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ABSTRACT 

Plexins and semaphorins are a large family of proteins 
that are involved in cell movement and response. The 
importance of plexins and semaphorins has been 
emphasized by their discovery in many organ systems 
including the nervous (Nkyimbeng-Takwi and 
Chapoval, 2011; McCormick and Leipzig, 2012; Yaron 
and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii 
et al., 2002), and immune systems (Takamatsu and 
Kumanogoh, 2012) as well as diverse cell processes 
including angiogenesis (Serini et al., 2009; Sakurai et 
al., 2012), embryogenesis (Perala et al., 2012), and 
cancer (Potiron et al., 2009; Micucci et al., 2010). 
Plexins and semaphorins are transmembrane proteins 
that share a conserved extracellular semaphorin do-
main (Hota and Buck, 2012). The plexins and sema-
phorins are divided into four and eight subfamilies 
respectively based on their structural homology. 
Semaphorins are relatively small proteins containing 
the extracellular semaphorin domain and short intra-
cellular tails. Plexins contain the semaphorin domain 
and long intracellular tails (Hota and Buck, 2012). The 
majority of plexin and semaphorin research has fo-
cused on the nervous system, particularly the devel-
oping nervous system, where these proteins are found 
to mediate many common neuronal cell processes 
including cell movement, cytoskeletal rearrangement, 
and signal transduction (Choi et al., 2008; Takamatsu 
et al., 2010). Their roles in the immune system are the 
focus of this review. 

KEYWORDS   plexin, semaphorin, immune system, den-
dritic cell, B cell, T cell 
 

DISCOVERY OF PLEXINS AND SEMAPHORINS 

A group of proteins that mediate cell movement was hy-
pothesized by R.W. Sperry in his chemoaffinity hypothesis for 
nerve fiber growth (1963). This hypothesis was later sup-
ported by time lapse video of retinal ganglion growth fibers 
extending towards the optic tectum in Xenopus laevis em-
bryos (Harris et al., 1987). Proteins thought to be involved in 
guidance were detected that same year in Xenopus optic 
tectum by monoclonal antibodies, which are today known to 
recognize plexin-A1 and neuropilin-1 (Takagi et al., 1987; 
Ohta et al., 1992; Fujisawa, 2004). The first semaphorin was 
identified as such in 1993 (Luo et al., 1993), and this led to 
the discovery of the semaphorin family based on homology of 
a common extracellular semaphorin domain (Luo et al., 1995). 
The semaphorin family was later expanded to include the 
semaphorin receptor proteins, plexins, which contain the 500 
amino acid semaphorin domain as well as an additional in-
tracellular plexin domain (Ohta et al., 1995; Satoda et al., 
1995; Maestrini et al., 1996; Comeau et al., 1998). Currently 
at least 20 semaphorins and nine plexins have been identi-
fied. 

The receptor and ligand pairs that mediate semaphorin 
and plexin signaling have been studied extensively. The re-
ceptor ligand pairing can vary by cell type, leading to difficulty 
in defining the receptor and ligand (Fig. 1). Plexins often 
serve as receptors for semaphorins, and are sometimes 
coupled with the co-receptor neuropilin (Janssen et al., 2010; 
Liu et al., 2010; Nogi et al., 2010). Additionally, the receptor 
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Figure 1. Plexins and semaphorin interactions. Plexins and 

semaphorins can be membrane bound or secreted and can 

act in a paracrine or autocrine manor. Plexin and semaphorin 

interactions can be facilitated or modified by co receptors. 
 

ligand roles are dynamic due to the ability of both plexins and 
semaphorins to be membrane bound or secreted, transmit 

signals intra-cellularly, or bind to other types of proteins and 
form co-receptors. Semaphorin and plexin roles are further 
complicated by the ability of these proteins to act as either 
repulsive or attractive cues, with the type of signal depending 
on the receptor-ligand pair, developmental stage of the or-
ganism, cell type, and/or cellular context (Muratori and 
Tamagnone, 2012; Takamatsu and Kumanogoh, 2012; 
Yoshida, 2012). 

