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We have developed a protocol for identifying proteins
that are predisposed to bind linear epitopes on target pro-
teins of interest. The protocol searches through the
protein database for proteins (scaffolds) that are bound
to peptides with sequences similar to accessible, linear
epitopes on the target protein. The sequence match is
considered more significant if residues calculated to be
important in the scaffold–peptide interaction are present
in the target epitope. The crystal structure of the
scaffold–peptide complex is then used as a template for
creating a model of the scaffold bound to the target
epitope. This model can then be used in conjunction with
sequence optimization algorithms or directed evolution
methods to search for scaffold mutations that further in-
crease affinity for the target protein. To test the applic-
ability of this approach we targeted three disease-causing
proteins: a tuberculosis virulence factor (TVF), the apical
membrane antigen (AMA) from malaria, and hemagglu-
tinin from influenza. In each case the best scoring scaffold
was tested, and binders with Kds equal to 37 mM and
50 nM for TVF and AMA, respectively, were identified.
A web server (http://rosettadesign.med.unc.edu/scaffold/)
has been created for performing the scaffold search
process with user-defined target sequences.
Keywords: epitope/protein engineering/protein–protein
interaction/protein scaffold/structural bioinformatics

Introduction

Protein–protein interactions are critical to most biological
processes, and a diversity of diseases that are caused by
mutations at binding interfaces, such as Von Hippel–Lindau
syndrome and hypercholesterolemia (Pawson and Nash,
2003; Steward et al., 2003). Reengineered protein–protein
interactions can be used to rewire signaling networks, and
novel protein binders can activate or inhibit medically im-
portant pathways.

In the field of protein engineering, the concept of protein
scaffolds has become prevalent, where different protein folds
are engineered to bind to a variety of ligands. Commonly

used scaffolds are immunoglobulin folds and repeat proteins
(Sidhu and Koide, 2007; Koide, 2009; Lee et al., 2012). In
most cases, the scaffolds have been redesigned to bind target
proteins using techniques in combinatorial biology such as
phage display and yeast display. Recently, there have also
been promising results using computational sequence opti-
mization protocols to create novel interactions (Jha et al.,
2010; Fleishman et al., 2011; Karanicolas et al., 2011;
Stranges et al., 2011; Der et al., 2012). Both strategies have
limitations. With screening techniques it is not always
straightforward to dictate the location and orientation of
binding, which can have important functional consequences.
With computational design it is possible to pre-define
binding geometry; however, these methods are not yet robust
and often fail to produce tight binders or incorrectly predict
the binding orientation (Stranges and Kuhlman, 2013).

One critical step in computational protein interface design
is identifying a protein scaffold that can be docked on to the
target patch of the protein of interest in such a way that the
newly created interface can be stabilized with amino acid
mutations on the protein scaffold surface. One solution to
this problem is to computationally dock many alternative
proteins on to the target patch and then perform sequence
optimization simulations at the interface to identify which
proteins and docked configurations are most designable, i.e.
give rise to interfaces that are predicted to have more favor-
able binding energies. For instance, in their design of a novel
interaction with the hemagglutinin (HA) protein from influ-
enza, Fleishman et al. computationally screened through 865
alternative protein scaffolds in search of designable inter-
faces (Fleishman et al., 2011). This process is computational-
ly expensive and relies primarily on an energy function to
identify the most favorable scaffolds. Here we develop a
method for identifying protein scaffolds for target interac-
tions that relies less on energy-based docking, but rather
makes use of interactions already observed in the protein
database (PDB). In particular, we focus on targeting linear
epitopes.

