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Protein stability is defined  as the free energy of denatured 
state  minus  that of the native  state, AGd. Flory (1956) 
proposed  that disulfide bonds increase AGd by decreas- 
ing  chain  entropy in the  denatured  state. Alternatively, 
Doig and Williams (1991) suggest that  the increase  in 
AGd of proteins by disulfide  bonds is primarily  enthalpic. 
Whatever  the  source of the  stabilization,  proteins  with 
naturally  occurring  disulfide  bonds  are  more  stable  than 
their  noncross-linked  equivalents  (Pace  et  al., 1988). In- 
troduction  of novel disulfides,  however,  does  not always 
stabilize  proteins (Betz & Pielak [1992] and references 
therein). 

Disulfide bonds  are  often buried within proteins (Thor- 
ton, 1981), and  there is a  correlation between the extent 
that residues are buried and their  polarity  (Rose et al., 
1985;  Miller et al., 1987). Therefore, we wondered whether 
a  difference in polarity between two cysteines and a cys- 
tine  could  account, in part,  for  the stabilizing effect of di- 
sulfide  bonds.  To  this  end,  the  distribution  coefficient 
between  cyclohexane and H20 ,  & , x + H 2 0 ,  of a cystine 
analog,  methyl  disulfide  (CH3-S-S-CH3), was measured. 
The & , x + H z O  value for  the cysteine analog,  methanethiol 
(CH3-SH), was reported by Radzicka  and  Wolfenden 
(1988). As a control, log & , x - H 2 0  for ethyl  methyl  sul- 
fide  (CH3-CH2-S-CH3) was determined so that it  could 
be  compared to  the  value, - 1.73, reported by Radzicka 
and Wolfenden. 

There is excellent agreement between the  data  for ethyl 
methyl sulfide (Table 1) and  that previously reported.  This 
gives us confidence  in  comparing our  data  for CH3-S-S- 
CH3  to  that  for  CH3-SH (Table 1). Comparison  of  the 
free  energy of transfer between cyclohexane and H 2 0  
(AG,, = -RT In & , x + H z O )  for  these  analogs suggests 
that  at  room  temperature  the  burial  of a disulfide is fa- 
vored  over  the  burial of two cysteines by 0.5 kcal mol". 
This  difference  can  account  for  nearly 20% of  the pre- 
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Table 1. The polarity of sulfur-containing side-chain 
analogues in cyclohexane at room temperature 
" 

" 

Solute 

CH3-CH2-S-CH3a  CH~-S-S-CHJ~ CH3-SH 

log Kchx+H20 -1.72 k 0.07 -2.21 k 0.04 -0.93 

~- " 

AG,, (kcal mol-') 2.33 k 0.10 2.99 k 0.06 1.28 

~ .. . 

a Distribution  coefficients  were  determined  at  296 K using  solvents 
that  had  been  equilibrated  against  each  other.  A  1.00-mL  aliquot of 
a 1.00 M  solution  of  solute  in  cyclohexane  was  equilibrated  against 
99.0  mL  of H20.  After equilibration  (rapid  stirring  for  4  h),  phases 
were  allowed to  separate  and  the  cyclohexane  phase  was  removed. To 
recover  the  solute  from  the H z 0  phase,  a 20.0-mL back  extraction  was 
performed.  The  back  extraction  recovered  greater  than  95% of the sol- 
ute.  Concentrations were determined by proton magnetic resonance spec- 
troscopy  using  a  Bruker  AMX500  with  a 30-s delay  between  pulses. 
Samples  contained 10% 'H-cyclohexane, 90%  'H-cyclohexane,  and 
100 pnol of pyrazine.  Distribution  coefficients  were  calculated  by  di- 
viding  the  concentration  of  solute  in  the HzO phase  by  the  concentra- 
tion  of  solute  in  the cyclohexane phase.  Each value is the average of three 
determinations  and is reported  with  its  standard  deviation. 

Radzicka  and  Wolfenden (1988). 

dicted  increase  in  stability  supplied by the average  disul- 
fide  bond  (Pace et al., 1988). 

In summary, these data show that a disulfide bond is 
less polar than  two cysteines. This  observation  should  be 
considered  when  evaluating the effect of disulfides on 
protein  stability. 
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