SEMAPHORINS 

All semaphorins contain the “sema domain”, which consists 
of a variant form of the seven-blade beta-propeller fold, a 
highly conserved structure widely utilized for protein-protein 
interactions (Hota and Buck, 2012). Over 20 semaphorins 
have been identified and are categorized into groups based 
on their origin and sequence homology: invertebrate, verte-
brate and viral semaphorins (1999). The invertebrate sema-
phorin group is further divided into two classes, I and II; 
whereas, the vertebrate semaphorins are divided into groups 
III-VII (Fig. 2). Class II, III, and VIII semaphorins are secreted  

 
 

Figure 2. Semaphorins. There are eight classes of semaphorins. Classes I and II are found in invertebrates, classes III-VII are found in 

vertebrates and class VIII semaphorins are encoded by viruses. All semaphorins are characterized by sema domains which are followed 

by plexin semaphorin integrin (PSI), thrombospondin, and Ig-like domains. They can be either secreted or membrane-bound.  
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whereas the rest are membrane bound (1999). Semaphorins 
range in size from 400–1000 amino acids, depending on the 
presence of additional domains, such as immunoglobulin 
(class II, III, IV, and VII) and thrombosponin domains (class V) 
or glycosylphosphatidylinositol (GPI) linkage sites (Mizui et al., 
2009). 

Semaphorins have two predominant classes of receptors; 
plexins and neuropilins (Zhou et al., 2008; Rizzolio and 
Tamagnone, 2011). Neuropilins are trans-membrane proteins 
(~900 a.a.) which contain short intracellular domains and thus, 
lack intrinsic signaling capabilities (Takagi et al., 1991). In-
stead, neuropilins form co-receptor complexes with other cell 
surface molecules to mediate signal transduction (Kruger et 
al., 2005). The majority of semaphorins signal through plexins 
alone, however, class III semaphorins, with the exception of 
Sema3E, require neuropilin co-receptors to properly function 
(Gu et al., 2005; Chauvet et al., 2007). In addition to neu-
ropilin and plexin receptors, semaphorins can signal through 
other receptors, such as CD72 and T-cell immunoglobulin 
and mucin domain-containing protein 2 (TIM-2) (Shi et al., 
2000; Oinuma et al., 2004). It is clear that Semaphorins can 
transmit their signals through a series of receptors. Thus, it is 
expected that these multiple molecular interactions would 
lead to a variety of signal transductions, perhaps more com-
plex than initially thought. 

PLEXINS 

Plexins are a conserved family of large proteins (~200 kDa) 
that are the canonical receptors for semaphorin molecules 

(Winberg et al., 1998; Takahashi et al., 1999). Like sema-
phorins, plexins can be soluble or membrane bound (Artigiani 
et al., 1999). Plexins are divided into four classes, A through 
D, based on their structural homology (Kruger et al., 2005). 
The invertebrate system contains two plexins, termed 
plexin-A and plexin-B. The vertebrate system contains four 
classes of plexins: class A (Plexin-A1, A2, A3, A4), class B 
(Plexin-B1, B2, B3), class C (C1), and class D (D1) (Fig. 3). 

Plexins are structurally homologous to receptor tyrosine 
kinases, MET and RON, which play important roles in de-
velopment, tissue regeneration and cancer (Gherardi et al., 
2004). The extracellular portion of plexin molecules contains 
a Sema domain, followed by three plexin-semaphorin-integrin 
(PSI) domains and three immunoglobulin, plexin and tran-
scription factors (IPT) domains (Winberg et al., 1998; Bork et 
al., 1999; Antipenko et al., 2003). Sema domains are re-
sponsible for ligand binding in plexin, semaphorin, and the 
proto-oncogenic MET and RON receptor tyrosine kinases 
(Antipenko et al., 2003; Gherardi et al., 2004). In addition to 
its ligand-binding capabilities, the sema domain acts as an 
autoinhibitory element to restrict activation of plexin mole-
cules (Takahashi and Strittmatter, 2001). For example, 
plexin-A1 mutants that lack the sema domain are constitu-
tively active and nonresponsive to ligand stimulation 
(Takahashi and Strittmatter, 2001). Thus, the sema domains 
can be thought of as a regulatory element of plexin and 
semaphorin proteins that ensures proper activation.  