To summarize the protocol (Fig. 1A), first, regions of the
target protein are identified that are likely to be solvent
exposed and disordered. These will be the target epitopes.
They can be identified using nuclear magnetic resonance
(NMR) data or computational predictions of disorder, and
are likely to be found in long loops, termini or connections
between folded domains. Second, the amino acid sequences
of the target epitopes are aligned and scored against the
sequences of peptides that have been co-crystallized with
proteins in the PDB. Alternative alignments are scored using
a weighting scheme that emphasizes conservation of residues
predicted to be important to the crystallized peptide–protein
interaction. Favorable alignments indicate that the protein
from the crystal structure has potential to be a good scaffold
for engineering binders against the target epitope. In support

# The Author 2013. Published by Oxford University Press. All rights reserved.

For Permissions, please e-mail: journals.permissions@oup.com

283

Protein Engineering, Design & Selection vol. 26 no. 4 pp. 283–289, 2013
Published online January 21, 2013 doi:10.1093/protein/gzs108

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/345224438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://rosettadesign.med.unc.edu/scaffold/
http://rosettadesign.med.unc.edu/scaffold/
http://rosettadesign.med.unc.edu/scaffold/
http://rosettadesign.med.unc.edu/scaffold/
http://rosettadesign.med.unc.edu/scaffold/
http://rosettadesign.med.unc.edu/scaffold/


of our strategy it has been shown that peptides derived
from linear regions of proteins can be used as inhibitors
of protein–protein interactions (Brunner et al., 1973;
Hashemzadeh et al., 2008) and a recent study shows that
many naturally occurring protein–protein interactions are
dominated by one linear epitope from one of the binding
partners (London et al., 2010). Furthermore, antibodies often
bind tightly to short linear epitopes. To identify which linear
epitope an antibody recognizes, peptide libraries derived
from the target protein are screened for binding to the anti-
body (Craig et al., 1998). Our design strategy can be thought
of as the reverse of this procedure. We specify the accessible
linear region of the protein of interest that we want to target,
then use sequence alignment to select a protein scaffold that
has the potential to bind to our target epitope sequence. Our
approach is similar in concept to protein threading methods
that are used to evaluate whether a protein sequence is com-
patible with a pre-existing protein structure (Bowie et al.,
1991). However, our approach only uses the template struc-
ture to weight sequence conservation at the various residue
positions in the alignment. Many protein-threading methods
use additional structure-based scores including the environ-
mental preference of amino acids and the preference of par-
ticular amino acid pairs to be near in space (David et al.,
2000; Xu et al., 2000; Dunbrack, 2006).

Materials and methods

Scaffold Selection Protocol
A database composed of PDB files that contain structures of
peptides bound to proteins was built by scanning the PDB
database for PDB files with the following two criteria: files
with multiple chains of proteins and files which has at least
one chain with less than 30 amino acids. The final database
used in this study was composed of 3137 peptide-bound
protein structures.

To identify potential scaffolds from the database of
peptide-bound protein structures, sequences from flexible
regions within the target protein were aligned against the
peptide sequences from the peptide-protein database. All
possible alignments were scored using a sliding window
with a user-specified sequence length, the default being 6.
Alignments were scored based on a pairwise sequence com-
parison scoring scheme where the score for each residue pair
was weighted based on the degree of burial for the residue at
the interface in the protein–peptide structure. Exact matches
for buried residues on the peptide were favored over those that
were exposed. The scoring function was formulated as
follows: the largest benefit was for buried residues with an
exact match (4 points), the next largest benefit was for buried
residues with amino acids of similar chemical type

