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Abstract

Emerging evidences indicate that blood platelets function in multiple biological processes 

including immune response, bone metastasis and liver regeneration in addition to their known 

roles in hemostasis and thrombosis. Global elucidation of platelet proteome will provide the 

molecular base of these platelet functions. Here, we set up a high throughput platform for 

maximum exploration of the rat/human platelet proteome using integrated proteomics 

technologies, and then applied to identify the largest number of the proteins expressed in both rat 

and human platelets. After stringent statistical filtration, a total of 837 unique proteins matched 

with at least two unique peptides were precisely identified, making it the first comprehensive 

protein database so far for rat platelets. Meanwhile, quantitative analyses of the thrombin-

stimulated platelets offered great insights into the biological functions of platelet proteins and 

therefore confirmed our global profiling data. A comparative proteomic analysis between rat and 

human platelets was also conducted, which revealed not only a significant similarity, but also an 

across-species evolutionary link that the orthologous proteins representing ‘core proteome’, and 

the ‘evolutionary proteome’ is actually a relatively static proteome.
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1 Introduction

Platelets are anucleate cells that derive from megakaryocytes and circulate in the blood 

stream [1, 2]. Under normal conditions, platelets help maintain vascular integrity through 

their involvement in clot formation and repair of injury [3]. Meanwhile, disregulated 
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platelets were found to contribute to pathological consequences such as many types of 

cardiovascular diseases which are the most common causes of mortality in modern society 

[1]. For example, arterial thrombosis appearing as the abnormal formation of clots is a major 

factor in developing heart attacks [4].

While many functional aspects of platelets have been investigated for centuries [5, 6], the 

growing line of evidences have been suggesting there are more functions of platelets yet to 

be explored [7-11]. For instance, platelets have recently been found to act as the immune 

and signaling cells in inflammation and innate immune responses [3, 12]. Under 

lipopolysaccharide (LPS) stimulation, platelets may express functional toll-like receptor 4 

(TLR4) [7]. The interplay between platelets and neutrophils after TLR4 expression leads to 

the rapid formation of neutrophil extracellular traps (NETs) that can entrap and kill bacteria 

[8]. Blood platelets can also contribute to cancer metastasis [6, 13]. Platelets activated by the 

releasate from tumors may adhere to cancerous cells and form a shield that protects tumor 

cells from removal by the immune system [6]. Platelets may also facilitate metastasis by 

assisting circulating tumor cells to adhere to vascular tissues and move out of the vessel [6, 

14, 15]. Furthermore, as platelets have no nuclei, they represent a simplified model for the 

study of signal-dependent protein transcription and programmed cell death [2, 9]. A recent 

study suggested that Bcl-xL triggers Bak mediated apoptosis in platelets [2]. Surprisingly, 

platelets have also been shown to play a remarkable role in liver regeneration [10].

Taken together of all these evidences, a global exploration of the platelet proteome, a yet 

still largely unknown treasure chest, represents a critical step to provide the molecular basis 

for understanding the multi-functional nature of platelets. Importantly, the characterization 

of those platelet proteins involved in discrete facets of physiological functions will reveal 

possible biomarkers for early diagnosis of the progression of certain diseases including 

cardiovascular diseases and cancers [16, 17].

Mass spectrometry (MS)-based proteomics technologies provide powerful approaches for 

profiling of particular proteomes including the expressed/secreted proteins in platelets [18, 

19]. However, due to trade-offs involving sensitivity, accuracy, and throughput for each type 

of separation/identification scheme, it is difficult to obtain a relatively complete proteome by 

using a single separation/identification approach [20]. Remarkably, a prestigious group 

reported a global profiling of the membrane and cytosolic proteome of human red blood 

cells (RBCs) using combined protein identification technologies [21]. Furthermore, a direct 

comparison with mouse RBCs on the proteome level was also carried out, which indicated 

close concordance between the two proteomes [22]. Most recently, a cross-species 

comparison of Caenorhabditis elegans with fruitfly Drosophila melanogaster at the proteome 

level was performed, which illustrated their analogous proteins have similar relative 

amounts, even though the mRNA levels vary widely between the two species [23].

Here, we presented an integrated platform including multi-step protein extraction, 

multidimensional separation/identification approaches, and combined mass spectra 

interpretation algorithms to obtain the maximum coverage of both rat and human platelet 

proteome. To examine the functional relevance of our datasets, one of the popular labeling 

strategies, isobaric tags for relative and absolute quantitation (iTRAQ), was also used. In 
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order to understand the mutual and diverse proteome between these closely related 

mammals, a comparative proteome analysis was conducted, which suggested the function 

diversity of platelet proteome for the first time.