The PSI domain has also been referred to as a small 
cystine-rich domain (CDR) or MET-related sequence and is   

 

 
 

Figure 3. Plexins. Plexins are divided into four different groups, A–D, based on their origin and structural homology. Class B plex-

ins can be secreted whereas the rest of the plexins family members are membrane bound. 
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required for proper protein-protein interactions (Ohta et al., 
1995). Conclusions on the role of PSI domains in plexin in-
teractions were mainly based on previous studies of Sema3A 
(Klostermann et al., 1998). Cystine-rich repeats of Sema3A 
are responsible for disulfide bond formation in the Sema3A 
homodimer (Klostermann et al., 1998). To date, evidence for 
the role of PSI domains in plexin molecules has been sparse. 

IPT domains, also referred to as Ig domains or transcrip-
tion factor Ig domains (TIG) are necessary for ligand binding 
(Aravind and Koonin, 1999). Studies blocking the IPT domain 
of the β2 integrin have suggested that these domains are 
required for dimerization of the αβsubunits (Huang et al., 
1997). Other studies of MET proteins, lacking the sema do-
main, have revealed that the IPT domains alone are sufficient 
to ensure ligand binding (Basilico et al., 2008). Most of the 
research on plexin IPT domains has been done on plexin-A1 
which showed that the absence of IPT domains inhibits as-
sociation of this molecule with a triggering receptor on mye-
loid cells (TREM) family member and thus blocks down-
stream signaling (Watarai et al., 2008). 

The cytoplasmic portion of plexin molecules is essential for 
signal transduction upon ligand binding but it does not exhibit 
kinase activity (Maestrini et al., 1996). The intracellular do-
main of plexins is highly conserved among all classes and it 
shares homology with the intracellular domain of p120 Ras-
GAP (Rohm et al., 2000). Plexins contain a GTPase-binding 
domain and a segmented GTPase-activating protein (GAP) 
domain (Kruger et al., 2005). Many studies have focused on 
further elucidating the importance of plexin molecules in con-
trolling GTPases (Rohm et al., 2000; Oinuma et al., 2004; 
Eun et al., 2006). These studies are of particular importance 
given the role of plexin molecules in cell movement, cy-

toskeleton rearrangement and synapse formation 
(Torres-Vazquez et al., 2004; Eun et al., 2006). 

In addition to all the components found in plexin molecules, 
plexin-B1 and B2 also contain convertase-cleavage sites 
(Winberg et al., 1998; Artigiani et al., 1999; Tamagnone et al., 
1999). Cleavage and binding of these molecules to each 
other can result in formation of heterodimeric molecules with 
enhanced activity (Artigiani et al., 2003). Moreover, soluble 
plexin molecules can be released in the extracellular envi-
ronment (Winberg et al., 1998; Artigiani et al., 1999; 
Tamagnone et al., 1999), thus, eliminating the need for cel-
lular proximity during plexin-semaphorin signaling events.  

PLEXINS AND SEMAPHORINS IN THE IMMUNE 
SYSTEM 

Plexin and semaphorin signaling has gained much interest in 
field of immunology. Immune responses consist of a series of 
spatiotemporally regulated events that implicate a number of 
different immune cell types. During these events, immune 
cells interact with each other to modulate their course of ac-
tion. Studies of plexins and semaphorins have revealed that 
several members of these families are involved in a series of 
immune cell interactions, which ultimately influence the out-
come of the immune response. Here we present the current 
knowledge of semaphorin and plexin molecules in the im-
mune system (also see Table 1). 

Semaphorin4D (Sema4D or CD100) 

Sema4D is the first semaphorin molecule to be reported in 
the immune system and is highly expressed by T cells, ma-
ture DCs, and activated B cells (Delaire et al., 1998; Chen et  

 

Table 1. Expression and activities of plexin and semaphorin family members in the immune system 

Plexin/semaphorin Expression Binding partner Activities 

Plexin-A1 DCs, plasmacytoid DCs Semaphorin-6D, Semaphorin-3E DC activation, movement and lymph node  
trafficking 

Plexin-A4 T cells, DCs, Macrophages Class 6 Semaphorins Inhibition of T cell activation 
Enhancing TLR signaling 

