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Abstract

Due to the lack of precise markers indicative of its occurrence and progression, coronary artery 

disease (CAD), the most common type of heart diseases, is currently associated with high 

mortality in the United States. To systemically identify novel protein biomarkers associated with 

CAD progression for early diagnosis and possible therapeutic intervention, we employed an 

iTRAQ-based quantitative proteomic approach to analyze the proteome changes in the plasma 

collected from a pair of wild type versus apolipoprotein E knockout (APOE −/−) mice which were 

fed with a high fat diet. In a multiplex manner ITRAQ serves as the quantitative ‘in-spectra’ 

marker for ‘cross-sample’ comparisons to determine the differentially expressed/secreted proteins 

caused by APOE knock-out. To obtain the most comprehensive proteomic datasets from this 

CAD-associated mouse model we applied both MALDI and ESI-based mass spectrometric (MS) 

platforms coupled with two different schemes of multidimensional liquid chromatography (2D-

LC) separation. We then comparatively analyzed a series of the plasma samples collected at six 

and twelve weeks after the mice were fed with fat diets, where the 6-week or 12-week time point 

represents the early or intermediate phase of the fat-induced CAD, respectively. We then 

categorized those proteins showing abundance changes in accordance with APOE depletion. 

Several proteins such as the gamma and beta chains of fibrinogen, apolipoprotein B, 
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apolipoprotein C-I, and thrombospondin-4 were among the previously known CAD markers 

identified by other methods. Our results suggested that these unbiased proteomic methods are both 

feasible and a practical means of discovering potential biomarkers associated with CAD 

progression.

Introduction

Coronary artery disease (CAD) is a chronic progressive disease that impacts approximately 

13 million people in the United States [1]. Each year, more than half a million Americans 

die from CAD and, according to present trends in the United States, half of healthy 40-year 

old men and one out of three 40-year old women will likely develop CAD in the future [2]. 

Despite the development of multiple clinical, electrographic and biochemical tools for the 

detection of CAD, there are patients who progress to severe CAD without many symptoms 

or signs [3]. Therefore, discovery of novel protein biomarker(s) for this disease is critical in 

order to improve early diagnosis and therapeutic intervention to prevent CAD and its morbid 

sequelae. The apolipoprotein E knock out (APOE −/−) mouse is an established model of 

atherosclerosis that has been shown to closely mimic human atherosclerosis both in the 

spontaneous appearance of lesions and the distribution of lesions within the vasculature [4–

9]. We suggest that the phenotype-specific plasma proteome from this mouse model could 

contain the best protein representatives of CAD and could be the systemic indicator for 

atherosclerosis. We therefore fed the APOE −/− versus WT mice pairs with high-fat diets. 

For proteomic screening of differentially expressed/secreted proteins a series of plasma 

samples was collected from mouse pairs sacrificed at 6 and 12 weeks after the fat treatment.

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is widely used to assist 

mass spectrometry for large-scale protein separation and quantitation [10], but it suffers 

from a limited resolution in separating those proteins of extreme molecular weights or 

isoelectric points, the exclusion of hydrophobic proteins, and a limited dynamic range of 

detection [11]. In this regard, on-line gel-free techniques based on two-dimensional liquid 

chromatography separate the peptides derived from proteolytic digestion of protein 

mixtures. Therefore, no discrimination against proteins with particular physical properties 

can be expected, thereby allowing for tandem MS/MS analysis of a broad range of proteins. 

However, in plasma, the concentration differences between various proteins can be as much 

as 10 to 12 orders of magnitude. Currenly, chromatography and mass spectrometry 

technique is limited to identifying proteins whose concentrations differ by at most 4 orders 

of magnitude.[12] In order to detect the low abundant proteins, the three major proteins, i.e., 

albumin, IgG, transferrin, need to be removed before the proteomics analysis of plasma 

samples.

Recently, a quantitative method of isobaric tags for relative and absolute quantification 

(iTRAQ) was introduced to assist MS-based and non-biased high throughput quantitative 

analysis. For example, Ross et. al. made use of a 4-fold (4-plex) multiplex strategy to 

simultaneously determine relative protein levels in three yeast strains and provided a 

demonstration of the ability to measure the absolute quantity of specific target proteins 

through the use of internal peptide standards. [13]. Hu et. al. used iTRAQ method to 
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quantify cerebellar protein changes in mice that are deficient in plasma membrane calcium 

ATPase 2 (PMCA2), an essential neuronal pump that extrudes calcium from cells. They 

reported that iTRAQ-based quantitative MS analysis could reveal broader proteome 

coverage than that provided by a 2D-PAGE-based analysis [14]. In this study we have 

employed the iTRAQ-based scheme to perform multiplexed quantitative analysis on 

multiple plasma samples collected from different mouse groups. Because peptide sequences 

tend to have a different ionization efficiency through matrix assisted laser desorption 

ionization (MALDI) and electrospray ionization (ESI), for each set of the iTRAQ-tagged 

peptide mixtures, we used both ionization mechanisms. Further, to increase the proteome 

coverage and quantitative precision, we combined either the first-dimension separation of 

strong cation exchange (SCX) or hydrophilic interaction liquid chromatography (HILIC) 

with the second dimensional separation of reverse phase liquid chromatography (RPLC) to 

identify those plasma proteins differentially expressed on the basis of the absence of the 

APOE gene.

