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Abstract

Objective—Although recent statistical and computational developments allow for the empirical

testing of psychological theories in ways not previously possible, one particularly vexing

challenge remains: how to optimally model the prospective, reciprocal relations between two

constructs as they developmentally unfold over time. Several analytic methods currently exist that

attempt to model these types of relations, and each approach is successful to varying degrees.

However, none provide the unambiguous separation of between-person and within-person

components of stability and change over time, components that are often hypothesized to exist in

the psychological sciences. The goal of our paper is to propose and demonstrate a novel extension

of the multivariate latent curve model to allow for the disaggregation of these effects.

Method—We begin with a review of the standard latent curve models and describe how these

primarily capture between-person differences in change. We then extend this model to allow for

regression structures among the time-specific residuals to capture within-person differences in

change.

Results—We demonstrate this model using an artificial data set generated to mimic the

developmental relation between alcohol use and depressive symptomatology spanning five

repeated measures.

Conclusions—We obtain a specificity of results from the proposed analytic strategy that are not

available from other existing methodologies. We conclude with potential limitations of our

approach and directions for future research.
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The past decade has given rise to remarkable developments in both the substantive theories

that underlie the evaluation and treatment of psychopathology and in the rigorous statistical
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analysis of repeated measures data. Indeed, there is a broad class of research hypotheses that

can be empirically evaluated in ways not possible even a few years ago. Despite the myriad

of recent advances, one particularly salient challenge remains: the ability to model the

complex dynamic relations that link two or more constructs together over time. Within the

clinical sciences it is often of key interest to evaluate precisely how a set of behaviors jointly

unfolds over time and how these relations vary dynamically both within and across

individuals. This is of particular interest when evaluating prevention or intervention

programs that are designed to causally induce behavioral change over time. Despite the

importance of these theoretical questions, many existing analytic methods are not well suited

to provide comprehensive empirical tests of the research hypotheses under study.

As we will explore in greater detail below, many statistical modeling approaches commonly

used to study repeated measures data over time focus on between-person differences in

stability and change. However, virtually all of our theories in the psychological sciences

posit either strictly within-person processes, or joint within- and between-person processes

(e.g., Curran & Bauer, 2011; Curran, Lee, Howard, Lane, & MacCallum, 2012). Omitting

either of these two components from a statistical model of individual change results in a

disjoint between our theoretical models and our statistical models, and this in turn

undermines the validity of our empirically-based inferences (e.g., Baltes, Reese, &

Nesselroade, 1977; Curran & Willoughby, 2003; Wohlwill, 1991). We believe that there

currently exists such a disjoint between many theories that guide the clinical sciences and

the statistical models we use to empirically evaluate these theories. The goal of our paper is

to explore both the theoretical and statistical issues that relate to the disaggregation of

within- and between-person processes in stability and change over time, particularly as they

relate to the study of the determinants and sequelae of psychopathological behavior.

We begin with an exploration of psychological theories of individual change. We then

review several existing analytic methods that are widely used for modeling two or more

constructs over time, particularly as applied within the clinical sciences. Next, we propose a

novel method for simultaneously estimating within- and between-person reciprocal

processes using a single integrated analytic framework and highlight potential advantages of

this approach in psychopathology-related research settings. Finally, we demonstrate this

model using artificial data that reflects a real-world developmental process and we conclude

with recommendations for practice and directions for future research.

Psychological Theories of Change

Nearly all theories within the psychological sciences posit either strictly within-person

processes, or joint within- and between-person processes underlying stability and change in

behavior over time (e.g., Curran & Bauer, 2011). Consider the complex relation between

stress, negative affect, and substance use (e.g., Hussong, Jones, Stein, Baucom, & Boeding,

2011). Negative reinforcement models of alcohol use theorize in part that an individual

consumes alcohol in order to reduce depression and anxiety that result from the presence of

uncontrollable life-stressful events in the environment. However, there are two key

components of this dynamic relation that must simultaneously be considered.
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First, we might hypothesize that, on average, individuals who experience higher levels of

negative affect tend to consume greater quantities of alcohol to reduce the unpleasant

feelings of depression and anxiety. Similarly, individuals who report systematic increases in

negative affect over time are more likely to also report systematic increases in substance use.

These are between-person effects: overall levels and smoothed rates of change over time in

depression and alcohol use are characteristics of the individual, and these individually-

varying characteristics are thought to covary in potentially meaningful ways.

However, at the same time there is a more subtle component of change that is unique both to

the individual and to specific points in time. Thus, in addition to the hypothesized between-

person relations, it might also be predicted that if an individual experiences higher levels of

depression relative to her underlying level of depression at one point in time, she is more

likely to consume greater quantities of alcohol relative to her underlying level of alcohol use

at a subsequent point in time. These are within-person effects: time-anchored elevations

relative to an underlying person-specific level at one time point may be meaningfully related

to time-anchored elevations relative to an underlying person-specific level at a later time

point. These time-specific relations are distinctly different from the between-person effects

hypothesized at the level of the individual.

Further, implicit in the theoretical motivation to disaggregate the levels of influence over

time is the potential existence of reciprocal effects between two constructs such that earlier

changes in one influences later changes in the other, and vice versa. Indeed, developmental

theories commonly posit reciprocal effects between two or more constructs. For example,

Patterson’s coercion model posits bidirectional relations between children’s externalizing

behavior problems and parenting behavior (Patterson, Reid, & Dishion, 1992; Patterson &

Yoerger, 2002); and negative reinforcement models of substance use describe reciprocal

relations between earlier negative affect predicting later substance use, and earlier substance

use predicting later negative affect (e.g., Hussong, Hicks, Levy, & Curran, 2001). An added

complication is that theoretical models may also suggest that the magnitude of these

reciprocal relations systematically vary as a function of time (Hartup, 1978; Scarr &

McCartney, 1983). In other words, the within-person reciprocal relations between two

constructs may become systematically stronger or weaker with the passage of time or with

exposure to treatment.

In sum, many contemporary theories in the clinical sciences posit complex reciprocal

relations between multiple constructs at both within-person and between-person levels of

influence, and these relations may vary in magnitude or form across time or over group.

However, many traditional statistical models commonly used in practice are restricted to the

estimation of between-person relations (e.g., Curran et al., 2012; Curran & Bauer, 2011) and

thus may at times provide less than optimal empirical tests of our theoretically-derived

research hypotheses. We must have the tools available to rigorously evaluate the

hypothesized across-construct reciprocal relations both at the level of the individual and at

the level of individual at specific points in time in order to minimize the disjoint between

our theoretical and statistical models. Developing such a model is our goal here.
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Traditional Latent Curve Models of Stability and Change

Our proposed analytic approach is based on an extension of the latent curve model (LCM).