Plexin-B1  Semaphorin-4D  

Plexin-B2 GC B cells, macrophages Semaphorin-4A 
Semaphorin-4D 

Marks Germinal Centers, controls macro-
phage movement,  T cell activation 

Plexin-D1 Double positive thymocytes, 
Activated B cells 

Semaphorin-4A and -3E Thymocyte trafficking 
Germinal Center B cell development 

Semaphorin-3A T cells Plexin-A family Inhibits T-cell activation and monocyte migra-
tion, DC movement  

Semaphorin-3E Thymic epithelial cells Plexin D1 Double positive thymocyte migration and 
movement, T cell development  

Semaphorin-4A DCs, activated T cells, Th1 cells Plexin-D1, Plexin-B2, Tim-2 T-cell activation and monocyte migration 

Semaphorin-4D T cells, activated B cells, DCs CD72 B-cell activation and homeostasis, DC activa-
tion, mast cell responses 

Semaphorin-6D T cells, B cells, NK cells Plexin-A1 DC activation and production of type1 inter-
feron, late-phase T cell proliferation 

Semaphorin-7A Activated T cells Integrin α1β1 Monocyte/macrophage activation 



Immune plexins and semaphorins  REVIEW 

 

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012 January 2013︱Volume 4︱Issue 1︱21 

P
ro

te
in

 &
 C

el
l 

 

al., 2000; Kumanogoh et al., 2000, 2002; Granziero et al., 
2003; Kumanogoh et al., 2005). Sema4D has two known 
receptors, plexin-B1 and CD72, a C-type lectin (Huber et al., 
2003; Zhou et al., 2008). The functional significance of 
Sema4D has been observed in both human and mouse im-
mune systems. Initial studies of human Sema4D showed that 
this molecule promotes B-cell aggregation and differentiation 
(Hall et al., 1996). These studies were later confirmed in the 
mouse where over-expression of Sema4D enhanced CD40- 
or LPS- induced proliferation and antibody production (Chen 
et al., 2000). Sema4D regulates B cell immune responses by 
mitigating CD72 inhibitory signals and thus allowing down-
stream BCR signaling to proceed (Adachi et al., 1998; 
Kumanogoh et al., 2000, 2005). The importance of Sema4D 
in B cell biology has been further demonstrated in studies 
utilizing Sema4D-deficient mice (Chen et al., 2000; 
Kumanogoh et al., 2005). In these studies, B cell homeosta-
sis is altered in the absence of Sema4D. These mice exhibit 
reduced B-1 B cell populations at a young age but increased 
numbers of marginal zone B cells later in life (Chen et al., 
2000). Additionally, Sema4D

–/– mice exhibit impaired 
T-dependent (Td) antibody responses and priming of antigen 
specific T cells. 

Although T cells are the major Sema4D-producing cells in 
the immune system, Sema4D-deficient T cells develop nor-
mally and respond to antigenic stimuli (Chen et al., 2000). 
Other in vitro studies have shown that Sema4D recombinant 
protein is important in inducing expression of CD80 and 
CD86 co-stimulatory molecules on DCs (Kumanogoh et al., 
2002), while antigen specific Sema4D

–/– T cells do not dif-
ferentiate into effector cells when cultured in the presence of 
DCs. Together these data suggest that Sema4D expression 
on T cells is important to promote DC activation and matura-
tion, which in turn promotes T cell activation (Kumanogoh et 
al., 2002). Further studies of human T and NK cells have 
demonstrated that the cytoplasmic domain of Sema4D inter-
acts with a serine-threonine kinase (Elhabazi et al., 1997). 
Disease models of autoimmunity in Sema4D

–/– mice have 
revealed that this gene is important in controlling T-cell im-
mune responses. Sema4D deficient mice are resistant to 
myelin oligodendrocyte glycoprotein (MOG) induced experi-
mental autoimmune encephalomyelitis (EAE) (Ishida et al., 
2003).  