Experimental Procedures

Mouse Sample Collection

Wild-type (WT) and APOE−/− C57BL6J mice, purchased from the Jackson Laboratory, 

were used to breed the mice. Pups were weaned at 3 weeks of age and fed a Western high-

fat diet (Teklad, Madison, WI). Animals were euthanized at 6 or 12 weeks of age. At the 

time of euthanasia, blood was collected in Becton-Dickinson P100 tubes that are pre-loaded 

with protease inhibitors and anticoagulants, as well as a self-contained system for removing 

red blood cells and platelets. From a single P100 tube, 90% of the storage solution was 

discarded. At most 1 mL of blood from a single mouse was collected. Immediately after 

collection, the tube was inverted 8–10 times to mix the protease inhibitors and anticoagulant 

with the blood sample. After mixing, the tubes were placed in ice and then centrifuged at 

2000 RCF at 4 °C for 15 minutes (centrifugation was done within 30 minutes of collection). 

Afterwards, the plasma was divided into 25 microliter aliquots and stored at −80 °C. All 

mouse work was approved by the Duke University Institutional Animal Care and User 

Committee.

Protein Depletion and Purification

For each group (i.e., wild type at 6 weeks, APOE−/− at age of 6 weeks, wild type at 12 

weeks, and APOE−/− at 12 weeks after fat treatment), an equal amount of sample from each 

of three male and three female mice were pooled (Table 1). The three most abundant 

proteins (albumin, IgG, and transferrin) were depleted by using Multiple Affinity Removal 

Spin (MARS) Cartridge-mouse 3 (Agilent Technologies, Wilmington, DE) following the 

manufacturer’s protocol (Agilent Technologies, Wilmington, DE). Briefly, 20 μL of sample 

from each group was diluted to 200 μL by Agilent buffer A and loaded onto a MARS spin 

cartridge, centrifuged at 100 × g until all the samples passed through. The spin cartridge was 

then washed twice with 400 μL of buffer A, centrifuged at 100 × g and the eluted solution 

was collected in the depleted sample collection tube. The collected sample was buffer 

exchanged with 50 mM triethylammonium bicarbonate using Zeba™ desalting spin columns 

(Pierce, Rockford, IL).
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Protein Quantitation

The working bovine serum albumin (BSA) standard solution (1 mg/mL) was prepared by 

diluting the BSA stock solution (2 mg/mL) to 1 mg/mL with 50 mM triethylammonium 

bicarbonate, which was further diluted to a series of standard solutions of 0, 0.025, 0.05, 

0.125, 0.25 and 0.5 mg/mL BSA with 50 mM triethylammonium bicarbonate buffer. Twenty 

microliters of each standard was added to cuvettes for standard solutions. Plasma samples 

and 50 mM triethylammonium bicarbonate buffer were added to the cuvettes. The 

concentrated dye reagent of Bio-Rad protein assay (Bio-Rad Laboratories, Inc., Hercules, 

CA) was diluted 1:4 with HPLC water. One mL of diluted Bio-Rad protein assay solution 

was added to the standard and sample cuvettes. The reaction was allowed to take place for 5 

minutes. The absorbance was read at a wavelength of 595 nm.

Protein Reduction, Alkylation, Digestion and iTRAQ Labeling

An equal amount of proteins from each group was lyophilized and prepared with iTRAQ 

reagents (Applied Biosystems, Foster City, CA) as described in the protocol from the 

company.[15] 50 μg depleted samples were dissolved in 25 μL 1 M triethylammonium 

biocarbonate sample buffer. The proteins were denatured by using 1 μL 2% SDS solution, 

reduced with 2 μL 50 mM Tris-(2-carboxy)ethylphosphine hydrochloride (TCEP), and 

alkylated with 1 μL of freshly prepared 84 mM iodoacetamide solution. Each sample was 

digested overnight at 37 °C with 10 μL of 1 μg/μL sequence-grade modified trypsin solution 

(Promega Corporation, Madison, WI). Applied Biosystems (AB)’s iTRAQ reagents 114, 

115, 116, and 117 were resuspended in 70 μL of ethanol and added to the digested peptides 

from four pooled samples: wild type at 6 weeks, APOE−/− at 6 weeks, wild type at 12 

weeks, and APOE−/− at 12 weeks. Samples were incubated at room temperature for one hour 

and the reactions were quenched by adding 100 μL HPLC grade water.

Off-line SCX Separation

The iTRAQ labeled peptides were separated by using an Agilent 1100 series HPLC system, 

which was fitted with a Polysulfoethyl A SCX column (100 × 2.1 mm, 5 μm, 300 Å, Poly 

LC, Columbia, MD). The composition of the mobile phase was 25% acetonitrile with 10 

mM KH2PO4 (pH = 3) and the flow rate of mobile phase was 200 μL/min. The peptides 

retained on the column were eluted by sequential injection of 700 μL of a series of salt 

solutions: 0, 2.5, 5, 10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 

400, 450, 500, and 1000 mM KCl in loading buffer. Each eluted fraction was desalted via a 

PepClean™ C - 18 spin column (Pierce, Rockford, IL, USA) and dried with a SpeedVac 

(Labconco, Kansas, MO).

Off-line HILIC Separation

HILIC separation of iTRAQ labeled peptides was performed by using an Agilent 1100 series 

HPLC system equipped with a HILIC column (150 mm × 2.1 mm, 5 μm, 200 Å; the Nest 

Group, Inc. MA). Buffer A is acetonitrile/water (v/v = 80%/20%) with 5 mM ammonium 

formate. Buffer B is acetonitrile/water (v/v = 30%/70%) with 10 mM ammonium formate. 

The peptides were separated with a gradient from 0% buffer B to 100% buffer B in 60 min 
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at a flow rate of 200μL/min. Based on the intensity of the UV trace, 10 fractions were 

collected.

