(see Appendix 1 for a proof). If there is a single emitted path from a latent variable, then the
researcher needs to scale the latent variable using the outcome variable or one of the causal
indicators.
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Estimation
Once one has established a model is identified, a number of estimators are available for
obtaining parameter estimates. The most popular estimator for SEMs is a maximum
likelihood estimator (MLE), which one can use for models involving causal, composite, or
effect indicators. The fitting function for the MLE is given by

(20)

where |.| is the determinant, tr[.] is the trace, S is the sample covariance matrix, p is the
number of effect indicators, and q is the number of causal or composite indicators and
covariates. The θ that maximizes this function is the MLE.

For our example involving variables related to health we estimated the models described
above (see Figure 1) using AMOS 17 (Arbuckle, 2008). We first consider the overall model
fit statistics for each model. The all effect indicator model has a significant chi square test
statistic and fit measures that all fall short of conventional standards. The same is true for the
composite indicator model. The composite indicator model’s one degree of freedom comes
from the uncorrelated errors of the y variables and the poor fit of the model is evidence
against this restriction. We find clear evidence that the MIMIC model has the best fit with
the data of the three we considered (see Table 5). The overall chi-square is non-significant,
the CFI and TLI are right around 1.00, the RMSEA is 0.00, and we have a negative BIC. As
with the composite indicators model, the MIMIC model has uncorrelated errors of the ys,
but it specifies their common dependence on the latent variable and this contributes to a well
fitting model. When we add covariates to the model, the MIMIC model still has the best fit
of the three, but there are some indications that the model does not fit the data as well. The
chi-square is significant, the TLI is low, and the RMSEA is above 0.05. This may be
because we constrained all of the demographic covariates to have only direct effects on
latent perceived health. If we were to develop this model further, it would be worth
considering whether the covariates have direct effects on one of the two effect indicators,
self-reported health and health satisfaction.

Turning to the parameter estimates, we see the factor loadings or regression coefficients
depending on the model are mostly significant and in the expected direction (see Table 6).
The one exception is hospitalized/disabled in the prior 4 years, which is not a significant
indicator in any model. We find significant variance in the latent variable for the all effect
indicator model. The disturbance variance of our latent variable for health in the MIMIC
model is significantly different from zero, which rules out the composite indicator model. In
the effect indicators model we see low R-squares for the indicators that we treat as causal or
composite indicators in the other two models. These are important clues that the model using
effect indicators may not be correct. We find in the MIMIC model that the three causal
indicators account for 19 percent of the variance in the latent health variable. We find the
same pattern of results when we include covariates in the model (results not reported).

Evaluating Indicators
Once we have determined the type of indicator or covariate in the model and have estimated
the model, it is possible to evaluate the performance of the variables. Effect indicators are
the predominant implicitly assumed type of indicator and the literature on assessing them is
vast. To save space we will not repeat it here. Similarly, covariates and their effects are well
studied in regression courses and will not be discussed. The assessment of composite and
causal indicators is less developed, so we will concentrate on them.
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One simple statistic to assess both composite and causal indicators is to estimate the squared
correlation between the indicator and the latent variable or composite. For a composite
indicator, this squared correlation is

(21)

where COV(xq,C) is the covariance of the composite indicator and the composite, VAR(xq) is
the variance of the composite indicator, and VAR(C) is the variance of the composite. The
higher this squared correlation is, the greater the shared variance of the composite indicator
and the composite. In a sense this is a measure of how good a proxy a single composite
indicator is for the full composite with high values suggesting better proxies.

Sample estimates of the quantities in equation (21) enable estimation of a squared
correlation for each composite indicator. Upon estimation, the composite equals

(22)

This enables a value of the composite and we can use any statistical software to estimate the
correlation between it and each composite indicator. After squaring this, we have the
squared correlation measure.

A similar squared correlation measure is available for each causal indicator,

(23)

where COV(xq,η) is the covariance of a causal indicator with the latent variable and the
VAR(η) is the variance of the latent variable. Given the assumption that the error or
disturbance is uncorrelated with the causal indicators, then

(24)

with

(25)

Forming η̂, we can estimate COV(xq, η̂) which equals COV(xq,η). An estimate of VAR(η) is
often available from SEM software output.14 With these parts, we can estimate the squared
correlation of the causal indicator and its latent variable. This quantity tells us the amount of
shared variance of the latent variable and the causal indicator.

