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Abstract

CFTR is unique among ABC transporters as the only one functioning as an ion channel and from a 

human health perspective because mutations in its gene cause cystic fibrosis. Although 

considerable advances have been made towards understanding CFTR’s mechanism of action and 

the impact of mutations, the lack of a high-resolution 3D structure has hindered progress. The 

large multi-domain membrane glycoprotein is normally present at low copy number and when 

over expressed at high levels it aggregates strongly, limiting the production of stable mono-

disperse preparations. While the reasons for the strong self-association are not fully understood, its 

relatively low thermal stability seems likely to be one. The major CF causing mutation, ΔF508, 

renders the protein very thermally unstable and therefore a great deal of attention has been paid to 

this property of CFTR. Multiple second site mutations of CFTR in NBD1 where F508 normally 

resides and small molecule binders of the domain increase the thermal stability of the mutant. 

These manipulations also stabilize the wild-type protein. Here we have applied ΔF508-stabilizing 

changes and other modifications to generate wild-type constructs that express at much higher 

levels in scaled-up suspension cultures of mammalian cells. After purification and reconstitution 

into liposomes these proteins are active in a locked-open conformation at temperatures as high as 

50°C and remain monodisperse at 4°C in detergent or lipid for at least a week. The availability of 

adequate amounts of these and related stable active preparations of homogeneous CFTR will 

enable stalled structural and ligand binding studies to proceed.
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Introduction

The CFTR protein product of the gene mutated in patients with cystic fibrosis is unique 

among members of the large ABC protein family, acting as an ion channel rather than a 

transporter[1]. While the common fold of the CFTR channel and ABC exporters is apparent, 

the detailed structural differences that distinguish them functionally are not. This uncertainty 

is primarily due to the fact that although 3D structures of several exporters have been 

determined[2–9], CFTR has remained refractory to structure determination at high 

resolution because of difficulties in obtaining homogeneous active protein for analyses. The 

channel is normally expressed at low levels in epithelial cells and there is no rich natural 

source. When heterologously over expressed the protein self-associates strongly and has 

limited detergent solubility[10]. This behavior is exacerbated as levels of expression are 

increased. Although some proportion of the very large number of channel proteins that can 

be expressed in bacculovirus infected insect cells exhibit activity[11], the bulk of the protein 

is soluble only in strong denaturing detergents[12, 13]. This poor solubility, in mild 

crystallization-compatible detergents, is shared by the protein expressed in Saccharomyces 

cerevisiae[14] in which the protein is retained in the endoplasmic reticulum[15]. In 

mammalian cell systems, CFTR expression and functional characterization in membranes 

has been performed using CHO[16, 17], BHK[18, 19], and HEK-293 cells[20]. CFTR could 

be readily solubilized from membranes of these cells by mild detergents including dodecyl-

maltoside, neo-pentylmaltosides, and others enabling purification of small amounts suitable 

for low resolution structural analysis by electron microscopy[19–21].

The goal of the current work was to generate milligram amounts of homogeneous human 

CFTR protein that is active, thermally stable and in a restricted conformational state. This 

objective was achieved employing a strategy in which the thermal stability of modified 

constructs was first evaluated functionally in membranes from rapidly generated small 

cultures prior to scaling-up for expression in large mammalian cell suspension cultures for 

purification and reconstitution.

Materials and Methods

Mammalian cell expression of CFTR

Wild-type and mutated CFTR cDNA constructs were generated in the pNUT selectable 

expression plasmid and transfected into BHK-21 cells as previously described[22]. 

Individual colonies surviving methotrexate selection were expanded on the surfaces of 

standard cell culture flasks in DMEM/F12 medium supplemented with 5% FBS and 

containing 500 μM methotrexate. These adherent cells were adapted to growth in suspension 

by first gradually weaning them from this medium to SFM II 293s suspension medium 

(Invitrogen) supplemented with 2% FBS, 2x glutamine, 250μM methotrexate. Once cells 

were adapted to the suspension medium, they were switched from normal tissue culture 

treated plastic dishes to non-tissue culture treated ones and passaged until the majority of 

cells in the culture grew as free floating clumps rather than loosely attached to the substrate. 