Reverse Phase LC-Separation and MALDI-Spotting

SCX fractions were separated and spotted on a MALDI plate via Applied Biosystems’ 

Tempo LC-MALDI equipped with Chromolith™ CapRod™ capillary column (150 mm × 0.1 

mm, monolithic silica RP 18 end capped). Samples were separated in channel one, a two-

buffer system using mobile phase A (2% acetonitrile, 98% water and 0.1% trifluoroacetic 

acid (TFA)) and mobile phase B (98% acetonitrile, 2% water and 0.1% TFA). The flow rate 

was set at 1 μL/min. The gradient was programmed: 0 – 5 min, 2% B; 5 – 95 min, 2% – 45% 

B; 95 –100 min, 45% – 80% B; 100 – 110 min, 80% B; 110 – 115 min, 80% – 2% B; 115 – 

120 min, 2% B. Matrix spotting was accomplished using flow from channel 2 at a flow rate 

of 2 μL/min of matrix (5 mg/mL α-cyano-4-hydroxycinnamic acid in a solution of 

acetonitrile and water (75/25, v/v) with 2% ammonium citrate). The spotting was performed 

from 0 to120 min at a speed of 7 s/spot.

Each HILIC fraction was separated and spotted at a speed of 7.5 s per spot via Agilent LC-

Probot. The reversed phase liquid chromatography separation was performed in a C18 LC 

Packings column (Dionex, CA, 150 mm × 75 mm, 5 μm, 100 Å). The components of buffer 

A were 5% acetonitrile, 95% water and 0.1% TFA. Buffer B was 5% water/95% acetonitrile 

with 0.1% TFA. The gradient for mobile phases was 0–150 min, 0% – 60% mobile phase B; 

150–180 min, 60% – 90% mobile phase B; 180–210 min, 90% mobile phase B; 210 – 240 

min, 90% - 0% mobile phase B. The matrix was 5 mg/mL α-cyano-4-hydroxycinnamic acid 

in 2% ammonium citrate, 50% acetonitrile and 0.1% TFA.

Protein Identification and Quantitation with AB 4800 MALDI TOF/TOF

An AB 4800 plus MALDI-TOF/TOF mass spectrometer (Applied Biosystems, Foster City, 

CA) was used to analyze spotted target plates from SCX and HILIC fractions. This 

instrument was controlled by a 4000 series Explorer version 3.0. For MS analysis, the laser 

intensity was set at 3500, the number of laser shots was 3000, the MS range (m/z) was 800 

to 4000, and the precursor mass tolerance was 200 ppm. The top 20 peaks in each MS 

spectrum with a signal-to-noise ratio (S/N) of 30 or greater were chosen for MS/MS 

analysis. For MS/MS analysis, the laser intensity was set at 4300 and the total number of 

shots was 5500. AB’s ProteinPilot software 2.0.1 was used to perform the data analysis with 

the Paragon Algorithm. All MS/MS data for all SCX and HILIC fractions from LC-MALDI 

TOF/TOF analysis were processed together and searched against the UniProtKB/Swiss-Prot 

database (released on 01/23/2007, about 260K entries).. The search parameters were 4-plex 

iTRAQ peptide labeling, alkylation with iodoacetamide, and tryptic digestion. The detected 

protein threshold (unused ProtScore (conf)) was set at 1.3 (95.0%). The protein abundance 

ratio, probability value (p), and error factor (EF) were calculated by using ProteinPilot 2.0.1. 

Only the unique peptides to a protein were used in its quantification.

Protein Identification and Quantitation with NanoLC-LTQ-Orbitrap

Another aliquot of peptides in each SCX and HILIC fraction was separated with on-line 

Eksigent nano LC system and analyzed by a LTQ-Orbitrap tandem mass spectrometer 
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(Thermo Electron, San Jose, CA) equipped with a nano electrospray source (New Objective, 

Inc., Woburn, MA). The peptides were loaded onto an IntegraFrit™ sample trap 

( ProteoPep™ II C18, 300 Å, 5 μm, 75 μm × 25 mm, New Objective, Inc., Woburn, MA) by 

using a mobile phase of water premixed with 0.1% formic acid, of which 50% was pumped 

with channel 1A and 50% with channel 1B. The retained peptides were washed isocratically 

by water premixed with 0.1% formic acid to remove any excess reagents. The cleaned 

peptides were resolved on a PicoFrit® analytical column (ProteoPep™ II C18, 300 Å, 5 μm, 

50 μm × 100 mm, tip ID = 10 μm, New Objective Inc., Woburn, MA) with a multistep 

gradient in channel 2 of solvent 2A (water premixed with 0.1% formic acid) and solvent 2B 

(acetonitrile premixed with 0.1% formic acid) at a flow rate of 200 nL/min. The gradient 

started at 5% 2B and was held for 15 min, with linear increases to 60% 2B at 145 min and 

90% 2B at 180 min. The gradient was held at 90% 2B for 15 min before going to 5% 2B at 

197 min. The re-equilibration took about 33 min. The LTQ-Orbitrap tandem mass 

spectrometer was operated in the data-dependent mode. The full MS spectra were acquired 

in positive mode in Orbitrap (m/z = 300–2000, resolution = 60,000 ( at m/z 400) and the 

automatic gain control was set to 500,000 ions. 1 microscan was record.The three most 

abundant precursor ions in each full MS spectrum were chosen for Pulsed Q Dissociation 

(PQD) in LTQ. The normalized collision energy is 30%, Q activation setting was 0.7 with 

activation time of 0.1. The dynamic exclusion (repeat count 1, exclusion list size 500, 

exclusion duration 15s, exclusion mass width low 0.5, and exclusion mass width low 1.5) 

was enabled for LC-MS/MS experiments.