2 Materials and methods

2.1 Vital platelet isolation from rat and human blood

Fresh blood obtained from healthy rats was placed into plastic tubes containing acid/citrate/

dextrose (ACD) antigoagulant (70 mM citric acid, 85 mM sodium citrate, 110 mM glucose) 

[24]. The subsequent isolation was carried out as previously reported [25]. Minor 

modifications included altering the ratio between ACD buffer and blood volume, multiple 

steps but higher centrifugation speed to avoid any potential contaminants from red blood 

cells (RBCs), and different but compatible lysis buffer for subsequent MS analysis. Briefly, 

5 mL ACD buffer were added into 10mL fresh blood, and this increased ratio could 

successfully prevent potential precipitation [24]. After centrifugation at 200×g for 20 

minutes, the upper two-thirds of the platelet-rich plasma (PRP) was carefully collected 

followed by 12 minutes centrifugation at 1000×g [26]. The platelet pellets on the bottom of 

the tube were gently collected, then resuspended in Tyrodes buffer and washing buffer 

described previously [24]. After 1 hour incubating at room temperature, the platelets were 

spun down again at 1000×g for 12 minutes to eliminate some fragments of RBCs. The 

platelet pellets were then subjected to protein extraction and drawn into ACD buffer to 

prevent precipitation. Similar procedures as described above were then applied to isolate 

blood platelets. Based on the procedures described above, human platelets were prepared 

from fresh blood of healthy volunteers who had not been on medication for the previous ten 

days. Use of human blood was approved by the ethics committee of the Fudan University 

and informed consent was granted by the donors.

2.2 Thrombin stimulation of vital platelets

The platelets freshly isolated from rat blood following the above procedures were re-

suspended in 2mL Tyrodes buffer to the final concentration of 1×109 cells/mL. 100μL 

stimulation solution (1 unit thrombin, 20 mM CaCl2, 20 mM MgCl2 in Tyrodes buffer) was 

added to stimulate the platelets for 3 min at 37°C. The platelets were washed and pelleted at 

5000×g for 3 min, and the supernatant was removed.

2.3 Protein extraction, SDS PAGE separation, and in-solution/in-gel digestion

An optimized two-step strategy was carried out to extract platelet proteins. Firstly, the 

platelet pellets obtained from rat and human blood were added into 8M urea to extract 

water-soluble proteins (Extraction I). After 30 minutes incubation on ice, the lysate was 

centrifuged at 15,000 rpm for 15 minutes. Half of the Extraction I was subjected to in-

solution digestion after diluting the urea concentration to lower than 2M. The remaining 

proteins were subjected to IEF separation. The pellet debris was incubated for 30 minutes on 

ice in a second lysis buffer (7M urea, 2M thiourea, 2% CHAPS, 15 μL protease inhibitor, 

100mM fresh-made DTT) to obtain Extraction II. Then no visible insoluble debris was left 

in the tube. Extracted proteins were then separated by SDS PAGE under a standard protocol 

[27]. About 200 μg Extraction II were loaded into 2 parallel lanes of a homemade 12% SDS-
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PAGE gel. After coomassie blue staining, the gel was cut into 14 continuous sections 

(Supplement Figure 1), diced into small pieces and placed in 1-mL Eppendorf tubes. In-gel 

digestion and peptide extraction were performed using common protocol [27].

2.4 Isoelectric focusing (IEF) separation

Urea-extracted proteins were resuspended in a modified IPG buffer that contained only 3-10 

pH nonlinear IPG buffers (Amersham Bioscience), so harmful contaminations of the 

CHAPS detergent and bromophenol blue dye were intentionally avoided [28]. The protein 

solution was then applied to an 18 cm 3-10 nonlinear Immobiline DrySrip (Amersham 

Bioscience) according to the manufacture's procedure.

Similarly, IEF separation of peptides was carried out on the in-solution digested peptides 

using similar IPG strip. The focusing protocol was slightly different from the IEF of 

proteins. Excess cover oil was carefully removed, and the strip was cut into 24 equal 

sections within 3 minutes to avoid potential diffusion [29]. As for proteins on the strip, in-

gel digestion was carried out as described previously [27]. For peptides on the strip, a series 

of sequential extractions was performed as described elsewhere [28].