Once cells were actively growing in suspension, they were switched to standard spinner 

cultures for expansion. Cells were further expanded until cell numbers reached ~2x106/ml. 
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Cells were maintained in humidified incubators at 37°C with 5% CO2 during the adaptation 

process. When the spinner cell culture volume reached 500 ml, the cultures were expanded 

to 700 ml and transferred to 2L square PETG plastic medium bottles (Fisher). At this point 

the cultures were transferred to a New Brunswick Scientific model I2500 floor shaker 

incubator and maintained at 37°C without CO2 at a rotation rate of 120 rpm. Cultures were 

maintained at a minimum cell density of 2x106 cells/ml with the caps slightly loosened to 

allow for air exchange. Cultures could be maintained at cell densities as high as 5x106 cells/ 

ml, however culture health was optimal at 3 –4x106 cells/ml. The levels of CFTR expression 

at each stage were monitored by Western blotting of whole cell lysates and small-scale 

membrane preparations using methods described earlier[23]. The relative amounts of mature 

(diffuse major, more slowly migrating band containing complex N-linked oligosaccharide 

chains and immature (sharp minor, more rapidly migrating band with core N-linked chains) 

CFTR forms were measured with an Odyssey Imaging system (Li-Cor Bioscience, Lincoln, 

Nebraska). The immature endoplasmic reticulum located biosynthetic intermediate is 

removed during the differential detergent solubilization (see below) and is not purified.

Isolation of microsomal membranes

Typically lots of 8–10 bottles, each containing700 ml cultures at ~3.5 – 4x106 cells per ml 

were harvested by centrifugation at 2500 rpm using a GS3 rotor and washed with cold PBS 

yielding approximately 80 ml of packed cells. After the PBS wash, cells were resuspended 

with 10 times the cell pellet volume in ice cold lysis buffer (50 mMTris-HCl pH 7.4, 1 mM 

EDTA) containing 3X concentrated protease inhibitors: (Leupeptin (RPI) 3.0 μg/ml, 

Aprotinin (RPI) 6.0 μg/ml, Pefabloc (RPI) 150 μg/ml, Benzamidine (Fisher) 36 μg/ml, E64 

(AG Scientific) 10.5 μg/ml. The resuspended cells were incubated on ice for 10 minutes then 

disrupted with 5 strokes of a 100 ml Dounce homogenizer. Sucrose buffer (25 ml of 1.5 M 

sucrose, 50 mM Tris pH 7.2) was added to the homogenate and mixed with 2 more strokes. 

Unbroken cells and cell debris were removed by centrifugation at 5000 rpm in a GS3 rotor. 

The crude membranes were collected by centrifugation of the GS3 supernatant in a SW28 

rotor at 26,500 rpm for 30 minutes at 4°C. The membrane pellets were collected and 

resuspended in buffer A (see below) containing 2X protease inhibitors). Membranes were 

stored at −80°C prior to solubilization. Protein concentrations were measured using 

bicinchoninic acid assay (BCA reagent from Pierce Thermo Scientific).

CFTR purification

Buffer constituents: Buffer A; 40 mMTris-HCl, pH 7.4; 0.5 M NaCl; 0.1M arginine; 20% 

glycerol. Buffer B; 50 mM Na-phosphate, pH 7.6; 0.5 M NaCl; 0.1 M arginine; 15% 

glycerol. Buffer C; 40 mMTris-HCl, pH 7.4; 0.15 M NaCl; 10% glycerol. All buffers 

contained a protease inhibitor cocktail (benzamidine at 120 μg/ml, E-64 [trans-

epoxysuccinyl-L-leucylamido-(4-guanido)butane] at 3.5 μg/ml, aprotinin at 2 μg/ml, 

leupeptin at 1 μg/ml and Pefabloc at 50 μg/ml) and 5mM Mg-ATP.

Membranes containing CFTR were resuspended in buffer A containing 0.01% DMNG 

(Decyl Maltose Neopentyl Glycol; Anatrace), incubated for 15 min at 4°C and centrifuged at 

26,000 rpm in an SW-28 Rotor for 35 min. The supernatant was discarded and the pellet was 

resuspended and solubilized in buffer B containing 1% DMNG. After a 30 minute 
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incubation at 4°C the suspension was centrifuged at 26,000 rpm for 35 minutes. The 

detergent extract was mixed with Co-Talon resin (Clontech) and gently rotated for 3h at 

4°C. The resin was washed with buffer B containing 25 mM imidazole and 0.2% DMNG 

followed by 50 mM imidazole with 0.1% DMNG. CFTR was eluted with 180mM imidazole 

in buffer C containing 0.01% DMNG and dialyzed against the same buffer lacking 

imidazole overnight at4°C. The CFTR eluates were concentrated up to the desired protein 

concentration using centrifugal filter units with a 150kDa cut off (Pierce Concentrators; 

Thermo Scientific).