Fig. 1. (A) Diagram of the Scaffold Selection Protocol. (B) Result of scaffold selection protocol for target protein, TVF CFP-10 C-terminus (top), malaria
AMA1 domain III (middle) and influenza HA (bottom). The top sequence is the target sequence of interest and the bottom sequence is the high scoring
peptide sequence in the PDB file specified. The peptide binding protein used as the scaffold is italicized, the peptide is in bold font and the PDB ID is in
parenthesis. The high scoring sequence alignment is boxed and the residues that are important for binding from the literature is in bold font italicized. Residue
that is incompatible in the third example is underlined. (C) Structural representation of Calpain (yellow transparent)—Calpastatin peptide (cyan) and CFP-10
sequence threaded onto the backbone of Calpastatin peptide (blue). (D) Structural representation of Karyopherin a (yellow transparent)—c-myc NLS peptide
(cyan) and AMA1 domain III sequence modeled using ROSETTA software (blue). Images made using PYMOL (Schrodinger, 2010).
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(hydrophobic, same charge, aromatic, etc.) or for exposed
residues with an exact match (3 points) and the smallest
benefit was for exposed residues with amino acids of similar
chemical type (2 points). Penalties were assigned to residue
pairs that did not match. The largest penalty was for mis-
matched buried residues (4 points), while a weaker penalty
was assigned to mismatched exposed residues (3 points). The
extent of residue burial was assessed by calculating the
number of residues within 10 Å of the residue of interest.
Residues from both the peptide and protein binding partner
were included in this count. A residue was considered buried
if it had over 18 neighbors.

Protein expression
The Calpain clone in pet-3d plasmid was provided by
Dr Masatoshi Maki of Kyoto University. Protein purification
was slightly modified from the original method (Takano et al.,
1995). Proteins were expressed in BL21 (DE3) pLysS cells.
Cells were resuspended in lysis buffer (20 mM Tris-HCl pH
8.0, 50 mM NaCl, 5 mM b-mercaptoethanol) then lysed by
sonication. The supernatant was filtered with a 0.2 mm filter
and loaded onto a pre-packed anion exchange column (HiTrap
Q HP, GE Healthcare). The protein was further purified by gel
filtration chromatography (Superdex 200, GE Healthcare).

The Karyopherin a clone in pPROEX-Htb plasmid was
provided by Dr Elena Conti of the Max Planck Institute for
Biochemistry. Protein purification was slightly modified from
the original method (Conti and Kuriyan, 2000). Cells were
lysed by sonication and the supernatant was loaded onto a
pre-packed Ni-NTA column (HisTrap HP, GE Healthcare).
Peak fractions were dialyzed in the anion exchange equilibra-
tion buffer (20 mM Tris-HCl pH 7.6, 100 mM NaCl, 10%
glycerol) overnight, filtered with a 0.2 mm filter and loaded
onto a pre-packed anion exchange column (HiTrap Q HP,
GE Healthcare) and eluted with a linear NaCl gradient from
100 to 600 mM. The protein was further purified by gel fil-
tration chromatography (Superdex 200, GE Healthcare).

The six histidine-tagged AMA1 domain III clone in
pQE-9 plasmid was provided by Dr Robin Anders of La
Trobe University. Proteins were expressed in BL21 (DE3)
pLysS cells and induction was carried out at 308C for 5 h.
Cells were resuspended in lysis buffer (20 mM Tris-HCl pH
7.0, 500 mM NaCl) and lysed by sonication. The cell lysate
was mixed with Talon resin (ClonTech) and purified using
the batch/gravity-flow purification protocol. The resin was
washed twice with lysis buffer then once with wash buffer
(lysis buffer with 8 mM imidazole), and eluted with elution
buffer (lysis buffer with 500 mM imidazole). The eluate was
dialyzed overnight in 20 mM Tris pH 8 to get rid of imid-
azole and salt. Precipitants, which accumulated during dialy-
sis, were filtered away and the eluate was further purified by
anion exchange column (HiTrap Q HP, GE Healthcare) using
0 to 500 mM NaCl gradient. Finally, peak fractions were ran
on a gel filtration column (Superdex 75, GE Healthcare) for
further purification.