2.5 Liquid chromatography and mass spectrometry

Two dimensional liquid chromatography tandem mass spectrometry (2D LC MS/MS) 

approach involved an LTQ Orbitrap mass spectrometer (Thermo Electron) in connection 

with an LC Packings Ultimate chromatography system (LC Packings Ultimate System, 

Dionex, CA). Peptides were bounded to a strong cation exchange (SCX) column (15 cm×4.6 

mm, 5 μm, 300Ǻ, PolyLC) and eluted with eight sequential injections of ammonium acetate 

solutions with various concentrations (0, 50, 100, 200, 400, 800, 1000, 2000 mM), which 

was followed by a 2-hour reversed phase gradient (15 cm×300 μm column, 5μm C18, LC 

Packings) to further separate the peptides containing in each elution step. Mobile phase A 

was 0.1% formic acid (FA) in 5% acetonitrile (ACN). Mobile phase B was 0.1% FA in 95% 

ACN. Gradient parameters: 0-10 minutes, 10%B; 10-90 minutes, 40%B; 90-110 minutes, 

90%B; 110-120 minutes, 0%B. The 1D LC separations was performed on the same LC 

system mentioned above or a Micromass CapLC Pump (Waters, UK). The column and 

gradient settings were almost the same as described above except some minor changers in 

the column equilibration time in the Micromass CapLC.

Tandem MS (MS/MS) analysis was performed on the LTQ Orbitrap or QTOF (Micromass, 

QTOF API-US, Waters, UK) mass analyzer. The five most intense ions fully scanned by 

Orbitrap (resolution is 60000 at m/z 400, scan range is from m/z 300 to 2000) were 

sequenced in the LTQ. Ion charge state screening was enabled and all the singly charged 

species were rejected. For QTOF, mass spectra were acquired in positive mode over the 

range m/z 400-1900. The top four most-abundant precursors were selected for MS/MS 

analysis using 38V cone voltage.

2.6 Database searching and protein identification

All raw MS data was searched against the rat International Protein Index (IPI) protein 

database (version 3.07) using the Mascot (version 2.0; Matrix Science, London, UK) and 
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Sequest search engines (ThermoFisher Scientific, CA), respectively. All the “.raw” files 

acquired from LTQ Orbitrap were converted to “.mgf” (Mascot Generic Format) files using 

the Trans Proteomic Pipeline (TPP) platform[30] to make them compatible with Mascot. 

The merged “.mgf” files from different salt fractions of 2D LC experiments were then 

submitted to a 64 bite dualprocessor server in the UNC-Duke Michael Hooker Proteomics 

Center (http://proteomics.unc.edu). The Sequest search engine is an in-house cluster with 

72.2-Ghz dual processor nodes.

For protein assignment, positive identifications were made based on stringent filters. In the 

case of Sequest engine, the ΔCn values for all matched peptides were set higher than 0.1, 

and the cross-correlation scoring (XCorr) thresholds were at least 1.90 (z=2), 2.70 (z=3), 

and 3.11 (z=4) according to the reversed database search evaluation and the ensured false 

discovery rate (FDR) was less than 0.05. Additionally, the computed probability through 

TPP tools[30] must be higher than 0.95 for each matched peptide. Protein assignments were 

only made if the protein had at least two unique peptides passing the criteria mentioned 

above. As for the Mascot search engine, all assigned peptides should be in the first rank and 

then filtered by the peptide score originating from reversed database searching (34 for the 

QTOF-based analyses, 41 for the others). To further eliminate redundant proteins matched 

with the same set of peptides (group proteins), a stringent interpretation method was 

employed, thus leading to a minimized dataset. In brief, proteins that span the same set of 

peptides, or a subset, were collapsed into one representative protein, which has the max hits 

or shortest sequence length [31, 32].

2.7 iTRAQ labeling of platelet peptides, and iTRAQ-based quantitative analysis of 
thrombin-induced proteome changes in vital platelets

The proteins extracted from both non-stimulated and thrombin-stimulated platelets were 

treated with tris-(2-carboxyethyl) phosphine (TCEP) and iodoacetamide, in-solution 

digested with trypsin and then labeled with an isobaric tag reagent according to the 

manufacturer's protocol (Applied Biosystems, Foster City, CA). The above two samples 

were equally mixed and separated using an off-line 2D SCX-RPLC approach. The LC 

conditions were similar to those used in on-line 2DLC separation described above, except 

that the samples were washed 30 min using loading buffer (10 mM KH2PO4 in 25% ACN at 

pH 3.0) before the salt elution in order to remove detergents and excess reagents.[33] Eight 

salt plugs (25, 37.5, 50, 75, 100, 125, 150, 175, 200, and 350 mM KCl at pH 3.0) were 

injected sequentially and peptide fractions were collected, lyoplized and then cleaned using 

PepClean C18 spin column (Pierce, Rockford, IL).