The LCM draws on the strength of the structural equation model (SEM) to estimate

individual variability in stability and change over time. Although there are many important

historical lines of development that ultimately led to the LCM (see Bollen, 2007, for a

review), this was first formally proposed by Meredith and Tisak (1984, 1990) and expanded

on by many others (e.g., Browne, 1993; Browne & du Toit, 1991; McArdle, 1988, 1989;

McArdle & Epstein, 1987; Muthén, 2001, 2002; Muthén & Curran, 1997).

The LCM incorporates the repeated measures of a construct as multiple indicators on one or

more underlying latent curve (or growth) factors. The conceptual premise is elegant: we are

interested in using the observed time-specific measures to infer the existence of an

underlying and continuous but unobserved latent growth process. The latent factors capture

inter-individual differences in intra-individual stability and change over time. These might

be of interest in their own right, or more typically they are regressed on one or more

predictors in an attempt to model the individual variability in the trajectories. There are a

large number of alternative specifications that the LCM can take; see Bollen and Curran

(2006) and McArdle (2009) for general discussions of the LCM and Curran and Hussong

(2003) for a review of the use of LCMs within psychopathology research.

The unconditional univariate LCM

The most basic LCM is fitted to a single construct and includes no exogenous predictor

variables; this is called a univariate unconditional LCM. Say we were interested in studying

developmental trajectories of adolescent alcohol use. We define our repeatedly measured

outcome alcohol use as yit to represent the sample realization of construct y for individual i

(where i = 1, 2,…, N) at time point t (where t = 1, 2,…,T). We can link our set of repeated

measures to the passage of time through the definition of some form of trajectory. A linear

trajectory for yit is given as

(1)

where αyi and βyi represent the intercept and linear slope unique to individual i, respectively;

λt is the numerical measure of time at assessment t (where t = 0,1,…, T−1)1; and εyit
represents the individual- and time-specific deviation that is typically assumed

 indicating that the residuals are normally distributed and obtain a unique

variance at each time point t.

An important characteristic of the LCM is that the individually-varying intercept and slope

values are defined as random variables which can be expressed as

1The selection of the time period where time is set equal to zero impacts the interpretation of the fixed and random effects of the
intercept of the trajectory (Biesanz, Deeb-Sossa, Aubrecht, Bollen & Curran, 2004). The choice of zero-point plays precisely the same
role in all of our proposed models as it does in the standard LCM.
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(2)

where μyα and μyβ are the mean intercept and slope, respectively, and ζyαi and ζyβi are

individual deviations around these mean values. This model is presented in Figure 1 for T=5.

Equation (1) is sometimes called the measurement equation, and Equation (2) the structural

equation; the latter can be substituted into the former to define the reduced-form expression

of the model, but we do not show this here; see Bollen and Curran (2006, Equation 3.19).

We can examine two types of effects in this model: the fixed effects and the random effects.

The fixed effects are the means of the intercept and slope factor and are defined as

(3)

and represent the overall starting point and rate of change for the entire sample. The random

effects are the variances of the deviation terms; more specifically:

(4)

where ψyαyα represents the variance of the intercepts, ψyβyβ the variance of the slopes, and

ψyβyα the covariance between intercepts and slopes. Larger values of these random effects

indicate greater between-person variability in the growth parameters such that some

individuals may start higher versus lower and some may increase more steeply versus less

steeply.

We can also consider the covariance structure of the individual- and time-specific residuals.

In virtually all applications of the LCM in practice, the covariance structure among these

residuals is assumed to be a diagonal matrix with values of zero on the off-diagonal. This

reflects that the residual from each assessment period is defined by some variance, but the

residuals are independent across time. An example of the covariance matrix among residuals

for T=3 is given as

(5)

where the diagonal elements represent the time-specific residual variance. This matrix can

be further restricted by fixing the diagonal elements to be equal such that  for all t,

but this is just a simplifying condition of homoscedasticity with respect to time.

The reason that we are able to assume that the residuals are uncorrelated over time is that

observed covariation among the repeated measures is modeled via the underlying latent

curve factors. In other words, the covariance structure of the random effects shown in
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Equation (4) impose a correlational structure among the repeated measures (see, e.g., Bollen

& Curran, 2006, Equation 2.41). The veracity of this assumption is in large part a function

of the temporal distance between the repeated measures. The longer the elapsed time

between assessment periods, the less likely the residuals will covary over time given that

these relations decay towards zero.

Although not commonly a part of LCMs applied in panel data, it is possible that there is

some remaining correlation among time-adjacent residuals net the underlying latent factors,

particularly if the assessment periods are closely spaced in time. For example, we can

expand Equation (5) to allow for time-adjacent correlations such that

(6)

where  represents the variance and σy represents the time-adjacent covariance. This is just

one type of residual covariance matrix, and many other options exist (e.g., Grimm &

Widaman, 2010; Kwok, West, & Green, 2007; Rovine & Molenaar, 2000). We will return to

the structure of these residual covariance matrices momentarily.

The conditional univariate LCM

The model defined above is sometimes called unconditional because there are no predictors

of growth; we are only building a model of fixed and random effects for the set of repeated

measures as a function of time. However, this unconditional LCM can easily be extended to

include one or more predictors of growth. Because the predictors of growth are between-

person characteristics (e.g., gender, ethnicity, treatment group membership), we refer to

these as time-invariant covariates (TICs). For example, the intercept and and linear slope

equations from the univariate LCM could be expanded to include two TICs denoted x1i and

x2i such that

(7)

where the four γ parameters serve to shift the conditional means of the latent factors per one-

unit shift in the exogenous covariates. This model is presented in Figure 2.

Continuing with our hypothetical example, these predictors might represent binary measures

of gender and treatment group membership and our goal is to test for systematic differences

in the trajectories of alcohol use as a function of these two subject characteristics. Important

to our discussion here, these predictions are strictly between-person influences. That is, both

the exogenous covariates and the trajectory scores are unique to the individual and are not

linked to a specific point in time; this can most clearly be seen by the lack of subscript t

denoting time in Equation (7). Thus, the LCM with TICs is only considering covariates that

are invariant with respect to time. However, there are many situations in which we would

Curran et al. Page 6

J Consult Clin Psychol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



want to include a predictor that itself varies with time; these are called time-varying

covariates (TVCs).

The LCM with time-varying covariates

Just as we were able to model the random effects of the growth trajectories as a function of

one or more TICs, it is possible to model the time-specific residuals as a function of one or

more TVCs. To define this model we can expand Equation (1) to include a TVC denoted zit

such that

(8)

where γyt represents the shift in the conditional mean of yit at time point t per one-unit

change in zit above and beyond the influence of the underlying latent trajectories; an

example of this model is presented in Figure 3. Here we show a contemporaneous relation

between the TVC and the outcome, but this can easily be lagged in a variety of interesting

ways (see, e.g., Curran, Muthén & Harford, 1998).