The LC-MS/MS raw data from nanoLC-LTQ-Orbitrap were converted to DTA files using 

Thermo Electron Bioworks 3.3.1 and correlated to theoretical fragmentation patterns of 

tryptic peptide sequences from the Fasta databases using SEQUEST™ (Thermo Fisher). The 

search parameters include: 1) fixed cysteine modifications of +57 for carbamidomethyl-

cysteines, +144 for lysine-iTRAQ labeling and N-terminal peptides; 2) variable 

modifications allowing +16 with methionines for methionine sulphoxide and +144 for Y-

iTRAQ labeling; 3) restricted to trypsin digested peptides and allowed for 2 missed 

cleavages; 4) peptide mass search tolerance was 50 ppm and fragment mass tolerance was 

set at ± 1 dalton. The criteria for peptide identification were 1) top 5 rankings as the hit for a 

MS/MS spectra and 2) peptide probability being lower than 0.01. The search results from all 

SCX and HILIC fractions were manually integrated. Proteins with a probability lower than 

0.001 and matched with at least two peptides were considered as positive identifications. 

The intensities of iTRAQ reporter ions were manually extracted from Bioworks software. 

The protein abundance ratio was estimated by using the sum ratio of the reporter ion 

intensities across the spectra matched to its peptides [16] and were calculated by using self-

developed script (Visual Basic for Applications in Microsoft Excel).

Results and Discussion

Comparative analysis of the plasma proteome changes in the paired APOE−/− versus wild-
type mice collected at different time points following fat feeding

First, the most abundant proteins in the plasma such as albumin, IgG, transferrin, etc, were 

depleted. Following the buffer exchange, as shown in Figure 1, each of four samples was 
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denatured, reduced, alkylated, and digested. 4-plex iTRAQ reagents were used to label the 

peptide digests obtained from both APOE−/− mice and their wild-type (WT) counterpart fed 

with the high fat diet for 6 and 12 weeks (wks), i.e., APOE−/− at 6 wks, APOE−/− at 12 wks, 

WT at 6 wks, WT at 12 wks, respectively. The iTRAQ-labeled peptides from each of the 

four samples were mixed at an equal mass ratio. We used both SCX and a more MS-

compatible HILIC schemes to separate the iTRAQ-labeled peptide mixture respectively in 

the first LC dimension and then RP as the second dimension. Each of the separated peptide 

fractions from either 2D SCX-RP LC or 2D HILIC-RP LC was analyzed by both 

MALDI-4800-TOF/TOF and LTQ-Orbitap MS.

In the 2D-LC-MALDI-TOF/TOF analysis, 300 proteins were quantified, and the threshold 

with 95% confidence in distinguishing those differentially expressed proteins was 

determined statistically by ProteinPilot, based on their identified peptides, with bias 

correction for uneven mixing. As a result, in the cross-sample quantitative comparisons 

provided by 4-plex quantitative iTRAQ labeling, 40 proteins were found up-regulated 

(Table 1a), and 39 proteins down-regulated (Table 1b) when the plasma proteome was 

compared for APOE−/− vs. WT, collected at one or both time points after feeding the fat 

diets. Specifically, 14, 19, and 7 proteins were observed up-regulated at 6 weeks only, 12 

weeks only, and at both time points, respectively (Table 1a). Meanwhile 10 proteins were 

down-regulated at 6 weeks only, 11 proteins down-regulated at 12 weeks only, and 18 

proteins down-regulated at both time points (Table 1b).

In the quantitative proteomic dataset generated by nanoLC-ESI-LTQ(PQD)-Orbitrap MS, 

397 proteins (P < 0.001) were quantified with at least two peptides for each individual 

protein. 21 plasma proteins were found up-regulated (Table 2a) with 13 proteins up-

regulated in the APOE −/− mice fed with high fat at 6 weeks only, 6 proteins at 12-weeks 

only, and 2 proteins up-regulated at both time points. Meanwhile, 40 proteins were down-

regulated when their levels in the APOE −/− mice compared to those of the WT mice (Table 

2b). Among them, 5 proteins were down-regulated at 6-weeks only, 21 proteins at 12 weeks 

only, and 14 proteins at both time points.

In combining the proteomic datasets obtained by both 2D-LC MALDI-TOF/TOF and ESI-

LTQ(PQD)-Orbitrap MS approaches, we have identified a total of 628 proteins (Figure 2), 

of which 79 proteins were identified by both approaches while 231 were identified only by 

2D-LC-MALDI-TOF/TOF and 318 only by the 2D-LC-ESI-LTQ(PQD)-Orbitrap MS 

approach. Among a total of 621 proteins quantified, 545 proteins were quantified only by 

either 2D-LC-MALDI-TOF/TOF or 2D-LC-ESI-LTQ(PQD)-Orbitrap approach, and 76 

proteins were comparably quantified by using both approaches. The relative standard 

deviations for the quantitative data generated by both approaches were less than 15% and 

18% for the paired analysis of APOE−/− vs. WT mice at week 6 and week 12, respectively 

(Figure 2), which provided the cross-method validation for the iTRAQ-based quantification 

accuracy.

For CAD biomarker discovery, by employing two platforms, we identified 58 proteins up-

regulated and 70 proteins down-regulated in plasma samples from APOE−/− mice vs. WT 

mice at either 6 weeks or 12 weeks, or at both time points (Table 3). There were only 3 up-
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regulated and 9 down-regulated proteins detected by using both methods (Table 4a and 

Table 4b).

Clinical implications of the APOE-dependent differentially expressed plasma proteins 
identified by iTRAQ-based quantitative proteomics approaches

Consistent with previous findings [9, 17–27], certain dys-regulated proteins were identified 

at two time points along with the progression of CAD in the APOE−/− mice compared to the 

WT control mice. For example, the increased levels of the gamma and beta chains of 

fibrinogen (precursors) were observed in the plasma of the APOE−/− mice at both 6 and 12 

weeks, and their abundances increased further with longer fat feeding from 6 to 12 weeks 

(Table 4a). This is in accordance with the fact that fibrinogen plays a significant role for the 

development of CAD and is generally elevated in patients diagnosed with CAD[24]. 