LC-MS/MS analyses were performed on a nanoflow LC Packings System (Dionex, CA) 

interfaced to a QSTAR Elite Hybrid mass spectrometer (Applied Biosystems). Peptides 

were separated at a flow rate of 200 nL/min over a C18 column (15 cm×75 μm column, 5μm 

particle size, LC Packings) using an identical 2-hour gradient described above. MS scans 

were acquired in a data-dependant mode from m/z 300 to 2000 and up to three most intense 

parent ions were selected for MS/MS scan.

ProteinPilot (version 2.0.1, Revision 67476, Applied Biosystems) with the Paragon 

Algorithm was used for the identification and quantification of relative abundance of platelet 
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proteins expressed in different pathological conditions. All the MS/MS spectra were 

searched against the NCBI protein database using the following criteria: 95% confidence for 

protein identification, trypsin cleavage specificity, methyl methanethiosulfonate (MMTS) as 

the defined modification.

3 Results and Discussion

3.1 Integrated platform maximizes the coverage of MS-detectable platelet proteome

When a single MS-based proteomic approach is taken trade-offs involving the sensitivity, 

accuracy, and throughput often made in profiling proteins with diverse physical properties. 

To identify maximum numbers of the platelet proteins with different pI and hydrophobicity, 

variable expressions in a wide dynamic range, etc, our current platform integrates multiple 

components including a two-step protein extraction approach, multiple gel-based and gel-

free separation methods in a complimentary manner, and different MS analysis strategies 

(Figure 1).

First, the two-step extraction protocol was used to recover most of the proteins from the 

purified platelets. In contrast to the common extraction methods, such as repeated freeze-to-

thaw cycling and acetone precipitation, which collect soluble proteins and normally discard 

the undissolved parts, our method could recover most of the platelet proteins which ensured 

a comprehensive starting material [22, 34, 35]. Secondly, the subsequent gel-based and gel-

free separation methods were chosen for the proteins extracted from different lysis buffers 

accordingly. The proteins in surfactant-based lysis buffer were loaded onto the SDS gel. 

Then the CHAPS detergents, which are notoriously incompatible with RPLC-MS/MS, were 

removed. Meanwhile, the proteins extracted from surfactant-free lysis buffer were 

introduced to IPG strip and digested in solution, respectively. Thus the resulted peptides 

were compatible with the following RPLC-MS/MS approach because urea was readily 

removed by reversed phase column without pretreatment [36]. Finally, both mass 

spectrometers, LTQ Orbitrap and QTOF, were used in the integrated platform to overcome 

the intrinsic weakness of each type of the instruments used alone [20].

As summarized in Table 1, a total of 837 rat platelet proteins were identified in high 

confidence, including 320 proteins identified by the gel-free 2DLC-LTQ Orbitrap approach 

and 634 proteins (with redundancy) detected by SDS PAGE-RPLC-LTQ Orbitrap approach. 

As a widely used pre-separation method, SDS PAGE could effectively fractionate a complex 

sample, meanwhile, it provides a molecular size window for the proteins of interest [21]. 

The identified proteins are then readily validated using Western blotting [37]. On the other 

hand, two dimensional strong cation exchange-reverse phase liquid chromatography (2D 

SCX-RPLC) approach which is based on the property orthogonality of a variety of peptides 

is also routinely used by most proteomics labs [38]. Recent data showed that the above two 

approaches are comparable with respect to the number of identified proteins [39]. 

Interestingly, our data indicated the SDS PAGE-RPLC-LTQ MS/MS identified more 

proteins than those identified by SCX-RPLC-LTQ approach. One of the possible reasons is 

the former approach (14 gel bands) has more fractions than the latter one (7 salt plugs) in the 

first dimensional separation, which resulted in higher resolution in separation and more 

protein identifications.
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The overall identified proteins were grouped into 6 and12 classes with respect to their 

subcellular localization and biological function. As shown in Figure 2A & 2C, about 26% of 

the identified proteins were known as cytoskeleton and membrane proteins, and more than 

40% proteins were related to cell organization and transportation, which was consistent with 

the fundamental roles of platelets in clot formation and wound healing. Meanwhile, up to 

23% proteins had the known function directly related to protein metabolism. According to 

previous findings [21], red blood cells (RBC) have a large number of membrane and 

cytosolic proteins involving in cellular metabolism, probably due to the relatively short life 

span of RBCs, which requires fast degradation of organelles or macromolecules [21]. In 

contrast, platelets have an even shorter life span and may undergo programmed cell death, 

typically after a week in the blood stream [40]. Therefore, this distribution pattern of 

functional categories of our identified platelet protein is reasonable. Furthermore, some 

proteins (4%) were classified as nucleus proteins. Given that platelets are anucleate, these 

proteins probably derived from megakaryocytes during thrombopoiesis [16, 41].