Fluorescence polarization and isothermal titration
calorimetric
Binding affinities between peptides and proteins were
measured using fluorescence polarization (FP). All peptides
were synthesized with fluorescein isothiocyanate (FITC) at
the N-terminus and a b-alanine as the linker at the Tufts

University peptide synthesis core facility. Lyophilized pep-
tides were solubilized in their respective protein’s elution
buffers to 500 nM and purified proteins were titrated into it.
Protein concentration was quantified by measuring the UV ab-
sorbance at 280 nm and using the theoretical molar extinction
coefficient. Peptide concentration was quantified by measur-
ing the UV absorbance at 494 nm and using molar extinction
coefficient of 68 000 M21 cm21. FP assays were carried out
on a Jobin Yvon Horiba Spec FluoroLog-3 instrument (Jobin
Yvon Inc.) performed in L-format with the excitation wave-
length set at 494 nm for Karyopherin and 492 for Calpain
experiments and emission wavelength set at 518 and 516 nm,
respectively. Titrations were performed using a 3 mm �
3 mm quartz cuvette with a starting volume of 200 ml. Each
experiment was done one to four times and each polarization
readings consisted of three averaged measurements. The data
acquired were analyzed by fitting it to a single-site binding
equation using non-linear regression with SigmaPlot software.

The ITC measurements for Calpain and Karyopherin
binding to their respective partners were carried out using a
VP-ITC and Auto-ITC calorimeters, respectively (MicroCal
Inc.). The purified proteins in their respective elution buffers
were placed in the sample cell. Peptides or partner proteins
were placed in the injection syringe at a concentration of at
least 10 times or more than that of the protein in the sample
cell. The injection volume was 5 ml for each titration. The
data were processed by fitting the calorimetric data using a
one-site binding model in the ITC sub-routine in Microcal
Origin software.

Results and discussion

Target selection
Three pathogen proteins were selected as targets to test our
Scaffold Selection Protocol: a tuberculosis virulence factor
(TVF), the malaria apical membrane antigen (AMA) and HA
from influenza. Crystal or NMR structures were available for
all three proteins, which allowed us to select unstructured
regions as the target epitopes, such as flexible loops, disordered
regions or protein termini, based on whether the electron
density is weak to non-existent or whether the region shows
large fluctuations between different NMR models, respectively.
However, accessible regions of proteins can also be determined
by experimental methods such as protease digestion or deuter-
ium exchange or by computational predictions of intrinsic dis-
order, and therefore the protocol is not restricted to proteins
with known three-dimensional structures.

Calpain is a good scaffold candidate for CFP-10
The TVFs CFP-10 and ESAT-6 form a heterodimer complex,
which has been shown to play an essential role in tubercu-
losis pathogenesis. Both CFP-10 and ESAT-6 form
helix-turn-helix structures, which associate to form a four-
helix bundle. NMR-derived structures of the complex (PDB
ID: 1WA8) show that both the N- and C-termini of CFP-10
and ESAT-6 are disordered, forming long flexible arms
(Renshaw et al., 2005). The sequences of these disordered
termini (residues 1–6 and 79–99 of CFP-10 and 601–607
and 680–695 of ESAT-6, PDB numbering) were input into
the Scaffold Selection Protocol. High scoring hits were
further evaluated by probing the literature to determine
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expression levels for the potential scaffold, checking for pre-
viously identified hot spot residues in the crystallized peptide
that may be present in our target epitope, and checking the
measured binding affinity of the template complex. We also
examined the template structure to make sure that it was
sterically compatible with our target epitope.