Apolipoprotein A-I (precursor) was found down-regulated in APOE−/− mice at both time 

points, which is also consistent with the established negative correlation between 

apolipoprotein A-I and the extent of CAD [9, 17–23]. Thrombospondin-4 (precursor) was 

also found up-regulated in APOE−/− mice in our study, and its elevated levels have been 

associated with atherosclerosis in human [25–27]. The identification of these differentially 

expressed proteins in this murine model that are known to play active roles during CAD 

development in humans has supported the utilization of these iTRAQ-based proteomic 

approaches for the discovery of novel protein biomarkers. Of note, the average abundance 

ratios of APOE, i.e., listed as ‘APOE precursor’ in protein databases, for APOE−/− mice vs. 

WT at 6 weeks and 12 weeks were 0.11 and 0.07 (average of the measured results from 

MALD-TOF/TOF (0.12 and 0.06) and LTQ-Orbitrap (0.09, 0.07), respectively, which were 

essentially close to the background level. This is consistent with the expectation that APOE 

was absent in APOE−/− mice, another proof for the validity of using these methods.

The putative biological functions associated with the differentially expressed proteins found 

here were investigated to determine if they are involved in the known process related to 

CAD. To do this, the differentially expressed proteins were converted to RefSeq protein 

identifiers with the DAVID gene ID conversion tool and submitted for functional annotation 

analysis by using DAVID Bioinformatics Resources 2008[28, 29]. The largely enriched 

annotation categories associated with the differentially expressed proteins at week 6 and 12 

are listed in Figure 3. A p-value less than 0.05 (p < 0.05) represents the high enrichment of 

particular categories. The enrichment p-value in the functional annotation chart is the 

probability calculated based on EASE Score, a modified Fisher exact test. The protein count 

at each category (or the number of unique DAVID IDs) and p-value corresponding to the list 

of differentially expressed proteins identified by this study are shown in Figure 3. The 

functional annotations that are related to CAD were clustered into specific functional 

groups. In general, there were more regulated proteins associating with these enriched 

functional categories in the week 12 plasma than in that of week 6, as expected if these 

proteins are associated with the progression of CAD.

The known APOE-associating proteins, such as apolipoproteins (A-I, A-II, A-IV, B, C-I, C-

III, D and H), serum paraoxonase/arylesterase 1, serum amyloid P-component, serum 

amyloid A1, inter-alpha trypsin inhibitor, heavy chain 3, selenoprotein P, plasma 1, and 
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lactotransferrin [30] were found either up- or down-regulated at either or both time points in 

the plasma isolated from APOE−/− mice. For certain proteins previously known to be 

associated with human CAD including those involved in the complement system, 

proteolysis, and coagulation, etc [27], we observed a good cross-species correlation between 

what were detected in the APOE−/− mice and in the developed phase of human CAD 

patients. Thus, our proteomic findings in the mouse model with fat-dependent progression of 

CAD could be indicative of novel CAD markers for the diagnosis of the human disease. We 

therefore categorized those APOE-dependent differentially expressed proteins according to 

their previously known functions.

43 proteins or 34% of all differentially expressed proteins identified in this study were found 

to be associated with stimulus response (Table 3). The detailed distribution of these proteins 

includes those related to the response to external stimulus (p = 3.4 × 10−19), response to 

stress (p = 1.1 × 10−16), activation of immune response (p = 6.1 × 10−16), defense response 

(p = 5.6 × 10−13), and immune response (p = 5.4 × 10−8). Certain proteins in the category of 

host defense (28 proteins, p = 5.6 × 10−13) or related to immune response (19 proteins, p = 

5.4 × 10−8) were previously known to be associated with CAD and its development [4, 27]. 

The number of proteins associated with these functional categories was increased in the 

plasma of APOE−/− mice with prolonged fat feeding from 6 to 12 weeks (Figure 3). Similar 

genes associated with defense response were previously found to be significantly over-

presented in the progression of atherosclerosis [4, 31]. At week 12, the number of defense 

response-associated proteins (23) was significantly over-expressed, with a p value of 2.2 × 

10−12, of which 18 proteins were associated with acute inflammatory response. There were 

12 proteins (i.e., riken cdna 1700013l23 gene, complement component 1, q subcomponent, c 

chain, haptoglobin, orosomucoid 1, coagulation factor ii, serine (or cysteine) peptidase 

inhibitor, clade a, member 3n, properdin factor, complement, hemolytic complement, 

alpha-2-Hs-glycoprotein, riken cdna 4930439b20 gene, complement component 8, alpha 

polypeptide, and orosomucoid 2) up-regulated at week 12 compared to only 4 proteins (i.e., 

coagulation factor ii, alpha-2-Hs-glycoprotein, mannose binding lectin c, and complement 

factor d or adipsin) up-regulated at week 6. Furthermore, 14 proteins in the category of 

defense response were involved in the complementary activation, which supports a report 

that most of the differentially displayed proteins in CAD patients were members of the 

complement system[27].

The second significant enriched category associated with the differentially expressed 

proteins was blood coagulation (7 proteins, p = 4.3 × 10−6). This observation is consistent 

with the results from previous human proteomics studies which suggested that some 

coagulation-associated proteins could be candidates for CAD biomarkers [27]. 6 out of 7 

proteins detected in this category, including coagulation factor II, IX and X, fibrinogen 

gamma, and B-beta polypeptide and apolipoprotein H, were significantly up-regulated in 

APOE−/− mice compared to wild-type mice. Among them, coagulation factor II, fibrinogen 

gamma and B-beta polypeptide were known to be involved in the process of platelet 

activation.