Continuing with our hypothetical example, the TVC might be depressive symptomatology

and we are evaluating the time-specific influence of depression on alcohol use net the

impact of the underlying trajectories of alcohol use. This can be better seen with a simple

rearrangement of Equation (8) such that

(9)

where the repeated measures are being deviated relative to the underlying latent trajectory

(sometimes called de-trending) and are then regressed on the TVC. Estimation is not

actually done in this two-step process, but this highlights the prediction of the outcome from

the TVC above and beyond the influence of the underlying trajectory.

The regression of the outcome on the TVC provides a direct estimate of the time-specific,

within-person component of the relation between yit and zit (Curran et al., 2012). Yet this

comes at the (often significant) cost of omitting the between-person latent growth process

that underlies the TVC. This is because we are not estimating a random trajectory process

for the TVCs themselves; we are only allowing the numerical values of the TVC to vary

with time but we are not formally structuring the TVCs as a function of the passage of time.

However, we can reparameterize the LCM-TVC model to allow for the simultaneous

estimation of latent growth curves for yit and zit; this is called the multivariate LCM.

The multivariate LCM

The multivariate (or parallel process) LCM incorporates a growth component for two or

more repeated measures at the same time (e.g., McArdle, 1988, 1989); an example of this is

presented in Figure 4. We do not present the equations for this model given the logical

symmetry with those presented above (see Bollen & Curran, 2006, Chapter 7, for details).

We continue to denote the repeated measures on the second construct as zit to represent the

assessment of construct z for individual i at time point t. For example, our first set of
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repeated measures might assess alcohol use and our second set depressive symptomatology.

The multivariate LCM would include both a measurement equation (Equation (1)) and a

structural equation (Equation (2)) for the set of repeated measures on z. We simply change

the subscripts to z in the prior equations to denote that these relate to a second construct of

interest.

Of key interest in this multivariate model is the covariance structure among the set of latent

factors. For example, the covariance structure for linear trajectories defined for both yit and

zit is

(10)

where the diagonal elements represent the variances of the latent factors and the off-diagonal

elements the covariances among latent factors.2 Time-invariant covariates can again be

included just as they were before (e.g., Equation (7)), so we do not show these again here.

The covariance structure among the residuals is naturally more complicated within the

multivariate LCM. Typically, residuals are not allowed to covary across-time, within

construct (as shown in Equation (5)) but are allowed to covary within-time, across construct.

This implies that the unexplained part of y at t=1 is linearly related to the unexplained part

of z at t=1, and so on. More specifically,

(11)

where  and  represent the residual variance for yit and zit, respectively, and σzy

represents the covariance between the residuals within each assessment period; these within-

time covariances are represented by the curved two-headed arrows in Figure 4. Here we

define these to be equal over time, but this restriction can be relaxed and tested (assuming

the model remains identified; e.g., Bollen, 1989).

The multivariate LCM is a powerful analytic method for simultaneously examining the

relation between two constructs over time and it has been used extensively in

psychopathology-related work appearing in this very journal (e.g., Curran, Stice, & Chassin,

1997; Stice, Marti, Rohde, & Shaw, 2011; Teachman, Marker, & Smith-Janik, 2008).

2It is possible to rescale some of these covariances as regressions (e.g., we could regress the slope factor for y on the intercept factor
for z and vice versa), and this can provide an interesting insight into the between-person structural influence of the starting point of
one construct on the rate of change of another construct (e.g., Bollen & Curran, 2006, Section 7.4.2).

Curran et al. Page 8

J Consult Clin Psychol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



However, there is an important characteristic of this model of which we must be cognizant.

As with the univariate LCM, the multivariate LCM is focused solely on between-person

inferences when assessing stability and change over time. This can best be seen in the

covariance structure among the latent factors shown in Equation (10). The diagonal elements

(i.e., the variances of the factors) reflect between-person variability in the intercepts and

slopes of the latent trajectories; the off-diagonal elements (i.e., the covariances among the

factors) reflect the between-person linear relations among the factors. In other words, the

intercepts and slopes of each construct are unique to the individual and are not a function of

a specific point in time. More colloquially, each individual might be characterized by their

gender, their ethnicity, their age, and their starting point and rate of change in depression

and alcohol use.

Thus, the multivariate LCM provides a direct estimate of the between-person component of

the relation between y and z (i.e., the relation assessed at the level of the trajectories), and

the LCM-TVC provides a direct estimate of the within-person component of the

unidirectional relation between y and z (i.e., the relation assessed net the trajectories), yet

neither model contains simultaneous and reciprocal estimates for both. As such, the

multivariate LCM and the LCM-TVC will not provide a full empirical test of a substantive

theory that would posit both person-specific and time-specific developmental links between

two constructs over time. We thus aspire to consider ways to simultaneously estimate both

within-person (time-specific) relations and between-person (person-specific) relations for

both constructs within a single model. Here we briefly describe one specific method that is

most closely linked to our developments here: the auto-regressive latent trajectory model 3.

The auto-regressive latent trajectory model

The auto-regressive latent trajectory (ALT) model was first proposed by Curran and Bollen

(2001) and more formally defined in Bollen and Curran (2004). The primary motivation for

developing the ALT model was to combine elements of the latent curve portion of the

multivariate LCM with the time-specific relations of the TVC model. The motivating focus

was more on the combination of the growth process with time-specific components as

opposed to disentangling within-person and between-person effects. One example of a

bivariate ALT model is presented in Figure 5. Exogenous time-invariant covariates (e.g.,

treatment condition, gender) can be included as predictors of both the initial measures of

each construct as well as the latent curve factors, although we do not show this in a path

diagram here. The equations that define the ALT model are numerous and are detailed

elsewhere (Bollen & Curran, 2004; Bollen & Zimmer, 2010; Curran & Bollen, 2001).

The ALT model is a flexible analytic framework that has been applied in many types of

research settings (e.g. Hussong et al., 2001; Morin, Maiaon, Marsh, Janosz & Nagengast, in

press; Rodebaugh, Curran & Chambless, 2002; Zyphur, Chaturvedi & Arvey, 2008).

However, as with any modeling strategy, the ALT model is not without its limitations (e.g.,

3Several important approaches have been proposed to examine multivariate change over time including the latent change score model
(Ferrer & McArdle, 2010; McArdle & Hamagami, 2001), the trait-state-error model (Kenny & Zautra, 1995; 2001), and the trait-state-
occasion model (Cole, Martin, & Steiger, 2005). Space constraints preclude a comprehensive examination of these alternative
approaches, although such a review would be highly beneficial.
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Delsing & Oud, 2008; Hamaker, 2005; Jongerling & Hamaker, 2011; Voelkle, 2008). Most

important to our discussion here, the time-specific relations among the observed repeated

measures are modeled at the level of the manifest variable itself. In other words, just as in

the TVC model, the repeated measure of alcohol use is regressed directly on the repeated

measure of depression and vice versa. This can be seen in the path diagram in Figure 5 in

which the single-headed arrows both begin and end with an observed measure, thus

reflecting the direct regression of one repeated measure on another. There are several

specific consequences that result from the estimation of structural regressions among the

observed repeated measures that might impact the utility of this model in practice.