Semaphorin4A (Sema4A) and TIM-2 

Sema4A is expressed on DCs and polarized T-helper type 1 
(Th1) cells and is similar structurally to the above-described 
Sema4D (Kumanogoh et al., 2002). The only identified re-
ceptor for Sema4A in the immune system is the T cell im-
munoglobulin and mucin domain-2 (TIM-2) receptor, a nega-
tive regulator of Th2 cells (Kumanogoh et al., 2002; Kuchroo 
et al., 2003; Chakravarti et al., 2005).  

DC-derived Sema4A is required for adequate T-cell prim-
ing; however, Sema4A-deficient DCs develop normally and 

produce cytokines in response to various stimuli (Kumanogoh 
et al., 2005). T-cell derived Sema4A is required for helper T 
cell differentiation (Th1) via T cell-T cell cognate interactions 
(Kumanogoh et al., 2005). Indeed, mice deficient in Sema4A 
exhibit impaired Th1 responses to heat-killed Propionibacte-
rium acnes (Kumanogoh et al., 2005). However, these mice 
have enhanced responses to a Th2-inducing intestinal nem-
atode, Nippostrongylus brasiliensis (Kumanogoh et al., 2005). 
These studies suggest a requirement for Sema4A in skewing 
of the T cell response towards a Th1 phenotype. Sema4A

–/– 
mice show attenuated development of experimental 
autoimmune myocarditis, thus, further emphasizing the 
importance of this molecule in immune responses (Makino et 
al., 2008). Additionally, Sema4A

–/– mice on a BALB/c back-
ground are more prone to Th2 responses and develop 
spontaneous atopic dermatitis (Fujisawa et al.).  

Plexin-A1, semaphorin6D (Sema6D), and 
semaphorin 3A (Sema3A) 

Sema6D is expressed on T, B and NK cells (Takegahara et 
al., 2006). Plexin-A1 is a well-studied receptor for Sema6D 
(Yoshida et al., 2006) and was initially shown to be one of the 
gene products induced by CIITA (Wong et al., 2003). 
Plexin-A1 is highly expressed by mature DCs but is low to 
undetectable in other immune cell types, such as macro-
phages, B cells and T cells (Wong et al., 2003; Takamatsu et 
al., 2010). Short hairpin RNA knock down studies demon-
strated the functional significance of plexin-A1 in DC biology 
(Wong et al., 2003). DCs that lack expression of plexin-A1 
have a reduced capacity to activate T cells both in vitro and in 
vivo. These findings were confirmed in studies of Plxna1

–/– 
mice (Takegahara et al., 2006; Takamatsu et al., 2010). In 
addition, plexin-A1 associates with a molecular complex con-
sisting of i) the triggering receptors expressed on myeloid 
cells-2 (TREM-2) and ii) the immuno-receptors tyro-
sine-based activation motif (ITAM)-bearing adaptor protein 
(DAP12). DCs deficient in TREM-2 or DAP12 behave simi-
larly to plexnA1 deficient DCs (Takegahara et al., 2006), 
indicating that these adaptor molecules are important me-
diators of Sema6D-induced plexin-A1 signaling.  

Plexin molecules can impact the onset of autoimmune 
diseases (Kumanogoh et al., 2002; Tamura et al., 2008). 
Plxna1

–/– mice are resistant to MOG-induced EAE 
(Takegahara et al., 2006). In part, the generation of 
MOG-specific T cells is abrogated in plexin-A1-deficient DCs 
mitigating the induction of EAE upon exposure to MOG anti-
gen. In addition, Sema6D has been implicated in the late 
phase of T-cell responses (O'Connor et al., 2008) as CD4 T 
cells initiate expression of Sema6D by day4 post activation. 
Blocking Sema6D leads to decreased T-cell proliferation and 
inhibition of CD127 (IL-7 receptor) expression on T cells 
(O'Connor et al., 2008). Taken together these studies sug-
gest that Sema6D and plexin-A1 partnering and signaling are 
likely to be implicated in regulation of late phases of T-cell 
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immune responses and ultimately in generation of immu-
nological memory.  

Recent studies have focused on the interaction of plex-
in-A1 and Sema3A as regulators of dendritic cells movement 
into the lymphatics by activating myosin-II, thus, demonstrat-
ing a different role of plexin-A1 when partnering with a Sem-
aphorin different from Sema6D (Takamatsu et al., 2010). 
Although, the work focusing on Sema3A in humans has been 
limited, recent studies have shown that this molecule is in-
volved in macrophage differentiation as well as apoptosis (Ji 
et al., 2009). Taken together these studies emphasize the 
importance of plexins and semaphorins in cell movement, 
differentiation and apoptosis across different species.  