We also found that 37 proteins previously known to be associated with transport 

processes[29] were differentially expressed when the plasma proteome of APOE−/− was 
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compared to that of wild type mice. Among those over-presenting proteins associated with 

lipid transport (9 proteins, p = 2.9 × 10−7), 4 proteins are associated with cholesterol 

transport (p = 2.8 × 10−4) including apolipoprotein A-I, apolipoprotein E and M, which were 

down-regulated at both time points, and apolipoprotein B which was up-regulated at both 

points. Apolipoprotein A-I and M are the proteins in high density lipoprotein (HDL), which 

can remove cholesterol from atheroma within arteries and transport it back to the liver for 

excretion or re-utilization. The lower HDL increases the risk for developing CAD and 

therefore the abundance of apolipoprotein A-I and M were lower in the APOE −/− mice. On 

the other hand, apolipoprotein B is the primary protein of low-density lipoproteins, which is 

responsible for carrying cholesterol to tissues. The high level of apolipoprotein B observed 

in our study is consistent with a previous report that suggested it as a potential CAD 

biomarker [32].

As expected with the knowledge of CAD pathology, many proteins associated with 

metabolism were over-presented, including cellular metabolism (66 proteins, p = 0.0033), 

primary metabolism (63 proteins, p = 0.017), and macromolecule metabolism (56 proteins, p 

= 0.022) (Figure 3). Interestingly, we observed that the number of down-regulated proteins 

in this category increased from week 6 to week 12 while there was not much change in the 

number of up-regulated proteins. There were 9 proteins related to lipid metabolism, 

including 6 proteins involved in cholesterol metabolism, 3 proteins in lipid catabolism, and 8 

proteins related to lipoprotein metabolism (p = 9.9 × 10−7). At week 6, 8 differently 

expressed proteins (i.e., apoplipoprotein A-I, A-II, B, C-II, and E, serum amyloid A1, 

glycosylphosphatidylinositol specific phospholipase d1, and paraoxonase 1) were associated 

with lipid metabolic process (p = 0.021) and 7 proteins (including apolipoprotein A-I, A-II, 

A-IV, C-I, E, M, and rab geranylgeranyl transferase, a subunit ) were associated with 

lipoprotein metabolic process (p = 6.2 × 10−7 ). This observation is consistent with a report 

from a mouse genomics study which reported that lipid/lipoprotein metabolism was 

significantly over-represented at 6 weeks. Also, there were 46 proteins associated with 

protein metabolism, including 23 proteins associated with proteolysis.

Limitations and future work

Considering still limited sensitivity and sequence coverage of currently available mass 

spectrometry-based technology, qantitative proteomics analysis of pooled plasma is required 

to generate sufficient proteins for MS-characterization. By doing so, the biological 

variations could be diminished in the pooled samples and might result in genetic errors in 

biomarker candidates. However, previous work has studied biological variation in human 

plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using 

plasma samples from eleven healthy subjects collected three times over a two week period. 

Their results have shown that for 70% of the high-quality protein spots, the coefficient of 

variation of the standardized abundance was less than 30% across all subjects. In our case, 

since the experimental mice were grown in the identical condition, the variation between 

them is expected to be much smaller than 30%. Taking a consideration of individual genetic 

variations and their impact on the accuracy of biomarker identification, we propose to first 

analyze pooled samples by using MS-based quantitative proteomics in the discovery phase 
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and then further characterize/validate individual biomarkers of clinical significance on 

individual samples using biological assays such as immunoblotting.

Conclusion

Two iTRAQ quantitative proteomics platforms (2D-LC-MALDI-TOF/TOF and 2D-LC-ESI-

LTQ(PQD)-Orbitrap) for CAD plasma biomarker discovery were established via a CAD 

mouse model. This study demonstrated that these two platforms provide complementary 

results in protein identification and quantitation. Only about 12% of total reported proteins 

were identified and comparably quantified by using both platforms. This may be due to the 

two different ionization mechanisms of MALDI (which produces and fragments single 

charged peptides) vs. ESI (which produces mostly multiple charged peptides for 

fragmentation). Based on the results from this study, it may be worthwhile to use both 

approaches to significantly increase the number of identified and quantified protein 

biomarkers in biological applications of proteomics techniques. The 128 differentially 

expressed proteins (58 up-regulated and 70 down-regulate proteins) and their associated 

biological mechanisms, such as immune modulation and inflammation, are completely 

analogous to mouse transcriptome findings at early and intermediate CAD disease stages [4] 

and suggest that the differential proteomic approaches used here are a feasible and 

productive approach to biomarker discovery for CAD. The identity of the biological 

functions associated with the differentially expressed proteins in CAD, as described above, 

may assist in defining both novel biomarkers as well as novel mechanism contributing to 

CAD.

Our study demonstrated that there was a panel of plasma proteins instead of a single protein 

associated with the CAD pathogenesis. Validation of this protein pattern as the “signature” 

of CAD is of particular interest. However, the effectiveness of conventional biomarker 

validation methods such as Western blotting depends on the availability and quality of 

antibodies and then the cost and time involvement for developing immunoassays for each 

new target will be substantial[33]. The iTRAQ approach described above was particularly 

designed for target discovery, For the purpose of high throughput validation a mTRAQ 

methodology is recently developed, which relies on multiple reaction monitoring (MRM) to 

analyze tryptic peptides from the proteins of interest. We therefore propose to use mTRAQ 

reagent, to quantify the list of target proteins identified in the discovery phase across all 

samples. The protein panel will be validated first with plasma samples from individual 

APOE −/− mice and the correspodning controls, and then be tested with individual plasma 

samples from CAD patients.
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Figure 1. 
Work flow for quantitative proteomics. The pooled samples were depleted of albumin, 

transferrin and IgG with Agilent’s Mouse (Mu3) Multiple Affinity Removal Spin Cartridge. 