The question of validity seems out of place for composite indicators since the composite
indicator is not intended to measure a latent variable. Rather, the composite is simply a
weighted sum of its composite indicators. We can ask, however, about the validity of a
causal indicator. This question can be addressed at several stages of the research process. In

14If not available, an analyst can estimate it as VAR(η) | VAR(ζ).
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an early stage causal (and effect) indicators should be selected because they correspond to
the theoretical definition of the concept that the latent variable represents. That is, the causal
indicator should have face validity in that it is plausible to think that it influences the latent
variable. The plausibility derives from substantive expertise of the researcher and comparing
the indicator to the theoretical definition of the latent concept.

Even experts can be wrong, so it makes sense to look for empirical means of assessment. If a
researcher has no outcome variables for the latent variable, then the only empirical check is
the vanishing tetrad test. This provides information on the appropriateness of considering all
or a subset of the indicators causal versus all or a subset as effect indicators. If the vanishing
tetrad test supports effect indicators or a mixture of causal and effect indicators, this cast
doubts on treating them all as causal indicators. Alternatively, a vanishing tetrad test
supportive of causal indicators does not guarantee their quality.

With at least two outcome variables that have no direct effects between them and no
correlated errors, we can estimate the coefficients and their standard errors for the causal
indicators along with the variance of the latent variable. This information allows one to
assess the validity of the indicators. One approach to assessing validity involves examining
the magnitude of the direct structural relationships between the indicators and the latent
variable (Bollen, 1989). Bollen (1989, pp. 197–205) outlines three ways of considering the
magnitude of the direct relationship: (1) the unstandardized validity coefficient, (2) the
standardized validity coefficient, and (3) the unique validity variance.

The unstandardized validity coefficient is simply the estimate of the effect of the indicator
on the latent variable in their original metrics.15 The standardized validity coefficient
corresponds to the standardized regression coefficient. Finally, the unique validity variance
for causal indicators measures the part of the explained variance in η1i that is uniquely
attributable to xqi. The formula for the unique validity variance Uη1xq is

(26)

where  is the proportion of variance in η1i explained by all variables with a direct effect

on the latent variable and  is the proportion of variance in η1i explained by all
variables with a direct effect excluding xqi. The unique validity variance ranges from 0 to 1
where higher values suggest greater validity than lower ones.

If the causal indicators have no impact on the latent variable then their coefficients will not
be statistically significant and this will be reflected in the measures of validity. Rather than
being poor measures, it is possible that the latent variable does not affect the outcome
variable as hypothesized. In the absence of prior research or good substantive knowledge,
we cannot know whether we have bad causal indicators or a nonexistent relationship
between the latent variable and an outcome. If we find that some causal indicators have
significant coefficients and others do not, then this provides indirect evidence that the causal
indicators with nonsignificant coefficients are more likely the problem. In contrast, if all the
causal indicators are not significant, then this suggests that problem lies with the relationship
between the latent variable and the outcome variable or that the causal indicators are highly
collinear with one another.

15This measure of validity is available for models in which the latent variable emits a single path because it only requires the estimate
of the effect of the causal indicator on the latent variable.
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Using the five variables we find mixed results for the shared variance and the validity of our
three hypothesized causal indicators of perceived health. Visiting the doctor and being
hospitalized in the last year have shared variances with perceived health of 0.11 and 0.12,
unstandardized validity coefficients of −0.28 and −0.45, and standardized coefficients of
−0.24 and −0.29 respectively, all of which are statistically significant (see Table 7). The
shared variance for hospitalized in the 4 years prior is close to zero, the unstandardized
validity coefficient is −0.13, and the standardized coefficient is −0.09, which are only
marginally significant. We find a similar pattern of results with the unique validity variance
(see Table 7). These results indicate that hospitalized in the 4 years prior to the last year may
not be a good causal indicator of perceived health.

One complication that can affect models with causal indicators is collinearity among the
indicators (Bollen, 1989, pp. 205–206; Diamantopoulos & Winklhofer, 2001, p. 272). If a
causal indicator is perfectly predicted by the other causal indicators, then we cannot estimate
its separate effect on the latent variable. More often when there are high correlations among
a set of causal indicators, it is difficult to estimate their individual effects. This is the same
issue as multicollinearity in multiple regression and analogous diagnostics are appropriate
here. The presence of multicollinearity is particularly problematic for assessing the validity
of causal indicators. If the researcher is not specifically interested in estimating the effect of
the causal indicators on the latent variable, then dropping nonsignificant variables from the
model is a possibility. This strategy can result in biased coefficients for the other causal
indicators, so it only should be considered if these coefficients are not of primary interest.