Interestingly, one of the newly identified human platelet proteins, Calumenin [42], which is 

responsible for the activation of coagulation protein (such as matrix Gla protein, MGP),[43] 

was unambiguously identified in the rat platelets. Calumenin was identified in human 

atherosclerotic lesions but not in normal vasculature, which indicated a potential role in 

atherosclerosis and thrombosis formation [42]. In our recent study of the rat platelet 

proteome changes during diethyl nitrosamine (DEN)-induced tumor progression in the 

mouse liver, calumenin was found to be closely associated with the inflammation or 

cirrhosis status of the rat liver (Leng TH, et al, unpublished results).

3.2 Minimal contaminations from other blood cells was assayed to ensure a precise profile 
of platelet proteome

The purity of the isolated platelets was examined by microscopic inspection and only the 

platelets with 99.9% purity were used for our profiling experiments [26]. Imaging was also 

performed in a standard scanning electron microscope to confirm the absence of potentially 

contaminating leukocytes and erythrocytes (data not shown). In general, our platelet sample 

contained less than 1 red or white blood cell per 10 000 platelets. Furthermore, as the well-

known and highly abundant nucleus proteins, either histones or histone fragments were not 

found, suggesting minimum contamination of nucleated blood cells [44]. The absence of the 

abundant erythrocyte protein ankyrin in our identification profile also suggested that 

possible contamination from RBCs was ignorable. However, some representative proteins 

from RBCs were identified in the rat platelets, such as hemoglobin α/β chain and Spectrin 

α/β chain,[21] suggesting their potential expressions in rat platelets [44, 45]. In comparison 

with the published results of human platelets, our protocol of preparing highly purified 

platelets ensured the data accuracy and consistency of rat or human platelet proteome and 

made it possible to perform comparison analysis of rat and human platelet proteome based 

on the same proteomic platform.

3.3 Proteomes with high dynamic range were detected by using the integrated platform

We utilized a semi-quantitation analysis tool, the exponentially modified protein abundance 

index (emPAI) which proved to be effective in human cancer cell proteome [46, 47], to 
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estimate the relative abundance of our identified platelet proteins. All emPAI indexes were 

calculated through the exponentially modified number of observed peptides divided by the 

number of observable peptides for each individual protein [48]. As a result, the relative 

abundance of 837 rat platelet proteins was quantified by emPAI. According to the order of 

emPAI, these proteins were classified as low (emPAI<0.1 and without emPAI annotated), 

medium (0.1≤emPAI<1) and high (emPAI≥1) abundance proteins, respectively. The number 

of proteins in each category was 86 for low-abundance, 624 for medium-abundance, and 127 

for high-abundance, respectively. All the quantitative information of the overall proteins was 

presented in Supplementary Table 1.

According to the semi-quantitative analysis, more than 72% of low-abundance proteins and 

61% of medium-abundance proteins were detected by a single approach (Figure 3), which 

implicated the necessity of combined approaches. But for high-abundance proteins, more 

than 54% were detected by at least two approaches; moreover, 13% were detected by all five 

approaches. For instance, thrombospondin 1 (TSP1), defined as a highly abundant protein by 

emPAI index (emPAI=1.183), was identified by all five approaches mentioned above. TSP1 

is secreted from platelet α-granules and interacts with collagens and fibrinogen in the 

extracellular matrix [49]. So, modulation of activity of various thrombospondins might be 

therapeutically effective [50]. In our study, the correlation between protein abundance and 

the number of approaches used in combination coincided well. The combination of multiple 

strategies was effective to identify maximum numbers of the proteins expressed in a wide 

dynamic range.

By using this integrated platform, we also identified six isoforms of 14-3-3 proteins in rat 

platelets, ε, τ, γ, β/α, ζ/δ and η. Even through there are seven known mammalian isoforms 

(14-3-3σ is expressed in epithelial cells only) [51], only five of them have been previously 

found in human platelets, which contain high levels of the ζ, β, and γ isoforms and lower 

levels of the ε and η [52]. By using the integrated approach, we detected almost all the 

14-3-3 isomers with varied abundance in rat platelets.