Semaphorin7A (Sema7A), α1β1 integrin and plexin-C1 

Sema7A is a GPI-anchored protein expressed by CD4+CD8+ 
double positive thymocytes and activated T cells (Baker, 
2009). Plexin-C1 and α1β1 integrin are two known receptors 
for Sema7A, (Pasterkamp and Kolodkin, 2003; Suzuki et al., 
2007). Activated T cells that express Sema7A can stimulate 
monocytes/macrophages through α1β1 integrin, inducing 
proinflammatory cytokine production (Suzuki et al., 2007). 
Sema7A

–/– mice are resistant to inflammatory diseases such 
as hapten-induced contact hypersensitivity and EAE (Suzuki 
et al., 2007). In addition, Sema7A plays a critical role in 
TGF-β1-induced fibrosis, myofibroblast hyperplasia alveolar 
remodeling, and apoptosis (Hur et al., 2008). These studies 
indicate that Sema7A is important in regulating inflammatory 
immune responses.  

Semaphorin6A (Sema6A), semaphorin 3A (Sema3A), and 
plexin-A4 

Plexin-A4 is expressed by T cells, DCs, and macrophages 
(Tamura et al., 2008) and interacts with at least two receptors, 
Sema3A and Sema6A (Suto et al., 2007). Plxna4

–/– mice 
exhibit enhanced T-cell priming and exacerbated EAE dis-
ease; however, the mechanism by which plexin-A4 exerts its 
functions on T cells remains unknown (Tamura et al., 2008).  

Our own work showed the important role of plexin-A4 in 
Toll-like receptor function in macrophages (Wen et al., 2010). 
Plexin-A4 is highly expressed by peripheral macrophages 
and DC. By studying Plxna4

–/– innate immune cells, we 
showed that this protein is not involved in phagocytosis or 
antigen presentation but it is important in TLR signaling. 
Plxna4

–/– cells showed reduced cytokine production upon 
activation by TLR2, 3, 4, 7, and 9 agonists and by bacteria. It 
turns out plexin-A4 is necessary for the activation of the small 
guanosine triphosphate hydrolase (GTPase) Rac1 
(ras-related C3 botulinum toxin substrate 1), which is neces-
sary for TLR activation. In accordance with this, Plxna4

–/– 
mice were resistant to endotoxin shock and sep-
sis-associated cytokine storm. The ligand in this process was 
identified as Sema3A, which expression is enhanced by 

toll-like receptors, thus completing an autocrine loop of in-
flammation. Thus it might be possible to interfere with plex-
in-A4 and Sema3A signaling in treating sepsis and a cytokine 
storm, diseases which have been not had much therapeutic 
options. 

Plexin-B1, plexin-B2 and Sema4D  

The B plexin family shows the highest homology to the scat-
ter factor receptor family, which is a family of transmembrane 
receptors that lead to invasive growth and are often linked to 
cancer (Maestrini, Tamagnone et al. 1996; Conrotto, Corso et 
al. 2004). Plexin-B1 is found on immature bone marrow de-
rived dendritic cells but not on mature dendritic cells or mon-
ocytes (Chabbert-de Ponnat, Marie-Cardine et al. 2005). 
Plexin-B1 has also been identified on microglia and lung 
dendritic cells (Toguchi 2009, (Smith et al., 2011). In imma-
ture dendritic cells, soluble Sema4D, a ligand for Plexin-B1, 
inhibits migration, and this inhibition can be blocked by anti-
body against Plexin-B1 (Chabbert-de Ponnat, Marie-Cardine 
et al. 2005). Plexin-B1 is also expressed on bone marrow 
stromal cells, activated T cells, and follicular dendritic cells 
(Granziero et al., 2003). Ligation of Sema4D on B cells by 
Plexin-B1 induces increased B-cell proliferation and longer B 
cell lifespan (Granziero, Circosta et al. 2003). Binding of 
soluble CD100 to plexin B1 on immature dendritic cells inhib-
its migration of the immature DCs (Chabbert-de Ponnat et al., 
2005). In the kidney, plexin-B1 expression on glomeruli fa-
cilitates the recruitment of macrophages expressing Se-
ma4D. Sema4D activates microglia through plexin-B1, and 
transfer of myelin oligodendrocyte glycoprotein-specific T 
cells into Plxnb1

–/– mice results in attenuated experimental 
autoimmune encephalomyelitis (Okuno et al., 2010). 