Equal amounts of proteins from each group were then denatured (2% SDS), reduced (TCEP, 

Tris-(2-carboxy)ethylphosphine hydrochloride), alkylated (iodoacetamide), digested 

(trypsin), and labeled with AB’s iTRAQ reagents (114, 115, 116, and 117). The iTRAQ-

labeled peptides were mixed, and were analyzed by 2D LC (HILIC/SCX and reserve phase) 

followed by mass spectrometric analysis with an AB 4800 plus MALDI-TOF/TOF, and a 

ThermoFisher LTQ(PQD)-Orbitrap equipped with New Objective nanoESI. Protein 

identification and quantification were accomplished with AB’s ProteinPilot™ software 2.0.1 

and ThermoFisher’s Bioworks 3.3.1.
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Figure 2. 
a) the comparison of results from 2D-LC-MALDI-TOF/TOF vs. 2D-LC-ESI-LTQ(PQD)-

Orbitrap showed that a total of 628 proteins were identified. 79 proteins were identified from 

both techniques while 549 proteins with only one method. b) 621 proteins were quantified, 

among which 545 proteins were quantified with one method and 76 were comparably 

quantified with both methods.
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Figure 3. 
Functional annotation chart for up- and down-regulated proteins at week 6 and week 12. 

Protein count is the number of unique DAVID IDs corresponding to the differential protein 

list from this study. P-value is the probability calculated based on EASE Score, a modified 

Fisher Exact Test.
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Table 2a

Up-regulated proteins identified and quantified by 2D-LC-ESI-LTQ(PQD)-Orbitrap

Accession # Name Mice at 6 weeks
APOE −/− vs WT

Mice at 12 weeks
APOE −/− vs WT

IPI00132542.1 10 days embryo whole body cDNA 2.0

IPI00132134.2 12 days pregnant adult female placenta cDNA 2.0

IPI00225477.4 2195 kDa protein 2.9

IPI00463639.4 26 kDa protein 2.1

IPI00123927.1 Alpha-1-antitrypsin 1–5 precursor 2.2

IPI00119676.1 Apolipoprotein C-I precursor 2.6

IPI00474450.1 Dystrophin 2.2

IPI00409148.2 Haptoglobin precursor 2.6

IPI00227857.4 Hepatocyte growth factor activator precursor 2.8

IPI00131111.1 Histone-lysine N-methyltransferase, H3 lysine-36 and H4 lysine-20 specific 7.8

IPI00177214.1 Igh-6 protein 2.4

IPI00119913.1 Isoform 1 of Adenomatous polyposis coli protein 2.1

IPI00115243.1 Major urinary protein 5 precursor 2.4

IPI00350772.5 * PREDICTED: apolipoprotein B isoform 1 2.7 2.1

IPI00461878.2 PREDICTED: similar to limkain b1 isoform 1 4.0

IPI00553366.4 PREDICTED: similar to tankyrase 2.2

IPI00226216.5 * Rho guanine nucleotide exchange factor (GEF) 19 2.3 2.0

IPI00330896.1 Spermatogenesis associated 20 2.7

IPI00230008.1 Synaptotagmin-like homologue lacking C2 domains-b 2.7

IPI00123111.2 Transcription termination factor 1 2.8

IPI00314041.5 Villin-1 2.5

*
Proteins are up-regulated at both time points.
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Table 2b

Down-regulated proteins identified and quantified by 2D-LC-ESI-LTQ(PQD)-Orbitrap

Accession # Name Mice at 6 
weeks

APOE −/− vs 
WT

Mice at 12 
weeks

APOE −/− vs 
WT

IPI00226680.1 10 days neonate cerebellum cDNA 0.34

IPI00126208.1 11 days embryo whole body cDNA 0.29

IPI00468603.4 12 days embryo embryonic body between diaphragm region and neck cDNA 0.28

IPI00110658.1 13 days embryo liver cDNA, RIKEN full-length enriched library, clone:2510040B16 
product:hemoglobin, beta adult major chain, full insert sequence

0.30

IPI00755200.1 221 kDa protein 0.28

IPI00649712.1 *24 kDa protein 0.38 0.32

IPI00349896.3 *47 kDa protein 0.50 0.21

IPI00350399.6 *57 kDa protein 0.49 0.29

IPI00380781.2 Adult male thymus cDNA, RIKEN full-length enriched library, clone:5830476A12 
product:complement component 1, r subcomponent-like, full insert sequence

0.50

IPI00121209.1 * Apolipoprotein A-I precursor 0.39 0.32

IPI00136266.1 * Apolipoprotein C-II precursor 0.28 0.25

IPI00323571.1 * Apolipoprotein E precursor 0.09 0.07

IPI00130382.3 * Apolipoprotein M 0.35 0.42

IPI00380509.5 BC053994 protein 0.29

IPI00109966.1 Beta-2-microglobulin precursor 0.50

IPI00121534.8 Carbonic anhydrase 2 0.43

IPI00121319.1 Cysteine-rich protein 2 0.20

IPI00128288.2 * Dimethylaniline monooxygenase [N-oxide-forming] 4 0.08 0.06

IPI00379245.2 Glucosamine-6-phosphate isomerase 0.27

IPI00319652.1 Glutathione peroxidase 1 0.31

IPI00109996.1 * H-2 class I histocompatibility antigen, L-D alpha chain precursor 0.35 0.36

IPI00469114.4 * Hemoglobin subunit 0.40 0.21

IPI00124725.1 Inter-alpha-trypsin inhibitor heavy chain H3 precursor 0.49

IPI00329872.1 Isoform 1 of Collagen alpha-1(I) chain precursor 0.42

IPI00453688.1 Isoform 1 of Signal-induced proliferation-associated 1-like protein 1 0.20