In many cases when we have two outcome variables of the latent variable the model will be
overidentified. This permits the analyst to test the overall fit of the model and to consider a
variety of model fit indices. If these fit statistics suggest a problem with the model, it is
possible that problem lies with the causal indicators (though there are many other reasons a
model may not fit the data well).

We can use these measures of validity in the selection of causal indicators (Bollen, 1989, pp.
197–205; Diamantopoulos & Winklhofer, 2001, pp. 272–274; Fayers & Hand, 2002, pp.
241–245). All else being equal, we prefer causal indicators that have significant values of
the unstandardized and standardized validity coefficients, high values of the unique validity
variance, high squared correlation with the latent variable, and little evidence of collinearity.
Additionally, one would like evidence that the overall model fits the data well.

A Few Potential Issues
Scales and Indexes

Social and behavioral scientists commonly use scales and indexes as exogenous or
endogenous variables in models.16 Concepts as diverse as socioeconomic status, depression
(Radloff, 1977), and activities of daily living (Lawton & Brody, 1969) are routinely
measured with scales or indexes. Typically indexes and scales are linear combinations of
variables that can be included in a model in lieu of the individual items. Scales and indexes
allow researchers to estimate the effect of a single summary variable rather than the
individual effects of a set of variables. As such, scales and indexes result in a more
parsimonious model. But this advantage comes with potential costs. To discuss these costs
we distinguish two situations: (1) when the items are causal indicators, composite indicators,
or covariates (the three Cs), (2) when the items are effect indicators.

16Some treatments associate indexes with causal indicators and scales with effect indicators (e.g., DeVellis 1991). This distinction
does not appear to be universally maintained, so we use the terms indexes and scales interchangeably in our discussion.
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The Three Cs
Suppose we have a model with a single outcome variable (yi) that depends on a latent
variable (ηi), which in turn is influenced by a vector of causal indicators (xi). We can write
this model as

(27)

where αs are intercepts, ζs are disturbances with mean 0 and uncorrelated with each other
and the explanatory variables in their respective equations. To simplify the situation we
assume homoscedastic and nonautocorrelated errors. The vector γ contains the coefficients
for the effect of the vector xi on ηi.

If we substitute the second equation in (27) into the first, we get

(28)

which we can estimate with OLS to obtain consistent and unbiased estimators of the
coefficients of the causal indicators.

What happens if an index or scale, Si, replaces the latent variable (ηi) in the model?
Typically, a scale or index is constructed as a linear combination of the indicators and the
researcher uses it as a proxy for a latent variable. We represent this linear combination as

(29)

where w is a vector of weights for the items. Sometimes a scale or index is a simple sum of
the items, in which case w = [1 1 … 1]. For instance, the Activities of Daily Living scale
and some exposure to stressful live events scales are often constructed as the sum of the
dummy coded items. In other situations, such as with many indexes of socioeconomic status,
each item is first standardized to have mean 0 and standard deviation 1 before summing.
Standardizing variables and summing them is an implicit weighting scheme.

If the equations in (27) represent the true model, but an analyst replaces ηi with Si, then in
general the coefficients for xi will be biased. We can see this by examining the relationship
between Si and ηi,

(30)

If w = γ, then the weights represent the true coefficients and we would obtain the correct
impact of the causal indicators on ηi since we are assuming that the weights in the index are
the same as the coefficients of the indicators. It seems unlikely, however, that the weights
used to form an index or scale would coincidentally match the true impact of the causal
indicators on the latent variable. Therefore, the use of indexes or scales will generally lead to
biased estimates of the effects for xi.

Though it is unlikely that a researcher would include covariates along with causal indicators
to form a scale or index, this does not change the results. In addition, forming an index or
scale from composite indicators is no different. If w ≠ γ, then one will obtain biased and
inconsistent coefficients. The degree of bias will depend on the degree of difference between
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the prespecified weights of the xs in the index or scale versus the true coefficients of the xs
in the model.