Liposome preparation and CFTR reconstitution

Lipid stock solutions in chloroform were mixed in the desired proportions (DOPE, DOPC, 

DOPS, Cholesterol; 48:22:12:18) and dried in a rotary evaporator. All manipulations with 

the lipids were conducted under nitrogen gas. The dried lipids were suspended in buffer C to 

a final concentration of 20 mg/ml. The lipid suspensions were sonicated with 3 cycles of 5 

min each in a water bath sonicator (Avanti) to generate small unilamellar (SUVs) vesicles. 

The SUV suspension was flash frozen in liquid nitrogen followed by slow thawing at room 

temperature to fuse the SUVs into large multilamellar vesicles (LMVs) that were kept frozen 

at −80°C until use.

In preparation for incorporation of CFTR, LMVs (10mg/ml) were extruded through 1000 

nm and then 400nm polycarbonate membranes (15 times each) to form Large Uni Lamellar 

Vesicles (LULVs). These were diluted to 5 mg/ml of lipids in buffer C containing 10 mM 

Mg-ATP and 20% glycerol to yield final concentrations of MgATP and glycerol of 5 mM 

and 10%, respectively in the liposome suspension. Liposome destabilization at room 

temperature by incremental addition of Triton X-100 at 2 min intervals was monitored by 

measuring the optical density of the suspension at 540 nm. After addition of DTT to a final 

concentration of 5 mM and protein kinase A to 25 U/ml and incubation for 1 h at 4°C, the 

purified CFTR protein was mixed with the destabilized liposomes at a 1:50 (w/w) protein to 

lipid ratio and incubated for 30 min at 4°C with gentle agitation. To remove the detergent 

and form the proteoliposomes, 3 additions of Bio-Beads SM2 were made at 4 h intervals. 

Proteoliposomes were separated from the beads by centrifugation at 2000rpm and kept at 

4°C until functional analysis.

Single channel analysis

Planar lipid bilayers were formed with a 3:1 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (Avanti Polar 

Lipids) as detailed previously[24]. CFTR ion channels were transferred into the preformed 

lipid bilayer by spontaneous fusion of membrane vesicles containing naturally folded CFTR 

constructs or proteoliposomes containing purified and reconstituted protein. To maintain 

uniform orientation and functional activity of CFTR channels transferred into the bilayer, 5 

mM MgATP, 50 nM PKA and membrane vesicles or proteoliposomes were added in the cis 

compartment only. All measurements were done in symmetrical salt solution (300mM Tris–

HCl, pH 7.2, 3mM MgCl2 and 1mM EGTA) under voltage-clamp conditions using an 

Axopatch 200B amplifier. The membrane voltage potential of −75 mV is the difference 
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between cis and trans (ground) compartments. Data analysis was performed as described 

earlier[25].

Heating and temperature control were established by a temperature control system TC2BIP 

(Cell Micro Controls, Norfolk, VA, USA) with heating element covering the “trans” 

compartment outer side surfaces and bottom surface. Because of the bulky “trans” 

compartment it takes approximately 2–3 minutes to achieve a uniform temperature 

distribution across all compartments after the first indication of the expected temperature by 

the local temperature sensor in the chamber. Over the temperature range from +20°C to 

+40°C the wild type CFTR single channel has a well-resolved open state with linear 

dependence between open state conductance at −75 mV and the holding temperature as 

found previously[26]. We use this linear relationship as an intrinsic thermometer to define 

the real temperature in the vicinity of the channel during the non-stationary temperature 

RAMP experiments where temperature distribution across the experimental chamber is not 

uniform. Therefore in all experiments under non-stationary temperature conditions the actual 

temperature was indicated by the single channel conductance rather than by the local 

thermometer reading. We consider the thermal stability of wild type CFTR function in terms 

of its ability to support single channel function with stable open state conductance for the 

next 5 minutes after initial 5 minute incubation at the temperature of interest. The 

inactivation temperature (Ti) was defined as the temperature 1°C above the highest 

temperature with a stable open state during the total 10 min period.