Most importantly, the inclusion of the time-specific regressions among the repeated

measures in both the ALT and LCM-TVC models will directly influence both the mean and

covariance structure of the latent growth factors. For example, one would obtain a particular

mean and covariance structure for the growth factors in an unconditional LCM, and would

obtain a different mean and covariance structure for the growth factors in an LCM with

TVCs; this is a natural consequence of the model parameterization and is the intended point

of these models. Both the ALT and the LCM-TVC are positing that the set of repeated

measures are a function of the joint contribution of the underlying latent growth factor and

the time-specific influences of the TVCs. Thought another way, in the ALT model the

repeated measures of one construct serve as mediators for the influence of the latent curves

of that same construct on the indicators of the other construct. Because of these mediated

influences, the ALT model does not provide a pure disaggregation of the between- and

within-person relations over time.

If theory posits that the time-specific measures are structurally related over time (that is, if

an earlier measure of one construct is believed to causally influence a later measure of

another construct), then the ALT model or the LCM-TVC model is appropriate. However, if

theory posits that the over-time relation between the two constructs consists of a unique

between-person component and a unique within-person component, then an alternative

model parameterization to the ALT and LCM-TVC is needed. It is admittedly asking much

from a substantive theory to make a supposition at this level of detail, but it is an important

distinction to make when choosing a specific statistical model to optimally test a specific

research hypothesis. Indeed, appreciating that these types effect differ across modeling

approaches might help us to better refine our theoretical models of interest.

The Latent Curve Model with Structured Residuals

Our goal for the remainder of the paper is to describe a novel parameterization of the latent

curve model that provides a pure disaggregation of between-person and reciprocal,

prospective within-person components of the relation between two constructs over time.

Unlike the multivariate LCM, we will be able to simultaneously consider both person-

specific and time-specific influences. Unlike the ALT model and the LCM with TVCs, the

inclusion of the time-specific regressions will not influence the fixed-effect characteristics

(e.g., the mean structure) of the underlying latent curve factors; thus the time-specific and

person-specific components of change are cleanly separated from one another. To build this

model we will begin with the standard multivariate LCM as a foundation for the estimation
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of between-person effects in the usual way. However, we will use an atypical

parameterization of the SEM to impose a specific structure on the time-specific residuals of

the observed repeated measures of both constructs. Because of this, we will refer to this

particular parameterization as an LCM with structured residuals, or simply LCM-SR.

Referring to the model in this way highlights that our proposed framework is a direct and

logical expansion of the standard multivariate LCM and does not represent some wholly

new analytic technique. Indeed, we will show that the standard univariate and multivariate

LCMs are nested within their LCM-SR counterparts, thus allowing for a variety of

likelihood ratio tests (LRTs) to evaluate relative improvement in model fit given increasing

model complexity.

The univariate LCM with structured residuals

Recall that the measurement equation for the univariate LCM given in Equation (1)

expressed yit as a weighted combination of the random intercept (αyi), random slope (βyi),

and time-specific residual (εyit). Examining the residual more closely shows that this

represents the deviation between the observed and model-implied repeated measures of yit.

Simple rearrangement of Equation (1) highlights this further:

(12)

showing that the residual represents the deviation of the observed repeated measure from the

underlying trajectory. As we described earlier, rarely are these residuals considered of

substantive interest beyond defining the optimal covariance structure for a given set of data.

However, when conceptualized as a time-specific estimate of the deviation between the

observed repeated measure and the underlying trajectory, we can clearly see that the residual

captures potentially interesting information about within-person processes of stability and

change. We will capitalize on this extensively here.

More specifically, instead of allowing the residuals to covary in some unstructured way (as

in Equation (6)), we can draw on the extensive literature from time series analysis and

multilevel modeling to define the regression of a later residual on a prior residual. For

example, for the residual defined in Equation (12), we can expand this as

(13)

where ρyy is the regression parameter and . In words, we are regressing the

residual at time t on the residual at time t−1. This implies that the later residual is in part

determined by the earlier residual above and beyond the influence of the latent curve factors.
4 This model is presented in Figure 6.

4In some applications, the inclusion of prior lags may also be necessary (e.g., t−2); this would typically be determined by theory and
empirical necessity. Given space constraints we do not explicate identification conditions to establish unique estimation of these
lagged residual effects, but this would be determined in precisely the same way as for the standard LCM (Bollen & Curran, 2006, pp.
21–24).
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We refer to the model defined in Equations (12) and (13) as the univariate latent curve

model with structured residuals, or the univariate LCM-SR. We stress that this particular

univariate model is not a novel development and has been studied to varying degrees within

the time series (Box & Jenkins, 1976; Dickey & Fuller, 1979; Lutkepohl & Saikkonen,

2000; Saikkonen & Lutkepohl, 2000), MLM (Chi & Reinsel, 1989; Diggle, 1988; Goldstein,

Healey, & Rasbash, 1994; Hedeker & Gibbons, 2006), SEM (Hamaker, Dolan, & Molenaar,

2002; van Buuren, 1997), and LCM (Hamaker, 2005; Sivo, 2001; Sivo & Fan, 2008; Sivo,

Fan, & Witta, 2005; Sivo & Wilson, 2000) frameworks. There are alternative terms,

notation, and path diagrams used within different disciplines to describe this type of model;

our intent is not to rename this model for the sake of renaming, but instead to allow us to

move on to the multivariate model that has no such history in these types of frameworks.

As we described earlier, in the majority of LCM applications based on more traditional

panel data (with assessments spaced by months or even years) the covariance structure

among the repeated measures is frequently fully reproduced through the joint influence of

the latent curve factors. As such, time-adjacent relations among residuals within a given

construct are less often considered from a substantive perspective nor tend to be needed

from an empirical one (with the important exception of daily diary or EMA-like designs

where such influences are often required; e.g., Bolger, Davis & Rafaeli, 2003). However,

there is far greater interest in these residual structures when moving from the univariate to

the multivariate model in both panel and diary data designs. That is, there is often both

substantive motivation and empirical support for examining how residuals are prospectively

and bidirectionally related across two constructs, yet existing analytic methods are less well

developed for estimating these types of relations. We allow for such cross-domain relations

in the multivariate LCM-SR.

The multivariate LCM with structured residuals

Our goal is to parameterize a model that provides simultaneous estimates of person-specific,

between-person processes and time-specific, within-person processes of the over-time

relation between two constructs. We begin with the standard multivariate LCM we described

earlier, but instead of estimating unstructured correlations among the residuals (as in

Equation (11)) we will regress the residual at time t on that at time t−1 across the two

constructs. More specifically, our residual structure is given as:

(14)

and

(15)

where
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(16)

for T=3. We begin by equating the residual variances for t=2 and t=3 (  and ) but not

the t=1 variances (  and ); this is because the t=1 residual variance is not conditioned

on a prior measure whereas the latter measures are. In other words, the t=2 and t=3 residuals

are themselves a residual given the auto- and cross-lagged regressions; in contrast, the t=1

residual is not expressed as a function of other predictors. Note also that we continue to

allow for the across-construct residuals to covary within time assessment (i.e., σνzy1 and

σνzy) because these are not temporally ordered as are the regressions of the later residual of

one construct on the earlier residual of the other. This model is presented in Figure 7 for five

repeated measures of each construct.