Effect Indicators
When constructing an index or scale using effect indicators researchers may select weights
on an ad hoc basis as we discussed in the previous section. Researchers may also use more
formal procedures such as factor score prediction to derive weights. We use the following
model to illustrate the problems with these approaches when working with effect indicators:

(31)

The first equation shows the latent variable η2i dependent on another latent variable η1i with
β as the coefficient. The second equation relates a vector of effect indicators (yi) to the latent
variable η1i with factor loadings λ and unique factors εi. (We assume but do not show
another equation that contains sufficient number of indicators of η2i to identify the model.)

Researchers sometimes form the predicted factor score to use in place of the latent factor
(η1i). The predicted factor score is the same as an index or scale except that its weights are
determined by factor regressions, Bartlett scores, or some other method for predicting the
values of the factor using the observed variables. Regardless of the factor scoring method,
we can write the factor score as

(32)

where b are the weights for forming the factor scores. The latent factor is equal to

(33)

where ei is the discrepancy between the latent variable and the factor score. If we substitute
the predicted factor score in place of η1i in the first line of equation (31), then we get

(34)

Since η̂1i = η1i − ei the error term βei + ζi correlates with η̂1i, which will create a bias in
estimating its coefficient with say, OLS. In other words, we cannot simply substitute the
predicted factor score for the actual latent variable without incurring bias. The degree of bias
depends on the degree to which the factor score exactly predicts the factor (latent variable).

Example with Model for Health
Returning to our running example involving health, suppose we construct an index as the
sum of our three causal indicators (visiting the doctor, going to the hospital in the last year,
going to hospital in the prior four years) and estimate the effect of the index on self-rated
health and satisfaction with health. To make the model comparable to our MIMIC model,
we scale the index to have the same variance as the latent variable from our MIMIC model
and we constrain the regression coefficient of self-rated health on the index to be one. When
we estimate the model using our index, we find a highly significant chi-square (202.5 with 2
degrees of freedom) indicating the model does not fit the data. We also estimate the effect of
the index on satisfaction with health to be 0.86 as compared with our estimate of 1.82 from
the MIMIC model. Using the index as a proxy for the latent variable leads to an estimate
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that is less than half of the effect of perceived health on satisfaction with health from the
MIMIC model. Though the biases need not always be this large, the example does illustrate
that an index is not a good substitute for the latent variable.

Summary
Using indexes or scales when a latent variable with causal, composite, or effect indicators or
covariates are present will in most situations result in biased and inconsistent estimators of
coefficients. In our discussion we have focused on unidimensional concepts represented by a
single latent factor. The bias is likely worse when working with multidimensional concepts
represented by more than one latent factor. In the multidimensional situation, a separate
latent variable for each dimension is necessary. A single index or sum of items cannot
capture these different dimensions in a single number.

There may be some situations where scales or indexes might work. For instance, if the
effects of individual causal or composite indicators are approximately equal and the sample
size is small, then assuming equal weights might be a good enough approximation that
reduces the number of parameters to estimate in a model. Alternatively, if the coefficients
for the individual causal or composite indicators are not that important to the analysis, it
may be that the biases associated with using a scale or index will not be that severe. With
effect indicators, the situation is a little different. If the index or scale is very highly
correlated (.95 or higher) with the latent variable and the indicators represent an underlying
unidimensional concept, then the index or scale could be a reasonable substitute for the
latent variable. Alternatively, if the index never appears as a covariate but only as a
dependent variable in a model, then the biasing effects could be less severe. Nonetheless, as
a general rule, one should avoid using indexes or scales in place of latent variables whenever
feasible.

Multiple Latent Variables with Causal Indicators
MacCallum and Browne (1993) note that it is not clear how one should handle the
covariances among causal indicators of separate latent variables. In general, SEMs allow for
all exogenous variables, latent or observed, to be correlated. Alternatively, one might argue,
based on the logic from effect indicators, that measures from one latent variable should not
be correlated with measures from another latent variable unless specified by theory. Finally,
one might prefer to allow one latent variable measured by causal indicators to affect the
causal indicators of another latent variable.

In practice the simplest solution is to allow all exogenous variables to be correlated. If a
researcher has a strong theoretical reason for treating the causal indicators of one latent
variable as uncorrelated with the causal indicators for another latent variable, then this
constraint can be imposed and tested with a likelihood ratio test. Similarly, if a researcher’s
theory suggests a more precise causal structure among a set of causal indicators (e.g., that
the latent variable measured by one set of causal indicators has an effect on the causal
indicators of another latent variable), then this also can be explicitly modeled and tested.