Results

Thermal sensitivity of wild-type CFTR channels

The low thermal stability of the mutant form of CFTR (ΔF508) that causes most cystic 

fibrosis has been extensively studied[27–33] because of the obvious clinical relevance. 

Extensive biophysical studies of the isolated domain (NBD1) in which F508 normally 

resides showed that its thermal melting temperature (Tm) was reduced ~6°C compared to 

that of the wild-type domain[30]. Functionally the full-length ΔF508 protein becomes 

inactive at temperatures in the 30°C range and above[28, 29]. While the wild-type protein is 

of course active at physiological temperature and to at least 40°C[26], higher temperatures 

have not been investigated. To pursue the hypothesis that limited thermal stability may be a 

major factor contributing to difficulties in generating well-behaved protein for structural 

studies we assessed the influence of higher temperatures on channel function. After 

prolonged uniform gating at 40°C (Fig.1a, upper tracing) temperature was ramped up to 

45°C at a rate of 1°C /min (middle tracing). Gating appeared to become somewhat less 

uniform soon above 40°C followed by a progressive increase in variability and the 

appearance of sub-conductance states. After approximately 1 min at 45°C there was an 

abrupt loss of near-full conductance gating. This real time transition is shown in expanded 

scale in the lower tracing. Not surprisingly, neither the precise transition temperature nor the 

time at that temperature before the transition occurred is identical in repeated single channel 

tracings. However, there was a high degree of overall reproducibility and the inactivation 

temperature (Ti) varied from 43°C to 45°C depending on the rate of temperature increase 

during the ramps. Having established the critical temperature range, we followed single 
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channel activity at constant temperatures around this range (Fig. 1b). Each tracing represents 

gating over a period of five minutes after a previous five minute equilibration of the 

chamber to each of the temperatures indicated. Stable open states were maintained over the 

entire period at temperatures up to 43°C. At 44°C normal gating continued for only 

approximately one minute after the pre-equilibration and did not appear at all at 45°C. Thus, 

defined as the temperature 1°C above the highest temperature with a stable open state, we 

conclude that the Ti of wild-type CFTR under these conditions is 44°C. This provides a 

reference point for comparison of the thermal sensitivity of stabilized CFTR variants.

Expression and function of stabilized CFTR constructs

Guided by modifications that we previously found to greatly improve the stability, 

maturation and function of ΔF508 CFTR[24, 32, 33], we made the same mutations in the 

wild-type and assessed their influence on expression and channel function in BHK cells. As 

seen in Fig. 2a the “2PT” variant with NBD1 mutations S492P, A534P and I539T and the 

ΔRI variant, from which the Regulatory Insertion (residues 404 – 435) was deleted both 

increased expression levels substantially compared to the wild type. In Fig. 2b it can be seen 

that RI removal had little influence on open probability (second tracing), consistent with an 

earlier study[33]. Channel open probability was substantially reduced in 2PT due to the 

introduction of the two prolines into the mobile Q loop (S492P) and SDR (A534P) regions 

of NBD1 (third tracing). Substitution of residue H1402 in NBD2 alone, predicted to 

participate in and be the “linch-pin” in the NBD2 ATP binding site[34], had little effect on 

expression levels but increased channel Po to a very high level (fourth tracing). When the 

two types of NBD1 modification were combined, expression and maturation were greatly 

increased as observed in the Western blots (Fig. 2a) while channel open probability (fifth 

tracing) was similar to that of the 2PT variant. When the H1402S mutations was added to 

the combined NBD1 modifications, the amount of CFTR expressed by the cells (and present 

in isolated membranes) was increased 3 to 5 fold compared to the wild-type and the mature/

immature band intensity ratio as an index of maturation also was elevated (not shown). The 

channel Po was increased to nearly 1 indicating that the channel was virtually locked open at 

37°C.

The thermal stability of the ΔRI/2PT/H1402S channel in isolated microsomal membranes 

was evaluated and it was found to retain full activity at 45°C for at least 1h (Fig 3, top 

tracing) and remain active during a temperature ramp from 45°C to 50°C albeit with open 

state subconductances most evident in the extended lower tracing at 50°C. Thus, the 

increased amounts of protein expressed and greater thermal stability encouraged us to 

proceed with purification and characterization of this variant.