Although the structure of the covariance matrix from the LCM-SR in Equation (16) is

similar in form to that of the standard multivariate LCM in Equation (11), the fundamental

difference here is that Equation (16) represents the covariance matrix of residuals above and

beyond not only the underlying latent curve factors but also the prior residuals within- and

across-construct. More colloquially, the diagonal elements of this matrix are the residual

variances of the residuals (excluding t=1) as a function of the four regression parameters ρyy,

ρzz, ρyz, and ρzy. We can see how the multivariate LCM and LCM-SR are closely related in

that if all four regression parameters are equal to zero, Equations (11) and (16) will be equal.

The extent to which these matrices differ reflect the existence of the higher-order structure

among the residuals, a structure that is omitted in the standard LCM.

Importantly, the inclusion of the regression structure among the residuals does not directly

impact the fixed effects (i.e., means) of the latent curve factors. In other words, the mean of

the latent intercept and slope are unchanged regardless of the inclusion or exclusion of the

regressions among the residuals5. We view this as a distinct strength of the LCM-SR;

namely, the mean structure of the repeated measures is modeled solely as a function of the

latent curve factors whereas the covariance structure of the repeated measures is modeled

jointly as a function of the latent curve factors and the structure imposed among the

residuals. This is in direct contrast to the ALT model in which the time-specific regressions

at the level of the observed variables (and not residuals) directly influences the means of the

latent factors; this characteristic of the ALT has been seen as both an advantage (Bollen &

Curran, 2004) and a disadvantage (Voelkle, 2008) depending upon the goals of the particular

application at hand.

5There will likely be slight variations in value in any given application due to the persnicketiness of full information maximum
likelihood estimation.
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Finally, both the univariate and the multivariate LCM-SR can naturally be expanded to

include time-invariant covariates such as gender, race, or treatment condition. As with the

standard LCM, exogenous predictors can be binary, ordinal, or continuous, and interactive

and non-linear effects can be estimated among two or more covariates (e.g., Curran, Bauer,

& Willoughby, 2004). These exogenous predictors would be included in the structural

equations for the latent curves in the usual way (e.g., as in Equation (7)), so we do not

explicate this further here.

To summarize thus far, the multivariate LCM-SR is able to isolate the between-person and

within-person components of the relation between two constructs over time. We believe the

LCM-SR offers a unique method by which we can more rigorously evaluate bidirectional

within-person relations in a way that is much more consistent with theory than is typically

possible. Not only do we have unique estimates of the bidirectional and prospective

influences of one construct on the other, but we can structure these relations in a variety of

ways to test specific hypotheses about processes of stability and change. Next we briefly

describe two of the more exciting possibilities: modeling heterogeneity in reciprocal

relations over time and across group. We focus our discussion on the across-construct

regressions, but all of our developments equally apply to the within-construct stabilities.

Modeling heterogeneity in reciprocal relations over time

The model we defined above assumes that the cross-domain residual regressions are equal

over time.6 This is seen in that ρyz and ρzy are not indexed to denote a specific time interval.

However, as we described earlier, many substantive theories within clinical psychology

predict that the magnitude of the relation between two constructs changes over time. That is,

two behaviors may become increasingly intertwined as children age, or a clinical

intervention might be designed to “uncouple” two behaviors over time. We can explicitly

test such relations in the LCM-SR in two ways.

First, we can simply remove the restriction that the cross-domain regressions are equal over

time and instead allow them to take on any optimal value supported by the data. We can

denote these regressions ρyzdδ
 and ρzydδ

 where dδ is simply a numerical identifier that

denotes a specific adjacent pair of time points (δ = 0,1,…,T−1; e.g., d0 = 0 denotes the

relation between t = 1 and t = 2, d1 = 1 denotes the relation between t=2 and t=3, and so

on). Because the model in which the reciprocal relations are held equal over time is nested

within this model in which they freely vary over time, we can conduct an LRT to determine

if the model fit is impacted by the removal of the equality restriction over time. We will

demonstrate this momentarily.

Second, we make a stronger hypothesis that the magnitude of the reciprocal relations do not

simply vary in value over time, but that they are related in some systematic way with the

passage of time. Thus, instead of allowing each cross-domain regression to take on any

optimal unique value, we could impose a parametric constraint such that the value of the

regression varies in a structured way. For example, say we hypothesized that the magnitude

6Imposing a simple equality constraint over time assumes that all measures are equally spaced. If some or all repeated assessments are
unequally spaced, additional restrictions are needed to account for these differences.
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of the reciprocal relations between two constructs became stronger over time, and that this

rate of increase was linear with respect to time.

Using the general method of constraints described by Bauer & Hussong (2009), we could

allow the across-construct residual regressions to interact with time such that

(17)

and

(18)

where ρyz0 and ρzy0 are the reciprocal regressions of the across-construct residuals at the first

time-adjacent measures, κyz and κzy are the increments to the regression parameters that are

linearly weighted via dδ. It is easy to see that if κyz=0 then ρyzdδ
=ρyz0 for all dδ, resulting in

the same model as that with equal regressions over time defined in Equation (14). These

linear increments are uniquely defined model parameters with associated sample estimates

and standard errors, the significance of which can be tested in the usual way. Although we

show a linear function here, any of a variety of interesting functions could be considered

(e.g., quadratic, exponential).

Modeling heterogeneity in reciprocal relations across group

Our discussion thus far has made a fundamental assumption that the magnitude of the

within-person reciprocal relations may vary as a function of time but that these are equal

with respect to all between-person characteristics. In other words, although the reciprocal

relations might become systematically stronger or weaker with the passage of time, these

relations are assumed invariant across measures such as subject gender, race, and treatment

group membership. However, this restriction can also be relaxed and we can test a variety of

interesting hypotheses related to the interaction between the prospective reciprocal

regressions and between-person characteristics.

Drawing further on the methods described by Bauer and Hussong (2009), we can extend the

parameter constraints we used earlier to test for the interaction between the prospective

time-adjacent effects and time, but allow these to also include the moderating effect of group

membership. For example, say that we would like to test the moderating effects of treatment

group membership on the magnitude of the within-person effects across our two constructs.

We could define a binary indicator to reflect group membership where gi=0 denotes

membership in the control group and gi= 1 in the treatment group. We could expand the

prior equation to include both the main effect of group and the interaction between group

and the specific time-adjacent measures. For example, for the regression of the residual of y

on z:

(19)
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where κyz3 tests whether the linear increment in the strength of the prospective relation is

significantly different in the treatment compared to control group. These tests can be further

extended in variety of interesting ways to include information about both time-invariant and

time-varying influences on the magnitude of the prospective within-person effects.