Measurement Error in the Causal Indicators
In the causal indicator model specified in equation (2) we assume that the observed variables
are actual causes as opposed to indicators of the real causal influences on η1i. In other
words, we assume that the observed variables contain negligible measurement error. If this
is not the case, then we need to allow for measurement error in the indicators themselves
(Bollen, 1989, p. 312). We can accomplish this by rewriting equation (2) as
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(35)

where each xqi is an indicator of a corresponding ξqi with a random measurement error or
unique factor δqi. In practice, models that allow for measurement error among the causal
indicators are even more difficult to identify. Generally we would need two or more effect
indicators for each ξqi.

Conclusions
Awareness of the distinction between causal and effect indicators has gradually grown over
the last 20 years. But as the awareness has grown so have questions about their treatment.
Part of the confusion concerns methods to distinguish causal from effect indicators. Other
questions have emerged about the best methods to assess the quality of causal indicators.

The field has made progress in recognizing that sometimes a latent variable is a function of
an indicator rather than vice versa. However, researchers have not appreciated that there is
more than one type of variable that can influence a latent variable. Indeed, it is common to
treat terms like causal indicators or formative indicators as if they were interchangeable. In
essence, conventional practice dichotomizes indicators into effect (reflective) indicators and
causal (formative) indicators. A primary purpose of our paper is to propose that the
dichotomous categorization is not accurate. The latter indicator type consists of three
different variables: causal indicators, composite (formative) indicators, and covariates. The
blurring of these three Cs has led to contradictory statements and controversy.

This paper discusses effect, causal, and composite indicators as well as covariates and
describes their similarities and differences. Furthermore, it reviews the identification,
estimation, and assessment of fit of models with these types of variables. We propose
methods by which we can determine the type of indicator or covariate we have. These
include both conceptual and empirical methods. It also presents ways to assess the validity
of causal indicators relying on definitions of validity from Bollen (1989). We also discuss
the hazards of using indexes and scales in light of these distinctions between types of
indicators. We illustrate many of our results using an empirical example on perceived health.

In brief, our recommendation is for researchers to give more thought to the type of
indicators they are using and to formulate models of their relationships to their latent
variables or composites. It is not accurate to act as if there are just two indicator types, one
that depends on a latent variable and the other that the latent variable is a function of.
Attending to the differences between causal indicators, composite indicators, and covariates
has a number of potential benefits for applied research. First, when facing a severely
misspecified model, a careful consideration of the types of indicators may provide one route
towards finding a better model. Second, in some cases it may be that one can obtain a
reasonable model fit even with an incorrect specification of the indicators (e.g., specifying
effect rather than causal indicators). However, these models imply very different ways in
which latent variables might be changed. Shifting a causal indicator alters the values of a
latent variable whereas shifting the same variable if it is an effect indicator has no
consequences for the latent variable. Third, the framework we propose helps clarify past
debates in this area, particularly between causal and composite (formative) indicators, and
will help researchers avoid erroneous advice based on conflating different types of
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indicators. Causal indicators imply an invariance in effects on the same latent variable
regardless of the outcomes of the latent variable whereas composite (formative) indicators
will likely shift depending on the outcome. Finally, the scientific enterprise seeks to use
accurate models of reality while recognizing the approximate nature of models. Accuracy
demands that we use the appropriate model for the relation between our measures and latent
variables. If we confuse covariates, causal indicators, composite (formative) indicators, and
effect indicators, we will set back the measurement of latent variables. We see no reason not
to use the most appropriate measurement models we are capable of building.

Ultimately, subject matter expertise is essential to distinguishing between effect indicators,
causal indicators, composite indicators, and covariates. When possible, we recommend
supplementing these theoretical considerations with empirical tests that can help to
adjudicate between structures. The current casual approach toward measurement can
undermine our tests of substantive hypotheses. We have the methods to address many of
these issues.
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Appendix 1
In this appendix we provide a proof concerning the identification of parameters in a model
with a latent variable measured by causal indicators that emits only one path (see Figure 4,
Panel A). The equations for this model are:

(36)

where η1 is a latent variable measured by three causal indicators (xis) that has an effect on
one variable, yi. The structural effects of the xs on η1 are given by the γs and the effect of η1
on yi is given by λ11.

We demonstrate the following four statements:

1. If the latent variable is scaled by setting λ11 = 1, the γs are identified, but V(η1) and
V(ε1) are not.

2. If the latent variable is scaled by setting γ11 = 1, then λ11, γ12, and γ13 are
identified, but V(η1) and V(ε1) are not.