Scale-up and purification

We had previously purified small quantities of CFTR expressed in BHK cells grown on the 

surfaces of tissue culture plates[19]. For production of larger amounts necessary for 

crystallization trials and other biophysical studies, the cells were adapted to high density 

suspension culture on a reasonably large-scale, enabling the generation of lots of ~ 5 x 1010 

cells as starting material for purification. This number of cells yielded ~ 1g of microsomal 

membranes from which ~ 2 mg of wild-type and ~ 10 mg of the ΔRI/2PT/H1402S variant 
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could be purified. The purity of these preparations as assessed by SDS-PAGE and their 

homogeneity on gel filtration in DMNG is shown in Fig. 4. The purified ΔRI/2PT/H1402S 

protein was highly homogeneous as judged by heavily loaded SDS-PAGE gels (Fig. 4a) and 

appeared monodisperse in the low concentration of the DMNG (at 3 x CMC) detergent in 

which it was purified (Fig. 4b). The molecular mass of the major peak was estimated at 320 

kDa from multi-angle light scattering analysis (MALS), substantially less than that predicted 

for a dimer but greater than that of a monomer. This may be due to the detergent micelles 

binding to monomeric CFTR. The gel filtration profile of the purified ΔRI/2PT/H1402S 

protein was unaltered after storage at 4°C for at least two weeks and little changed when 

kept at 16°C for this period of time (data not shown).

Reconstitution and thermal stability of purified CFTR

Efficient reconstitution into liposomes was achieved by fairly standard procedures detailed 

in Methods (Fig. 4c). In the case of the wild-type protein, when the proteoliposomes were 

fused with planar bilayers, only very rare channel openings were detected even at the low 

temperature of 25°C in contrast to the robust gating observed when microsomal vesicles of 

the cells from which the protein was purified were fused with the bilayer (Fig. 5, left 

panels). At 30°C with the reconstituted wild-type protein, no full conductance openings, but 

only the so-called fast flickering mode (ffm), characteristic of disrupted CFTR[24, 33], were 

detected, whereas with the microsomal vesicles, the Po of wild-type CFTR channels was 

approximately doubled when the temperature was increased from 25°C to 30°C as expected 

(Fig. 5, right panels).

In marked contrast to the minimal CFTR channel activity observed with the purified wild-

type protein, the purified ΔRI/2PT/H1402S protein was fully active at temperatures of 25, 30 

and 37°C with very high open probability in all cases (Fig. 6, left 3 tracings). Indeed this 

behavior persisted for at least 1 hour even at 45°C (Fig. 6, top right tracing). When 

temperature was continuously increased further, robust gating continued until 50°C, 

although with sub-conductance states appearing over this range (Fig. 6, middle right 

tracing). Nevertheless, stable function in the “locked-open” mode continued for at least ½ 

hour at 50°C (Fig. 6, lower right tracing). Thus, this highly expressed construct appears to 

fulfill several criteria required for structural analyses including greatly increased life-time 

and thermal stability as well as a preferred conformational state in which the channel is 

locked open. The virtually identical single channel properties of the protein before and after 

purification and reconstitution are emphasized in Fig. 7. Fusion of proteoliposomes 

containing the homogeneous protein with the planar bilayer shown in panel (a) resulted in 

the very rapid appearance of multiple channels (panel b), reflecting the high frequency of 

active molecules in the population. Individual members of this purified and reconstituted 

population had the same conductance and open probability as those in the membranes of the 

cells from which they were obtained (panel c).

Discussion

Limited thermal stability of proteins after removal from their cellular environments often 

prevents them from remaining soluble and mono-disperse for extended periods so that their 
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inherent properties including three-dimensional structures can be determined. Indeed, low 

structural stability may make even obtaining these proteins in pure form very difficult 

because the quality control systems of the cells in which they are expressed recognize them 

as incompletely or incorrectly folded and degrade them[35]. The proportion of molecules 

avoiding this fate still may not have achieved a complete fully-folded state and have a strong 

tendency to associate with self (aggregation) and other proteins during purification steps. 

These latter problems are further exacerbated in the case of membrane proteins where 

hydrophobic segments become exposed when extracted from the bilayer with detergents. 

The presence of inherently disordered regions in proteins also may diminish their overall 

thermal stability and proteins that must be highly dynamic in the performance of their 

physiological function require a fine balance between stability and mobility.