3.4 Combination of multiple search engines provided more protein identifications

We also demonstrated that the coverage of the MS-detectable platelet proteome could be 

dramatically improved when MS/MS spectra were analyzed with multiple search algorithms 

in a complementary way, which was in agreement with previous reports [20]. For the spectra 

acquired by using LTQ Orbitrap, a total of 7241 peptides were assigned by either Mascot or 

Sequest (Figure 4A); 55% of them were confirmed by both search engines, 16% were 

exclusively interpreted by Sequest and 29% by Mascot, respectively. The overlap in our 

studies was slightly different from the previous study [20], in which 68% of the assigned 

spectra were matched by dual search engines, 22% and 9% were exclusively matched by 

Mascot and Sequest, respectively. Considering the complexity of large-scale protein 

composition in platelets, such diversity suggested that the combination of multiple search 

engines can be exploited to increase the coverage of protein identification for a proteome.

Notably, one more interesting finding can also be illustrated in terms of the relationship 

between the search engines and protein-abundance distributions (Figure 4B). For highly 

abundant proteins, more than 70% were assigned by both search engines with extremely 
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high confidence. This percentage dramatically decreased for low-abundance proteins as only 

43% could be confirmed by both engines, indicating that single algorithm is not sufficient 

enough to assign each spectrum with proper protein entries, especially those low abundance 

proteins. Furthermore, we also found that Sequest matched more low-abundance proteins 

than Mascot. On the contrary, the exclusive identifications from Mascot were significantly 

higher than those from Sequest for high-abundance proteins. Due to the inherent nature of 

these two different algorithms, the probability-based algorithm, Mascot, may be more 

sensitive than the empirical and correlative measurements provided by Sequest. Thereby, the 

complementary use of dual search engines and algorithms was helpful in obtaining a higher 

coverage of platelet proteome.

3.5 The quantitative analysis of the thrombin-inducible proteins in the MS-identified 
platelet proteome further validates the accuracy of our platelet proteome dataset

Given the fact that the response to thrombin stimulation is a characteristic function of 

platelets, we reason the expression of those platelet-characteristic proteins should be 

thrombin-inducible. Therefore, by using thrombin to stimulate the rat platelets we examined 

the functional relevance of our platelet proteome dataset and further analyzed the accuracy 

of our identification of platelet proteins. We then applied iTRAQ-based quantitative 

proteomic approach to identify those proteins showing the thrombin-inducible changes in 

their expressions. Through iTRAQ-labeling the paired stimulated versus non-stimulated 

platelets were analyzed through a 2D-LC-MS/MS approach. In total, 415 non-redundant 

proteins were confidently identified in more than 3 duplicated runs. Using the thresholds 

previously set [53], i.e. 20% abundance changes or the isotope ratio larger than 1.2 or 

smaller than 0.8, measured by iTRAQ signal peaks, the expression level of 16 proteins in the 

profile of identified platelet proteins were found elevated while 17 proteins in the profile 

showed decreased expression level (Supplementary Table 6).All of these differentially 

expressed proteins were classified according to the biological processes and pathways using 

PANTHER classification system (http://www.pantherdb.org/).

As shown in Figure 5, most of the thrombin-inducible proteins were related to metabolic 

processes wherein over 50% of them were directly involved in protein metabolism and 

modifications, also many of them were involved in the household metabolisms for 

nucleotide or carbohydrate, or fatty acid, etc. This observation suggested the metabolic 

activities in platelets were enhanced following thrombin stimulation. Another prominent 

group of the thrombin-inducible proteins were related to cell structure and motility and 

intracellular protein trafficking, which was unsurprising in accordance with the known 

physiological role of activated platelets. For instance, through a study using a knockout 

mouse model calpain-1 was found as a positive regulator in platelet aggregation and clot 

retraction [54]. Our quantitative proteomics data indicated that upon thrombin stimulation 

calpain-1 was found up-regulated by 1.4 fold. Meanwhile, the thrombin-inducible proteins 

are linked to a variety of signaling pathways including blood coagulation, apoptosis, integrin 

signaling pathway and toll receptor signaling pathway. Furthermore, a EF-hand domain 

containing 2 (EFHD2) protein was recently found involving in protein synthesis in the 

encephalomyelitis (EAE) rats with autoimmune diseases[55]. Although the role of EFHD2 

in platelets and its contribution to thrombin stimulation remain undefined, we found the 
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expression level of EFHD2 was up-regulated by 1.5 fold upon stimulation, a sign indicating 

that protein synthesis may occur in platelets after thrombin treatment. Calpain 1 is one of the 

ubiquitously expressed isoforms of calpain family, which is a highly conserved group of 

intracellular calcium-dependent cysteine proteases[56, 57]. Calpain 1 was shown to be part 

of the integrin signal-transduction apparatus. It associates with focal adhesion proteins in 

platelets and regulates the attachment of αIIbβ3 to the cytoskeleton[57]. Recent evidences 

suggested that inhibition of calpain using overexpressed calpastatin (its highly specific 

endogenous inhibitor) prevents thrombin-stimulated α-granule secretion and platelet 

aggregation[58]. While we have identified this protein in the resting platelets, the expression 

of calpain 1 was also found up-regulated by 1.4, which is in line with the previous finding of 

its function in platelets. Apolipoprotein E (ApoE) was previously known to inhibit platelet 

aggregation through the L-Arginine:Nitric Oxide Pathway[59]. In our quantitative analysis, 