Plexin-B2 is upregulated in T-dependent but not 
T-independent germinal centers (Yu et al., 2008). However 
the biological function of the upregulation of plexin-B2 in 
germinal centers has not yet been elucidated. Our group has 
shown that plexin-B2 is expressed on macrophages, dendritic 
cells, and plasmacytoid dendritic cells (Roney et al., 2011). 
Macrophages deficient in Plxnb2 have greater cell motility, 
more of the active form of the Rho family proteins Rac and 
Cdc42, and are faster at wound closure in-vitro (Roney et al., 
2011). The level of plexin-B2 expressed on peritoneal F4/80+ 
macrophages is increased after thioglycollate treatment in a 
mouse model of peritonitis (Meda et al., 2012). Our group has 
demonstrated that dendritic cells deficient in plexin-B2 ex-
press higher levels of IL-12/IL-23p40 (Holl, Roney et al. 2012). 
Plexin-B2 has been identified on keratinocytes, where it in-
teracts with Sema4D on γδ T cells and is required for γδ T 
cell activation (Witherden et al., 2012). 

Plexin-D1, semaphorin3E and semaphorin4A 

Initially, plexin-D1 was identified for its key role in vasculature 
development (Gitler et al., 2004; Asselin-Paturel et al., 2005). 
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Plxnd1
–/– mice suffer congenital heart defects due to improper 

vessel patterning (Gitler et al., 2004; Asselin-Paturel et al., 
2005). Plexin-D1 is expressed by CD4+CD8+ “double positive” 
(DP) thymocytes and plexin-D1 has been shown to interact 
with Sema3E (Bark et al., 2008; Ji et al., 2009) but not Se-
ma4A (Toyofuku et al., 2007). Plxnd1

–/– DP thymocytes are 
arrested in the cortex and seldom travel to the medulla (Choi 
et al., 2008). Recent studies from our laboratory have shown 
a role for plexin-D1 in B-cell biology (Holl et al., 2011). Plex-
in-D1 is important in controlling germinal center formation and 
long-term B cell immune responses. Our laboratory showed 
that plexin-D1 is expressed by DCs and its absence results in 
increased IL-12p40 cytokine production (Holl, Roney et al. 
2012). Studies have demonstrated that plexin-D1 and its 
ligand Sema4A are expressed on macrophages and 
macrophage migration towards Sema4A is abrogated in the 
presence of plexin-D1 blocking antibody (Meda et al., 2012).  
Future studies on the plexin-D1 gene may provide additional 
options in vaccine development.  

CONCLUSIONS 

Plexins and semaphorins mediate many cell processes criti-
cal to the immune system including cell-cell contact, migra-
tion, and cytokine secretion. As described above, plexins and 
semaphorins are a new class of immunoregulatory molecules 
with distinct functions in various phases of the immune re-
sponse. The effects of plexins and semaphorins are context- 
and cell differentiation state-dependent and many have com-
plex influences in the immune system as a whole. Several 
plexins and semaphorins are important in maintaining im-
munological homeostasis. Lack of these molecules can result 
in attenuated immune responses. Alternatively, several of 
these molecules are required to prevent autoimmune disor-
ders. Despite this body of knowledge on the role of plexins 
and semaphorins in the immune system is underappreciated 
for its broad implication.  

ABBREVIATIONS 

CDR, cystine-rich domain; GAP, GTPase-activating protein; GPI, 

glycosylphosphatidylinositol; ITAM, immuno-receptors tyrosine- 

based activation motif; PSI, plexin semaphorin integrin; TIM-2, T-cell 

immunoglobulin and mucin domain-containing protein 2; TREM, 

triggering receptor on myeloid cell 
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