The early recognition that wild-type CFTR folds and assembles very inefficiently in cells, 

with only about 25 –30 % of the nascent polypeptide maturing[36], may reflect the fact that 

it has difficulty achieving this balance. Attention was further focused on this issue when it 

was found that the mutation causing most cystic fibrosis, ΔF508, made the protein much 

more thermally unstable so that virtually none of the mutant polypeptide matured at 

mammalian physiological temperature[27]. Deletion of F508 from isolated NBD1 reduces 

its Tm by ~ 6°C[30] and this destabilization is reflected in the function of the full-length 

mutant channel[30, 32].

The relationship of the functional Ti values we have determined to the gross conformational 

perturbation of the protein as may be reflected in a cooperative melting transition measured 

by calorimetry or spectroscopy is not yet known. These values may or may not correspond. 

The Ti might reflect a more subtle predenaturational change in a structural element that is 

rate limiting in channel gating, possibly in the pore itself or in a key regulatory site. As 

discussed extensively by Privalov and colleagues[37, 38] multiple such local unfolding 

events are likely to occur in large multimeric proteins, possibly gradually, in overlapping 

stages. Although different CFTR channel sub-conductance states appeared when 

temperature was continuously increased, the complete loss of activity occurred rather 

abruptly. Interestingly, the Ti of the wild type channel activity (~44°C) is in the same range 

as the Tm of isolated NBD1[30]. Although this could be entirely coincidental, the fact that 

our variants with increased Ti have greater stability and longer lifetime in cells and after 

purification is consistent with a more global stabilization of the protein. It will now be 

important to determine Tm values of the purified full-length protein by biophysical methods 

both before and after reconstitution.

Many second site mutations in NBD1 of ΔF508 CFTR and at least one small molecule 

promote its conformational maturation[32]. We have found that these effects are not specific 

to the ΔF508 mutant, however, but also improve the maturation of the wild-type protein. 

When this set of NBD1 stabilizing mutations were combined with the H1402S substitution 

in NBD2 the level of mature protein expression in BHK cells increased several fold, 

enabling purification of milligram quantities of homogeneous protein that remained 

monodisperse at concentrations > 3 mg/ml in a low concentration of DMNG (3X CMC).
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Importantly, this pure protein could be quantitatively incorporated into liposomes in a fully 

functional state in which it remained for periods longer than two weeks. Thus, the 

preparation appears to be quantitatively and qualitatively suitable for crystallization trials in 

detergent or lipid and the structural information that may be obtained will reflect that of an 

active folded state. With this construct as a platform it may be possible to introduce further 

modifications that drive the channel to different functional states and then determine the 

structural differences between them.
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Abbreviations used

CFTR cystic fibrosis transmembrane conductance regulator

ABC ATP-binding cassette

NBD1 N-terminal nucleotide-binding domain

CF cystic fibrosis

CHO Chinese hamster ovary

HEK human embryonic kidney

BHK baby hamster kidney

Tm melting temperature

Ti inactivation temperature

RI Regulatory Insertion (residues 404 – 435)

2PT variant with NBD1 mutations S492P, A534P and I539T

Q loop residues contacting the gamma-phosphate of ATP

SDR structurally divers region

DMNG Decyl Maltose Neopentyl Glycol

MALS multi-angle light scattering analysis

DOPE 1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine

DOPC 1,2-Dioleoyl-sn-glycero-3-phosphocholine

DOPS 1,2-dioleoyl-sn-glycero-3-phospho-L-serine

SUV small unilamellar vesicles

LMV large multilamellar vesicles

LULV large unilamellar vesicles

PKA protein kinase A

RIPA radioimmunoprecipitation assay
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ER endoplasmic reticulum

RAMP gradual increase with constant slope
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Highlights

• Full understanding of the unique ABC ion channel, CFTR awaits high resolution 

structure determination

• Because of its marginal thermodynamic stability, expression and purification in 

a mono-disperse active form is extremely challenging.

• Here we have employed functional assays of channel activity to assess the 

effectiveness of different modifications on thermal stability and then expressed 

and purified the most stable constructs.

• Expression of these constructs in large-scale mammalian cell suspension 

cultures provided multi-milligram amounts of a stable locked open channel 

conformation that was fully active with unaltered channel parameters after 

reconstitution into proteoliposomes.