Consideration of these criteria resulted in the selection of
the pdb file 1NX1 as a template, in which the domain VI
(DVI) of Calpain is bound to a peptide from Calpastatin
(Todd et al., 2003). The highest scoring alignment of the
C-terminus of CFP-10 and the Calpastatin peptide from our
Scaffold Selection Protocol is shown in Fig. 1B. Structural
representation of Calpastatin peptide bound to Calpain and
CFP-10 threaded onto the Calpastatin peptide backbone is
shown in Fig. 1C. Calpain DVI and CFP-10 C-terminus are
an appealing design candidate pair for several reasons.
(i) The C-terminus of CFP-10 is thought to be important in
the recognition of the host cell target protein in tuberculosis
infection, thus it is possible that a protein scaffold designed
to bind to this region will block the virulence of tuberculosis.
(ii) Although we did not explicitly include secondary struc-
ture information in our sequence alignment scoring scheme,
both the CFP-10 peptide and the high scoring Calpastatin
peptide have intrinsic propensity for forming helices. The
Calpastatin peptide binds to Calpain DVI as a helix while
the chemical shift and nuclear overhauser effect data for the
TVFs show that C-terminus of CFP-10 has a propensity to
adopt a helical conformation. It is hypothesized that when the
C-terminus of CFP-10 binds to the host cell protein, the
helical conformation is stabilized (Renshaw et al., 2005). (iii)
Mutation data show that Leu606 on the Calpastatin peptide is
important in Calpain DVI and Calpastatin binding (Ma et al.,
1994). This residue is conserved in the alignment of our
target CFP-10 sequence to the Calpastatin peptide (Fig. 1B).

To determine whether Calpain is a promising scaffold
for generating binders against CFP-10, the binding of the wild-
type Calpain DVI for our target linear epitope peptide
(C-terminus of CFP-10), as well as for the Calpastatin peptide,
was determined using FP and ITC. Peptides, N-terminally
labeled with a fluorescent dye (FITC) (CFP-10 peptide: FITC-
bA-DEEQQQALSSQMGF, Calpastatin peptide: FITC-bA-
PDDAIDALSSDFTS) were used for both FP and ITC (Fig. 2).
Wild-type Calpain DVI bound to the Calpastatin peptide with
low micromolar affinity (the measured Kd was 2 mM by FP
and 5 mM by ITC) (Table I). Despite not being evolutionarily
optimized for binding, the target CFP-10 peptide also bound
to Calpain with measured affinities of 37 mM (FP) and
147 mM (ITC) (Table I). These results suggest that Calpain
can serve as a scaffold for generating binders against CFP-10.

Karyopherin a is a good scaffold candidate for AMA1
The second target protein we tested our protocol with was
domain III of the malarial AMA1 (AMA1). AMA1 is an es-
sential protein for malaria parasite invasion of erythrocytes.
It is established as a major malaria vaccine candidate and
recently a high-affinity AMA1 binding peptide, identified
using phage display, was shown to inhibit merozoite invasion
of malaria parasites cultured in vitro (Li et al., 2002; Keizer
et al., 2003; Harris et al., 2005). The structure of domain III
of AMA1 has been solved with NMR (PDB ID: 1HN6), and
has several flexible regions surrounding a structured core
held together by three disulfide bonds. Sequences from three

disordered regions of AMA1 domain III were submitted to
our Scaffold Selection Protocol (residues 436–439, 453–
479, 510–545, PDB numbering). The top-scoring hit that
passed our manual inspection criteria was a nuclear localiza-
tion signal (NLS) peptide from c-myc proto-oncogene bound
to Karyopherin a in the PDB file 1EE4 (Conti and Kuriyan,
2000). The alignment of the second disordered segment of
AMA1 domain III with the NLS peptide is shown in
Fig. 1B. A structural representation of Karyopherin a with
NLS peptide bound and domain III of AMA1 threaded onto
the backbone of the NLS peptide is shown in Fig. 1D.
Karyopherin a and domain III of AMA1 are an interesting
design candidate pair for several reasons. (i) Domain III of
AMA1, in addition to domain I, is thought to be a binding
hot spot for inhibition by various inhibitory molecules such
as antibodies and peptides (Todd et al., 2003; Harris et al.,
2005). Thus it is possible that a protein designed to bind to
the AMA1 domain III could be used as a therapeutic against
Malaria. (ii) Karyopherin a is a repeat protein composed of
Armadillo motifs. Armadillo repeat proteins are involved in
a broad range of protein–protein interactions with high affin-
ities. They are able to bind to different types of peptides but
retain binding conservation by utilizing binding to the
peptide backbone. They also bind to extended conformation
of peptide targets. A recent study which engineered a well-
expressed and stable Armadillo repeat protein scaffold
describes the possibility of using this scaffold to design a
protein which binds to any sequence of interest with high af-
finity (Parmeggiani et al., 2008). (iii) All the consensus resi-
dues of a classical NLS motif (K–K/R–X–K/R, where X is
any residue) are conserved in the alignment with our target
sequence from the AMA1 domain III (Fig. 1B). The Leu327
and the Asp328 after the consensus sequence, which have
also been shown by mutagenesis studies to be important in
binding (Makkerh et al., 1996), are also conserved with iden-
tical (in the case of Leu327) or similar amino acid (in the
case of Asp328 it is Asn), respectively, in our alignment
(Fig. 1B).