ApoE indeed showed a trend of down-regulation following thrombin activation, i.e., with an 

iTRAQ ratio < 0.7. Tubulin is the major component of microtubules which are involved in 

numerous processes such as cell division and migration[60]. In an effort to characterize its 

function, the mice lacking β1-tubulin was found to produce approximately 60% less platelets 

than their wild-type littermates, and these platelets show an attenuated response to 

thrombin[61]. While the responses of β2- and β5-tubulin to thrombin stimulation are still 

unknown, our results indicated that these two tubulin isoforms were down-regulated after 

thrombin stimulation.

In general, because thrombin is a characteristic stimulus which activates platelets, all 

thrombin-induced differentially expressed proteins were found in our dataset of platelet 

proteome, suggesting the accurate content of functionally related platelet proteome 

identified by our proteomic platform.

3.6 Generation of a human platelet proteome database and comparison with the rat platelet 
proteome

We have combined some of the platelet datasets available so far with our human proteomic 

dataset to construct a comprehensive human platelet protein database. Those datasets 

derived from pathological, toxicological or pharmacological platelet samples or individual 

protein analysis was not included in the final list. As a result, 1053 human platelet proteins 

were summarized from several reported results (Supplementary Table 2) [44, 62-65]. After 

comparison with our database, 114 novel proteins candidates were confidently identified 

using our integrated strategies (Supplementary Table 3 and 4).

A global analysis on the proteome level of the rat and human platelets was then performed, 

which mainly focused on physicochemical characteristics including hydrophobicity (HP) 

and pI distribution[66] and Gene Ontology (GO) annotations [67, 68]. Firstly, HP and pI 

distributions showed almost the same patterns (Supplementary Figure 3). According to 

previous findings[69], the multi-modality of pI distribution is a common feather in several 

known proteomes (e.g. E.coli, C. elegans, H. sapiens and M. musculus)[70]. Our data 

confirmed the modality, furthermore, revealed that the protein pIs in a sub-proteome or a 

specific organelle also follows the similar tend. The subcellular localization and functional 

distribution patterns (Figure 2) also showed high similarities between rat and human platelet 
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proteins. To highlight the comparative profile, two more tissues, human plasma and heart 

(Supplementary S1, Supplementary Figure 4 and 5), were introduced into the analysis. 

Biologically, it was not surprising that the protein localization and functions showed clear 

tissue-specific distributions. No significant species-specific differences were observed 

between the human and rat platelet proteins.

Furthermore, we performed the pathway mapping analysis in comparison with human and 

rat platelet proteins as all identified platelet proteins were mapped to the pathway database 

by using a bioinformatics platform of KEGG (Kyoto Encyclopedia of Genes and Genomes) 

[71], which allows user input genes on static pathway maps generated by BioCarta and 

KEGG with correspondingly calculated p-value [72]. The pathways were ranked in the order 

of the number of mapped platelet proteins. The top 10 mapped pathways in human platelet 

were then compared with those mapped in rat platelets (Table 2). Eight of the top 10 

significantly mapped pathways in human platelets were also found in the top 10 pathways in 

rat, except for the proteasome and apoptosis pathway. The high similarity between human 

and rat with minimal differences was a reflection of platelet evolution: ‘the stable core, and 

the variable shell’ [73].

3.7 Comparison of orthologous proteins

Orthologs are sequences of genes that evolved from a common ancestor and can be traced 

evolutionarily across different species [73]. Highly conserved sequences may suggest 

similar functions that are regulated by similar biochemical pathways and playing similar 

roles in different species [73, 74]. Therefore, with the availability of the rat and human 

platelet proteome, it is now possible to use orthologous proteins to inspect proteome 

evolution between species and to annotate newly discovered proteins.

In the present study, based on the OrthoMCL database which contains the grouped ortholog 

protein sequences in a genome-scale across different species [75, 76], we extracted all 

orthologous pairs from human and rat platelet proteome. Such highly conserved protein sets 

represented the essential function and structural similarities of platelets between both 

species. As shown in Figure 6A, 386 orthologous pairs were found in human and rat platelet 

datasets, including 327 and 346 unique orthologous proteins for human and rat, respectively. 