IPI00321666.1 * MHC 0.40 0.41

IPI00117910.2 Peroxiredoxin-2 0.44

IPI00109437.1 * Pirin 0.45 0.47

IPI00129965.3 PREDICTED: alpha-1-B glycoprotein isoform 1 0.27

IPI00355031.5 PREDICTED: cortactin binding protein 2 isoform 1 0.47

IPI00462565.1 PREDICTED: similar to 5T4 oncofetal trophoblast glycoprotein 0.42

IPI00670418.2 PREDICTED: similar to jumonji domain containing 1C isoform 3 0.21

IPI00620959.2 PREDICTED: similar to MAP/microtubule affinity-regulating kinase 3 0.15

IPI00406030.2 Rho interacting protein 3 0.42
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Accession # Name Mice at 6 
weeks

APOE −/− vs 
WT

Mice at 12 
weeks

APOE −/− vs 
WT

IPI00605003.2 RING finger protein 17 long transcript 0.34

IPI00128040.1 Serine protease HTRA1 precursor 0.47

IPI00135547.1 Serum amyloid A-4 protein precursor 0.40

IPI00317356.9 * Serum paraoxonase/arylesterase 1 0.41 0.45

IPI00380247.2 * SUMO-1-specific protease 0.45 0.39

IPI00116923.1 Thyroid hormone receptor interactor 10 0.25

*
Proteins are down-regulated at both time points.
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Table 3

Differentially Expressed Proteins Associated with Response to Stimulus

RefSeq_Protein DAVID Gene Name * WK 6 * WK 12

NP_038513 Complement component 9 −

NP_033865 Beta-2 Macroglobulin −

NP_035693 Peroxiredoxin 2 − −

NP_059066 Haptoglobin +

NP_598864 Interleukin 1 Receptor Accessory Protein −

NP_034510 Histocompatibility 2, D Region Locus 1 − −

NP_035543 Complement Component 4b (Childo Blood Group) − −

NP_112442 Heat Shock Protein 8 −

NP_862897 Fibrinogen, B Beta Polypeptide + +

NP_038493 Alpha-2-Hs-Glycoprotein + +

NP_032005 Coagulation Factor IX +

NP_666260 Complement Component 8, Alpha Polypeptide +

NP_031488 Adenomatosis Polyposis Coli +

NP_033271 Serine (or cysteine) peptidase inhibitor, clade a, member 1a −

NP_081338 Riken cdna 1700013l23 gene +

NP_031601 Class ii transactivator − −

NP_034521 Histocompatibility 2, q region locus 10 − −

NP_033143 Serum amyloid a 1 −

XP_909452 Immunoglobulin heavy chain 6 (heavy chain of igm) +

NP_034298 Coagulation factor ii + +

NP_033181 Selenoprotein P, Plasma, 1 +

NP_032849 Properdin factor, complement +

NP_033822 Apolipoprotein a-i − −

NP_598643 Riken cdna 4930439b20 gene +

NP_038487 Complement factor d (adipsin) +

NP_033826 Apolipoprotein e − −

NP_032186 Glutathione peroxidase 1 −

NP_598623 Fibrinogen, gamma polypeptide + +

NP_031600 Complement component 1, q subcomponent, c chain +

NP_035446 Serum amyloid a 4 − −

NP_033908 Complement component 3 − −

NP_034536 Hemolytic complement +

NP_035264 Paraoxonase 1 − −

NP_038502 Apolipoprotein a-ii − −

NP_038503 Apolipoprotein h + +

NP_032794 Orosomucoid 1 +
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RefSeq_Protein DAVID Gene Name * WK 6 * WK 12

NP_033906 Serine (or cysteine) peptidase inhibitor, clade g, member 1 −

NP_034905 Mannose binding lectin (a) −

NP_033278 Serine (or cysteine) peptidase inhibitor, clade a, member 3n +

NP_031998 Coagulation factor X +

NP_032224 Complement factor b −

NP_034906 Mannose binding lectin (c) +

NP_035146 Orosomucoid 2 +

*
Proteins up-regulated are represented by “+” and down-regulated by “−”.
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Table 4a

List of up-regulated proteins identified by both methods.

Protein Name Mice at 6 weeks
APOE −/− vs WT

Mice at 12 weeks
APOE −/− vs WT

Alpha-1-antitrypsin 1–5 precursor
a2.6

b2.2

Apolipoprotein C-I precursor
a2.2

b2.6

Haptoglobin precursor
a3.3

b2.6

a
Protein identified and quantified by using 2D-LC-MALDI-TOF/TOF (P<0.001).

b
Protein identified and quantified by using 2D-LC-ESI-LTQ(PQD)-Orbitrap (two fold cut-off).
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Table 4b

List of down-regulated proteins identified by both methods.

Protein Name Mice at 6 weeks
APOE −/− vs WT

Mice at 12 weeks
APOE −/− vs WT

Apolipoprotein A-I precursor
a0.37 a0.31

d0.39 d0.32

Apolipoprotein C-II precursor
c0.36 c0.31

d0.28 d0.25

Apolipoprotein E precursor
a0.12 a0.059

d0.09 d0.07

Beta-2-microglobulin precursor
a0.54

d0.50

Carbonic anhydrase 2
a0.61 a0.35

d0.43

Hemoglobin subunit alpha
a0.55 a0.32

d0.40 d0.21

Peroxiredoxin-2
c0.55 c0.34

d0.44

Serum amyloid A-4 protein precursor
a0.46 a0.49

d0.40

Serum paraoxonase/arylesterase1
c0.57 b0.51

d0.41 d0.45

a
Protein identified and quantified by using 2D-LC-MALDI-TOF/TOF (P<0.001).

b
Protein identified and quantified by using 2D-LC-MALDI-TOF/TOF (0.001P<0.01).

c
Protein identified and quantified by using 2D-LC-MALDI-TOF/TOF (0.01<P<0.05).

d
Protein quantified by using 2D-LC-ESI-LTQ(PQD)-Orbitrap (0.5 cut-off).
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