3. If the latent variable is scaled by setting V(η1) = 1, then none of the parameters are
identified.

4. If the latent variable is scaled by setting V(ζ1) = 1, then none of the parameters are
identified.

To prove these statements we begin with equation (18),

(37)

and write the equations for the variance of y1 and the covariances of y1 with each of the xs.
For this model we have

(38)

where σ.. represents the variance or covariance of the observed variables in the subscript.
We also have

(39)

(40)

(41)

We first note that in equations (39), (40), and (41), the φs are identified using the variances
and covariances among x1, x2, and x3. Suppose we choose to scale the latent variable by
setting λ11 = 1. In this case, equations (39) to (41) have just three unknowns, the γs. Using

Bollen and Bauldry Page 30

Psychol Methods. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the three equations and three unknowns, we can identify the γs. We have only one remaining
equation that includes both V(η1) and V(ε1), so we are unable to separately identify them.
Now suppose that instead we scale the latent variable by setting γ11 = 1. We still have the
situation just described, that is, three equations and three unknowns and we can identify λ11,
γ12, and γ13, but we still cannot separately identify V(η1) and V(ε1). This demonstrates our
first two propositions.

A different situation arises if we choose to scale the latent variable by setting V(η1) = 1. The
first line of equation (38) reduces to an equation with just two unknowns [λ11 and V(ε1)],
but this doesn’t help us. We cannot use (39) to (41) to identify the coefficients because we
have three equations and four unknowns, and including equation (38) just adds another
unknown, V(ε1). Therefore we are not able to separately identify any of the parameters in
the model. We encounter the same problem if we try to scale the latent variable by setting
V(ζ1) = 1. In this case, the second line of equation (38) reduces to a function involving five
unknowns [λ11, the γs, and V(ε1)]. Once again, (39) to (41) do not provide enough
information to identify the four unknowns and including the reduced form of equation (38)
adds another unknown, so we are unable to separately identify any of the parameters. This
demonstrates our third and fourth propositions. Our choice of three x variables was arbitrary.
The same consequences follow whether we have fewer or more xs.
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Figure 1. Measurement Models for Perceived Health Example
Notes: η1 = perceived health. y1 (x1) = ill enough to go to a doctor in past year, y2 (x2) =
hospitalized/disabled last year, y3 (x3) = hospitalized/disabled in prior 4 years, y4 = self-
rated health, y5 = health satisfaction, C1 and C2 are the composites representing x1 through
x3.
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Figure 2.
Types of Measurement Models.
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Figure 3.
Comparison of Composite and Causal Indicators.
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Figure 4.
Identification with Causal Indicators.
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Table 1

Descriptive Statistics for GSS Data; N = 483.

Mean SD

Age 45.37 17.98

Male 0.44 0.50

Black 0.14 0.35

Other race 0.04 0.20

Ill enough to see doctor 0.54 0.50

Hospitalized/disabled last year 0.18 0.38

Hospitalized/disabled prior 4 years 0.20 0.40

Self-rated health 3.02 0.82

Satisfaction with health 5.43 1.42

Government should help with medical care 2.33 1.14

Psychol Methods. Author manuscript; available in PMC 2014 January 13.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bollen and Bauldry Page 37

Table 2

Characteristics of Types of Indicators and Covariates.

Type of Indicator

CovariateEffect Causal Composite

Conceptual unity √ √

VAR(ζ) = 0 √

Stable γs or λs √ √

“Latent” variable function of obs. variable √ √ √

Omitted variable leads to bias √ √1 √

Xs intercorrelated √

1
See text for discussion of weights that are fixed in advance.
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Table 4

Tetrad Test Results; N = 483.

Chi-square df p-value

Models w/out Demographics

Effect Indicators 38.76 5 0.000

MIMIC Model 1.66 2 0.436

 Nested Test Effect vs. MIMIC 37.10 3 0.000

Models with Demographics

Effect Indicators 43.19 21 0.002

MIMIC Model 11.64 6 0.071

 Nested Test Effect vs. MIMIC 31.56 15 0.007
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Table 7

Measures of Validity; N = 483.

β Std(β) Uη(xi)

See doctor 0.11 −0.28 −0.24 0.04

H/D last year 0.12 −0.45 −0.29 0.09

H/D prior 4 years 0.00 −0.13 −0.09 0.00

Notes: Based on model without covariates. The same pattern of results is observed in the model with covariates.
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