According to the semi-quantitative results, more than 58% of orthologous pairs were high 

abundant, which indicated that the abundant proteins also play some fundamental roles even 

though they're almost always discarded by proteomics researchers. Furthermore, all 

orthologous proteins were categorized according to their subcellular localizations, molecular 

functions and cellular processes as mentioned above (Figure 6B and C). At least two 

interesting conclusions could be made according to the comparison of the orthologous with 

overall proteins. First, the distribution patterns based on localization and function of 

orthologous proteins were coincident with the distributions of the global profiles of platelet 

proteins (Figure 2). This raised the possibility that orthologous proteins represent the ‘core 

proteome’ within different species, which could conduct almost all the fundamental 

functions in platelets; second, the orthologous proteins in each category have similar 

percentages (versus the overall proteins in the same group, Figure 6D and E). These 

relatively even distributions (percentage of subcellular localizations, 48.0%±8.5%; 
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percentage of molecular functions, 46.2%±8.6%) of orthologs in each locational and 

functional group provide us with new knowledge of natural selection, if any, that the 

‘evolutionary proteome’ is a type of static proteome.

4 Concluding remarks

Due to the abundance-based nature of MS-based proteomics approaches, we selected rat as 

the model species for obtaining much more materials of platelets. Actually, compared with 

mouse, rat is a pathologically relevant model for investigating human cardiovascular disease 

[77, 78]. Meanwhile, rat platelet proteome hasn't been fully investigated yet since the 

availability of rat genome sequence from 2004 [79]. Here, we integrated a variety of 

approaches including multi-step protein extraction, various combinations of 

multidimensional LC-MS/MS schemes, and two MS/MS spectra interpretation algorithms to 

maximum the coverage of the rat platelet proteome. This integrated platform, validated by 

its successful application to the human platelets study, provided the scientific community an 

experimental and informational resource, especially a high quality rat platelet protein 

database and a combined human platelet protein database. Impressively, the newly 

constructed human platelet protein database demonstrated multidimensional information and 

new insights not visible within a single data set [80]. The first global comparison of human 

and rat platelet proteomes presented interesting knowledge of evolutionary proteomics, 

revealed some important features of basic cellular processes, and thus improve our 

understanding of the anucleated platelet proteins conserved among mammals. The data also 

show significant similarities between the rat and human platelet proteins, which highlights 

the use of the rat model for studying platelet-related thrombosis and cardiovascular diseases. 

Although our analysis of the platelet proteome was conducted for the resting state of 

platelets, our profiling datasets served as a starting point for molecular understanding the 

complex functions of platelets in mammals [80].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic illustration of rat and human platelet proteome analysis
A two-step extraction method with 8M urea and the lysis buffer was applied to extract 

platelet proteins for either SDS gel-based separation and LC-MS/MS or in-solution digestion 

respectively.
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Figure 2. 
(A & B) Radar plots illustrating the distribution of protein subcellular localization from rat 

and human platelets. Proteins belonging to Other locations were not shown in the radar plots 

(rat, 20.3%; human, 29.6%). ER, endoplasmic reticulum. (C & D) Radar plots showing the 

categories of molecular functions and biological processes of the proteins identified in the 

rat and human platelets.
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Figure 3. The distribution of quantified proteins versus the number of matched approaches used
Low, emPAI<0.1 and without emPAI annotated; medium, 0.1≤emPAI<1; high, emPAI≥1.
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Figure 4. Results of the database search using dual engines including Mascot and Sequest
The Venn plot demonstrates the overlap and exclusive matched proteins or peptides of 

MASCOT and SEQUEST. The number of peptides or proteins was marked in the 

corresponding areas. (B) The histogram shows the matched ratios of search engines in each 

abundance category. All of the peptides and proteins were confirmed through bioinformatics 

analysis.
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Figure 5. Biological process (A) and pathway (B) analyses of the differentially expressed proteins 
after thrombin stimulation
Metabolism group (in A) and other pathways group (in B) were further classified into 7 and 

11 groups, respectively, according to the bioinformatics analysis results.
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Figure 6. Bioinformatics analysis of orthologous proteins
(A) The Venn plot (left) demonstrates the orthologous proteins between human and rat 

platelets. (B, C) All orthologous proteins in rat platelets are classified according to their 

subcellular localization and molecular functions. (D, E) The histogram demonstrates the 

ratios of the orthologous proteins in each category versus the overall proteins in the same 

category. The dotted lines show the average value of the distributions.
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