To determine whether Karyopherin a is a good scaffold
for generating binders against AMA1, we measured the
binding affinity of the wild-type Karyopherin a with our
target linear epitope peptide (second disordered segment of
AMA1 domain III) and its native binder, the c-myc NLS
peptide using FP (AMA1 peptide: FITC-bA-IRESKRIKLND,
c-myc NLS peptide: FITC-bA-GPAAKRVKLDS). Both the
AMA1-derived peptide and the c-myc NLS peptide bound to
Karyopherin a with a dissociation constant of 50+ 0.2 nM
(AMA1) or +10 (NLS) (Fig. 3A and B, Table I). The high
affinity of the target sequence for the wild-type Karyopherin
a is thought to be the result of the high identity between the
native binding peptide and the target sequence, especially in
the consensus residues known to be important in binding.

Because of the high affinity between the candidate protein
scaffold, Karyopherin a and our target sequence peptide from
AMA1 domain III, we were curious whether Karyopherin a

would bind to the full-length AMA1 domain III. We
expressed the full-length AMA1 domain III by using a native
Ni-NTA purification protocol. Because our purification
scheme was different from the original denaturing Ni-NTA
purification and refolding protocol used by Nair et al., we
decided to compare the structure of our protein, especially the
formation of the three disulfides bonds, with the published
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NMR structure. Comparison of the 15N NMR chemical shift
of our sample with the published chemical shift of AMA1
domain III from the BioMagResBank confirms that the two
proteins are identical in all of the residues where peak inten-
sity is discernable (data not shown) (Nair et al., 2001). The
binding affinity of the full-length AMA1 domain III protein
for Karyopherin a was measured using ITC and was deter-
mined to be 760 nM (Fig. 3C, Table I).

Limitations of the Scaffold Selection Protocol
The successful results from the two cases above plus an add-
itional case in which the LOV2 domain of Avena Sativa
phototropin 1 sequence was used as the target sequence.
Lungu et al. (2012) show that our initial assumption was
correct. By using sequence alignments and structural infor-
mation to select an optimal protein scaffold for design, we

have obtained proteins that bind to our target epitope pep-
tides. These protein scaffolds can be used as the starting
point for the generation of designed de novo protein–protein
interactions for the target protein of interest. With computa-
tional protein design or directed evolution methodologies it
should be possible in many cases to use these scaffolds to
engineer higher affinity and specificity to the protein–protein
interactions of interest.

In contrast to the three successful examples, the surface
cleavage loop of the influenza HA did not bind to its pre-
dicted protein scaffold. The best scoring hit for HA from the
Scaffold Selection Protocol was CDK2/cyclin protein bound
to the p107 peptide (Fig. 1B, PDB file 1H28) (Lowe et al.,
2002). Although binding was observed between the p107
peptide and CDK2/cyclin when probed with FP experiments
(Kd value is 37 mM), no binding was observed between the
HA peptide and CDK2/cyclin. Closer examination of CDK2/
cyclin and p107 peptide structure revealed a possible explan-
ation for the negative result. One of the residues in the HA
sequence that is immediately adjacent to the aligned region
used to identify the match is structurally incompatible
(alanine in p107 peptide vs. glutamate in HA) with CDK2/
cyclin according to the energy function in the molecular
modeling program ROSETTA. In the p107 CDK2/cyclin
crystal the alanine is buried in a hydrophobic pocket that is
not sterically or chemically compatible with a glutamate
(Supplementary data, Fig. S1). This example shows one limi-
tation of our Scaffold Selection Protocol. Because we are
using a window of six residues to obtain hits with high align-
ment score, residues outside the window, which might be