• The availability of these and related stable preparations enable the initiation of 

studies of 3D structure and the binding of modulating small molecules.
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Figure 1. 
Temperature sensitivity of wild-type CFTR channels transferred from microsomal 

membrane vesicles to planar lipid bilayers (see Methods). (a) The upper tracing is a 2 min 

recording at 40°C. This uniform full conductance gating persists for at least 1 h. The middle 

tracing shows the response to a temperature ramp (1°C/min) from 40°C to 45°C and the 

lower tracing, extension of the recording with the temperature held at 45°C. Time scale bars 

are below each tracing. The current scale bar opposite the lower tracing refers to all tracings. 

Closed channel state is indicated by arrow-heads. (b) Channel gating during 5 min at fixed 

temperatures between 40°C and 45°C after a previous 5 min pre-equilibration at each 

temperature.
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Figure 2. 
Influence of different stabilizing mutations on CFTR expression and channel activity. (a) 

Western blot illustrating relative amounts of CFTR in lysates of BHK cells expressing the 

variants indicated above each lane. 25 μg of total cell protein was loaded and blot probed 

with mAb 596. (b) Single channel recordings of 2 min duration when microsomal membrane 

vesicles from the same cultures were fused with planar bilayers. Unitary conductance and 

open state probability calculated from the all-points histograms to the left are indicated 

above each tracing.
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Figure 3. 
Thermal sensitivity of NBD1 and NDB2 modified variant, ΔRI/2PT/H1402S. The 

experimental protocol was similar to that with the wild-type channel in Fig 1, except that the 

upper tracing was at 45°C, the temperature ramp (1°C/min) in the middle tracing from 45°C 

to 50°C and the lower tracing at 50°C. Note that the channel inhabits a very high Po state 

even at these elevated temperatures. Although the variant visits transient subconductance 

states at the higher temperatures, the channel remains active in a predominantly open state at 

50°C that is near the upper limit of bilayer stability.
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Figure 4. 
Purified ΔRI/2PT/H1402S CFTR protein before and after reconstitution. (a) Coomassie blue 

stained SDS-PAGE (7.5% acrylamide) of molecular weight standards 250, 150, 100, 75, 50 

kDa in lane 1 and 2μg of purified protein in lane 2. (b) Gel filtration chromatogram (Shodex 

KW-804) showing elution profile monitored by tryptophan fluorescence (excitation 290 nm, 

emission 340 nm). Void volume is indicated by the arrow. (c) SDS-PAGE showing the 

purified protein in detergent (DMNG) (lane 1) and following reconstitution into liposomes 

before (lane 2) and after (lane 3) detergent removal with Biobeads.
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Figure 5. 
Wild type CFTR channels activity before and after purification and reconstitution. (a) Single 

channel recording at 25°C (upper) and 30°C (lower) on fusion with bilayer of microsomal 

vesicles from BHK cells expressing wild-type CFTR. (b) Recordings at same temperatures 

on fusion of purified and reconstituted wild type CFTR with bilayer. The transport capacity 

of the structural unit <γ> for the mutants with no well-resolved peaks on the all points 

histogram was defined as mean current divided by applied potential difference that is exact 

analog of γPo used for the channels with well defined open state [24].
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Figure 6. 
Thermal stability of purified and reconstituted ΔRI/2PT/H1402S CFTR. The first 3 tracings 

in the left column and the first in the right column and their accompanying all-points 

histograms indicate that the stabilized channel is essentially locked-open at temperatures 

ranging from 25°C to 45°C. This behavior persists as the temperature is ramped from 45°C 

to 50°C (compressed middle right tracing) and when held at 50°C (lower right tracing).
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Figure 7. 
Stabilized ΔRI/2PT/H1402S CFTR channels are identical before and after purification. (a) 

Heavily over-loaded Coomassie blue stained SDS-PAGE of protein reconstituted into 

proteoliposomes. (b) Multiple channels appeared within seconds of proteoliposome addition 

to the bilayer chamber. (c) Single channel tracings and parameters on fusion with bilayer of 

microsomal vesicles containing this construct (upper tracing) and the reconstituted 

proteoliposomes (lower tracing). The total amount of proteoliposomes used for single 

channel recordings is 10 times less than that used for multiple channel recording shown in 

(b).

Aleksandrov et al. Page 20

Protein Expr Purif. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