Summary

The LCM-SR is a novel yet logical extension of several well-developed variations of the

latent curve model. Of key importance is that the inclusion of the time-specific residual

structures isolates the within- and between-person effects. These within-person effects can

represent within-construct stabilities or across-construct time-adjacent effects. Both the

within- and across-construct residual regressions can then be structured as a function of time

or one or more person-specific individual difference measures. The LCM-SR is thus able to

separate the person-specific and time-specific relations between two or more constructs and

treat these as separate yet jointly contributing components of developmental change. We

will now demonstrate the use of the LCM-SR using an artificially generated data set created

to reflect the hypothetical within- and between-person relations between depressive

symptomatology and alcohol use over time.

Artificial Data Demonstration of the LCM-SR

We demonstrate the use of the LCM-SR by fitting a series of models of increasing

complexity to a single sample of artificially generated repeated measures data. The

disadvantage of using artificial data is that we are not using real data related to the study of

psychopathology; the advantage is that we we have full knowledge of the population-

generating model and can thus unambiguously determine the extent to which we are

recovering the true underlying parameters of interest. Future research is needed to more

fully study the utility of the LCM-SR across a variety of research settings; our more modest

intent here is to provide a demonstration of how the LCM-SR might be used in practice.

Population model

Drawing both on recent findings in the substantive literature and on our own collective

experiences, we defined a population model to be consistent with a hypothetical reciprocal

developmental relation between depression and alcohol use spanning adolescence. Our

specific model is just one of a myriad of possible applications and we simply use this given

the overlap with other substantively-focused work conducted in our research group (e.g.,

Hussong et al., 2001; 2008; 2011). We began by generating data for a random sample of N=

250 individuals each of whom contributed T= 5 repeated measures with no missing data.

Few real-world applications offer equally spaced assessments of continuously and normally

distributed measures with no missing data, but these characteristics reduce sampling

variability and allow us better insight into the recovery of the population values.

Importantly, we chose to present the results from just a single generated data set to highlight

our proposed model building strategy; as such, there are slight differences between the

population and sample values we report below, and these are due to random fluctuations

associated with the use of a single data set.7
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We began by defining a positive linear growth trajectory in alcohol use spanning the five

repeated measures, and we included significant individual differences in both starting point

and rate of change over time. We defined an intercept-only model for depression such that

there was person-to-person variability in the overall level of depressive symptomatology,

but depression did not systematically increase as a function of time. Finally, we allowed the

latent factors for the intercept and slope of alcohol use to positively covary with one another

and with the latent factor for the intercept of depression to jointly define the between-person

components of the relation between alcohol use and depression over time.

We included time-adjacent auto-regressions among the time-specific residuals that were

positive in value but small in magnitude; this was intended to reflect a modest within-

construct autoregressive effect above and beyond the contribution of the underlying latent

factors. We also defined a positive prospective within-person relation between depression

and alcohol use such that higher values relative to the underlying trajectories at one time

were predictive of higher values at the following time point. The strength of these

prospective associations was constant for alcohol use predicting depression but linearly

increased in magnitude as a function time for depression predicting alcohol use. The positive

covariance between the within-time residuals of depression and alcohol use accounted for

any influences that were potentially omitted from the model. These residual relations jointly

define the within-person components of the relation between alcohol use and depression

over time.

Finally, we included two exogenous time-invariant covariates that influence the three latent

curve factors. Both were scaled as binary predictors to hypothetically represent subject

gender (females equal to 0 and males to 1) and treatment condition (control equal to 0 and

treatment equal to 1). These two predictors varied in direction and magnitude in their

relation with the latent curve factors. Our final conditional multivariate LCM-SR is

presented in Figure 8.

Data were generated and models were fitted using Version 6.11 of Mplus, although any

standard SEM program could be used for these analyses. The introduction of the regression

coefficients among the residuals is an atypical parameterization of the general SEM; these

are sometimes called “phantom variables” and have been used in SEMs for many years (e.g.,

Rindskopf, 1984); all code and data are available at www.unc.edu/~curran. We will next

describe the steps involved in fitting a series of LCM-SRs in increasing complexity.

Modeling building strategy

It is not possible to establish a fixed model building strategy to be used in all applications

because of the unique characteristics associated with any given model and data. However,

we can describe a general framework from which models can be built in increasing

complexity. First, we will establish the optimally fitting model within each construct

separately; this includes the identification of the optimal function of time, the testing of

auto-regressions among the residuals, and the testing of equality constraints on these auto-

7To further examine this we fit the same model to 1000 separate samples of size N=250 and the mean parameter estimates pooled
across the full set of replications were all within 1% of their population generating values.
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regressions. Next, we estimate a model for both constructs simultaneously; we then conduct

tests of across-construct relations both at the level of the latent factors and the time-specific

residuals, and again test equality constraints on the cross-lagged regressions. Finally, we

expand the multivariate model to include the set of exogenous covariates of interest. For

each step we conduct LRTs to formally evaluate the change in model fit relative to the

inclusion of additional parameters or the imposing of parameter constraints. Substantive

conclusions are then drawn from our final conditional multivariate model.

Univariate unconditional LCM-SR for alcohol use

We began by estimating a random intercept model for alcohol use that included only a mean

and variance of the intercept factor and residual variances for each of our repeated measures

that we allowed to vary over time. As expected, this model fit the data poorly (χ2(7) =

283.08, p<.0001, RMSEA=.29, CFI = .47, TLI = .59). We extended this model with the

addition of a linear slope factor λt= 0,1,2,3,4 consistent with Figure 1. We estimated a mean

and variance for both the intercept and slope factor; a covariance between the intercept and

slope factor; and we allowed the time-specific residual variances to vary over time. This

model resulted in a significant improvement in model fit relative to the intercept-only model

( , p<.0001; the model as a whole reflected a good fit to the data (χ2(10) =

17.01, p=.07; RMSEA = .05, CFI=.99, TLI=.99).

There was a significant mean and variance for both the intercept (μ̂yα= 3.41, se=.17; ψ̂yαyα =

4.66, se=.66) and linear slope (μ̂yβ =.63, se=.08; ψŷβyβ = 1.16, se=.15), respectively. These

results indicated that alcohol use was significantly increasing at a linear rate of change and

that there was significant individual variability around both the starting point and rate of

change over time. We then expanded this model to include an autoregressive component

among the residuals. The univariate LCM and the LCM-SR are nested, thus allowing for a

formal test of improvement in model fit given the inclusion of the additional parameter. The

autoregressive parameter was non-significant (ρyy = .07, se = .07), and the likelihood ratio

test similarly indicated that model fit was not significantly improved with the inclusion of

the autoregressive residual structure ( , p=.35). We will retain this residual

structure even though the LRT was non-significant because these effects were hypothesized

to exist; in other applications it might be equally defensible to omit this from further models,

particularly if the inclusion of these parameters leads to instability in model estimation8.