Fig. 2. FP data for Calpain and Calpastatin peptide (A) and Calpain and CFP-10 peptide (B). ITC data for Calpain and Calpastatin peptide (C) and Calpain
and CFP-10 peptide (D).

Table I. Binding affinity from FP and ITC experiments

Kd (FP) Kd (ITC)

Calpain–Calpastatin peptide 2+0.23 mM (4) 5.2+0.1 mM (1)
Calpain–CFP-10 peptide 37+5.7 mM (2) 147+8 mM (1)
Karyopherin–mycNLS peptide 50+10 nM (1)
Karyopherin–AMA1 peptide 50+0.2 nM (2)
Karyopherin–AMA1 full length 760+20 nM (2)

The number of replicates is marked in parentheses. Standard deviations are
reported except in the case of single replicates where the error to the fit is
reported instead.
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important in binding between the original protein and the
peptide are ignored during alignment. Thus a more in-depth
inspection of not only the aligned region but also the regions
immediate to it should be performed before choosing pro-
teins as scaffolds.

Another limitation of our method as currently constructed
is that it is constrained by the number and variety of peptides
that have been crystallized bound to a protein. For instance
we tested several targets, malaria surface protein, dengue
virus envelope protein and influenza neuraminidase, for
which we did not identify any strong hits. This limitation
will become less significant as the PDB grows, but could
also be mitigated by including peptide-protein pairs in our
database that are experimentally known to interact, but have
not been co-crystallized. The most useful cases would be
instances where there are mutational data on the peptide that
indicates which residues are important for binding. This
could be used when scoring alignments with the target
epitope similar to the manner in which we currently use
structural information.

Scaffold Selection Protocol server
To allow easy public access to our Scaffold Selection
Protocol, we have created a web server: http://rosettadesign.
med.unc.edu/scaffold/. The user submits the sequence of the
target and a sliding window size for the alignment process
(defaults to 6). Results are emailed to the user. The result,
composed of six columns, is a list of matches, with the best
match based on the overall score at the top. The first column
shows you the matching residue number and the target se-
quence of the epitope from your input. The second column is
the PDB ID of the high scoring match from the database, the
chain of the matching peptide in the PDB, the peptide residue
number in parenthesis and the matching peptide sequence.
Next is the number of neighbors from the crystal structure for

each of the peptide residues in the match. In the case of non-
natural amino acids the number of neighbors are not counted.
The fourth column is the complete peptide sequence of the
match in the PDB file. And the last two columns show you
the raw score and the overall score. The overall score is the
raw score normalized by the number of natural amino acid in
the match. The list of PDB files in our peptide–protein PDB
database can be also found on the website.

Conclusion

We have developed a protocol that selects protein scaffolds
that are well-suited for binding target proteins of interest. It
uses the sequence information of the target protein plus
structural information from the PDB database to select the
scaffolds. We validated the protocol by using it to success-
fully identify novel binding partners for the TVF CFP-10
and for malaria AMA 1. There are many possible applica-
tions for the protocol, including the identification of novel
regulators of disease-related proteins, the generation of crys-
tallization agents that bind to the flexible regions of proteins
and hold them rigid and the creation of biosensors that detect
conformational changes or post-translational modifications in
a target epitope.

Supplementary data

Supplementary data are available at PEDS online.
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