Univariate unconditional LCM-SR for depression

We again began with a random intercept model as we did for alcohol use, and this model fit

the data reasonably well (χ2(13) = 23.47, p=.04, RMSEA=.06, CFI=.96, TLI=.97). We

expanded this model to include a linear slope factor, but this did not lead to a significant

improvement in overall model fit ( , p=.15). As such, we retained the random

intercept-only model. There was both a significant mean and variance of the intercept factor

(μ̂zα = .98, se=.10; ψ̂zαzα 1.83, se=.21) indicating that there was potentially meaningful

individual variability in overall depressive symptomatology. We then expanded the model to

8The inclusion or exclusion of these non-significant auto-regressions exerted no impact on the final models to be presented below.
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include the time-adjacent auto-regressions among residuals and this again did not lead to a

significant improvement in model fit ( , p=.18); as before, we will retain the

residual structure as we continue our model building strategy.

Bivariate unconditional LCM-SR for alcohol use and depression

We next combined the two univariate LCMs into a single bivariate LCM consistent with

Figure 4 but with the inclusion of only an intercept factor for depression. We allowed the

intercept and slope factor for alcohol use to covary with one another as well as with the

intercept factor for depression. We allowed the time-specific residuals to covary between

alcohol use and depression, and set these covariances to be equal across time for times 2, 3,

4 and 5. We also allowed autoregressive components among the residuals of alcohol use and

depression. This model did not fit the data well (χ2(42) = 170.10, p<.0001; RMSEA = .11,

CFI=.86, TLI=.85). However, we know from the population generating model that the

source of this misfit is due to the omission of the prospective reciprocal relations across the

two constructs. Interestingly, the structured residual effects would not be a considered

component from a standard LCM, and it would thus not be immediately apparent as to what

was leading to the poor model fit.

Following a general model building strategy, we began by introducing the regression of the

residual of alcohol use on depression while holding the regression of the residual of

depression on alcohol use at zero. We then removed these regressions and introduced the

regression of the residual of depression on alcohol use while holding the regressions of

alcohol use on depression at zero. Finally, we introduced both sets of regressions

simultaneously. This strategy allows for the unambiguous evaluation of each side of the

reciprocal effects by considering them one at a time. However, alternative approaches could

be used in which all regressions are considered simultaneously, or one set is introduced and

then retained when including the other set. The utility of these alternatives depends on the

application at hand.

We thus added the regression of the residual of alcohol use on depression to the multivariate

LCM and allowed these values to be freely estimated over time. The fit of the model was

significantly improved with the inclusion of these prospective regressions among the

residuals relative to the multivariate LCM ( , p<.0001). We then imposed the

constraint that the regressions were equal over time; this restriction did not degrade model

fit ( , p=.63) and was thus retained. Because the LRT indicated these

regressions were equal over time, we did not proceed to test whether the values increased as

a function of time. We then fixed these regressions to zero and repeated the process for the

regression of depression on alcohol use.

There was again a significant improvement in model fit with the inclusion of the regression

parameters that were allowed to freely vary over time relative to the multivariate LCM

( , p<.0001). However, the imposition that these regressions were equal over

time did lead to a significant decrement in model fit ( , p=.0005) and were thus

not retained. Given that the magnitude of the regressions was not equal over time, these

values might be systematically related to the passage of time. We thus imposed the
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constraint defined in Equation (17) such that the strength of the regression of depression on

prior alcohol use systematically increased with time. This restriction did not lead to a

decrement in model fit ( , p=.80) and was retained.

Next, we combined both sets of regressions in a single model, and this reproduced the

observed data well (χ2(39) = 56.34, p=.036, RMSEA = .04, CFI=.98, TLI=.98).

Interestingly, all three covariances among the latent growth factors do not significantly

differ from zero (all p’s > .10). From a substantive perspective, we would thus conclude that

there are no systematic between-person relations among the latent curve components of

depression and alcohol use. However, these between-person effects are only one component

of the more complex relation between these two constructs. To see this, we next consider the

within-person components of change over time.

Consistent with the sub-models in our model-building strategy, earlier depression positively

and significantly predicted subsequent alcohol use, and the magnitude of this relation was

constant over time (ρ̂yz =.45, se=.06). In contrast, earlier alcohol use also positively and

significantly predicted subsequent depression, but the magnitude of this relation linearly

increased with time. More specifically, the prediction of depression from alcohol use was ρ̂zy

=.09 (se=.07) between times 1 and 2, and this was significantly incremented by κ̂zy =.13

(se=.03) at each subsequent time-adjacent relation. The within-person component of the

bivariate relation was significant and constant for depression predicting subsequent alcohol

use, but the reciprocal component of this relation was significant and linearly increasing in

magnitude with the passage of time for alcohol use predicting depression. Thus there are

indeed strong relations between depression and alcohol use over time, but these are not at

the level of the individual but at the level of prospective deviations from the underlying

trajectory of each construct.

Given that we have established the optimal within-person model, our final step was to

regress the three latent curve factors on our two correlated time-invariant covariates that

hypothetically represented gender and treatment group membership. The fit of the

conditional LCM-SR to the observed data was excellent9 (χ2(53) = 69.19, p=.07, RMSEA

= .04, CFI=.99, TLI=.98). The final model is shown in Figure 8 and the full set of results are

presented in Table 1. Our hypothetical measure of gender was significantly associated with

both the intercept and slope of alcohol such that males started higher (γ̂yα1= 1.19, se=.31)

and increased more rapidly (γ̂yβ1=.65, se=.15) compared to females. In contrast, males

reported significant lower means of depression relative to females (γ̂zα1= −1.57, se=.17).

Finally, our hypothetical measure of treatment group membership was not significantly

related to the starting point of alcohol use (γ̂yα2=.32, se=.32), but was significantly

associated with less-steep increases in alcohol use over time (γ̂yβ2= −.36, se=.15) and lower

overall levels of depression (γ̂zα2 = −.41, se=.17).

There are several extensions to this model that we do not demonstrate here. For example, we

considered the main effects of gender and treatment, and we could easily include the

interaction between these two (e.g., Curran et al., 2004). We could also expand the predictor

9As well it should given that this was the population generating model used to create the artificial data.
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set to include any of a variety of additional individual difference measures as main effects or

multiplicative interactions. Further, we could extend the constraints imposed on the within-

person prospective effects to vary as a function not only of time but also of exogenous

covariates. For example, we could directly test whether the magnitude of the relations

among the within-person effects varies as a function of gender, ethnicity, or treatment group

membership. We might hypothesize that the strength of the reciprocal relations between the

two constructs is constant over time for the control group, but these become systematically

weakened over time for the treatment group. Given the separation of the within-person and

between-person components of change within a single model, a variety of intriguing tests

are available in ways not previously possible.

Conclusion

This is an exciting time to be conducting research in clinical psychology. Not only have our

theoretical models developed in complex and increasingly nuanced ways, but we have

available an arsenal of advanced statistical techniques that can be used to rigorously

empirically evaluate our research hypotheses under study. Despite the myriad of advances

we have witnessed over the past decade, one challenge continues to vex substantive

researchers, ourselves included: how do we best model the dynamic and reciprocal relations

between two constructs over time? There are a number of well-developed modeling

strategies that have tackled different aspects of this question, but the relative utility of each

depends on both the theoretical model and empirical data at hand.

For example, the multivariate latent curve model examines the relation between two

constructs over time, but this is primarily a between-person model that evaluates the across-

construct relations at the level of the person-specific growth factors. This multivariate LCM

can be redefined as an LCM with TVCs to provide an estimate of the within-person

component of change, but this is at the cost of omitting the between-person component and

is restricted to unidirectional influences. This model can be further redefined to correspond

to an autoregressive latent trajectory model that allows both person-specific and time-

specific relations, but this approach does not provide a pure disaggregation of within- and

between-person components of change. All of these existing modeling approaches work

well, at least under the assumption that the statistical model is well matched to the

theoretical model. The extent to which the statistical and theoretical models diverge directly

undermines our ability to validly test our research hypotheses. As such, if our theory posits

the simultaneous existence of between-person and within-person components of stability

and change, the magnitude of which may vary as a function of person-specific

characteristics, then none of these existing techniques is ideally suited to the task at hand.

Our motivating goal for this paper has been to describe and demonstrate a model that allows

for this disaggregation of effects, and we refer to this as the latent curve model with

structured residuals.

The LCM-SR is a novel yet natural extension of the multivariate LCM. It draws on the rich

traditions of structuring residuals within the multilevel (e.g., Goldstein et al., 1994) and time

series (e.g., Box & Jenkins, 1976) modeling frameworks, techniques that to our knowledge

have not yet been incorporated into the LCM with more than a single construct. By
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separating the between-person effects at the level of the person-specific latent factors from

the within-person effects at the level of the time-specific residuals, we are able to test a

variety of hypotheses in a powerful and highly flexible way. For example, we can test

whether the time-adjacent within-person effects are constant over time or may strengthen or

weaken with the passage of time. We can extend these tests using the methods of Bauer and

Hussong (2009) to evaluate whether the magnitude of these over-time relations themselves

vary as a function of treatment group membership of individual characteristics such as

gender or ethnicity. We could even test whether the reciprocal effects are moderated by a

continuous covariate such as symptomatology at baseline or some measure of early

executive functioning. These are just a few of the novel types of hypotheses that could be

tested within the LCM-SR.

Of course our approach is not without potential limitations. Most obviously, the LCM-SR is

not well suited for theoretical questions that posit relations that are not composed of separate

between- and within-person components of stability and change. For example, Raudenbush

and Bryk (2002, page 179) described a situation in which one might regress time-specific

measures of reading achievement on how many days of instruction the child received in that

same year; this model corresponds to what we have described as the LCM with TVCs.

However, the entire point of their model is to statistically adjust reading scores as a function

of student absenteeism in each given year and to fit the trajectory model to the adjusted

readings scores, thus making the TVC model ideal. Similarly, Ferrer and McArdle (2010)

described a latent change score model to examine the relation between change in one

construct and subsequent change in another construct. Again, the LCM-SR is not well suited

to modeling these kinds of dynamics because the within-person regressions are based on the

deviations of a time-specific measure from the corresponding trajectory. These examples are

not limitations of the LCM-SR in general, but rather highlight the obvious point that no

single modeling framework is optimal for evaluating all possible theoretically-derived

hypotheses related to individual stability and change over time.

Another potential limitation is that we must have direct access to the time-specific residuals

in order to estimate the prospective reciprocal effects. However, these residuals are not

uniquely identified when using discretely scaled repeated measures within nonlinear link

functions in the SEM (e.g., compare Equation 1 vs. 3 in Bauer & Hussong, 2009). Thus if

maximum likelihood estimation is used in an LCM with binary or ordinal repeated

measures, it is not possible to structure the residuals in the way we have described here.

Using a weighted least squares-based method of estimation is one option, but this itself

introduces another layer of complexities (e.g., Wirth & Edwards, 2007).

Finally, careful thought is needed about both the spacing of the repeated assessments and

whether sufficient numbers of observations are obtained over time to provide stable

estimates of the prospective reciprocal relations. As with the standard LCM, the methods we

describe here can be used with data that are unbalanced and partially missing. However,

because we are modeling the relation between an earlier measure on one construct and a

later measure on another construct, an adequate number of cases must provide measures at

both time points on both constructs. Future attention must be paid to all of these issues to
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better understand the relative performance of the LCM-SR under conditions commonly

encountered in psychopathology research.

In conclusion, we have described what we believe to be a novel yet logical extension of the

multivariate latent curve model. We use an atypical parameterization of the standard latent

curve model to allow access to the time-specific deviations of the repeated measures relative

to the corresponding underlying growth trajectory; we can then use these individual- and

time-specific deviations to provide unique tests of reciprocal within-person relations

between two or more constructs as they unfold over time. Importantly, these within-person

influences are simultaneously estimated in the presence of the between-person relations

assessed at the level of the latent trajectories. The simultaneous disaggregation of levels of

effect allows for a more comprehensive empirical examination of the hypothesized

underlying developmental processes and allows us to move one step forward in our quest to

forge stronger links between our theoretical and statistical models of human behavior.
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Figure 1.
Univariate unconditional linear latent curve model for five repeated measures.

note: αy is the intercept factor with all factor loadings set to 1.0; βy is the linear slope factor

with factor loadings set to 0, 1, 2, 3, 4.
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Figure 2.
Univariate conditional linear latent curve model for five repeated measures with two

exogenous predictors.

note: the single-headed arrows for each growth factor reflect that the factor variances are

disturbances given the joint influence of the two exogenous predictors.

Curran et al. Page 28

J Consult Clin Psychol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Linear latent curve model for five repeated measures with unidirectional contemporaneous

influences from a time-varying covariate.
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Figure 4.
Bivariate unconditional linear latent curve model for five repeated measures.
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Figure 5.
Bivariate unconditional autoregressive latent trajectory model for five repeated measures.
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Figure 6.
Univariate unconditional linear latent curve model with structured residuals for five repeated

measures.
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Figure 7.
Bivariate unconditional linear latent curve model with structured residuals for five repeated

measures.
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Figure 8.
Final model results for artificial data set corresponding to a bivariate conditional latent curve

model with structured residuals for five repeated measures.

Note: alc=alcohol use; dep=depression; gen=gender; tx=treatment group; all numerical

values are standardized and are significant at p<.05; regression coefficients for binary

covariates are partially standardized; dashed lines are estimated but non-significant. Full

results are in Table 1.
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