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Anthropogenic increases in atmospheric CO2 over this century are predicted to

cause global average surface ocean pH to decline by 0.1–0.3 pH units and sea

surface temperature to increase by 1–48C. We conducted controlled laboratory

experiments to investigate the impacts of CO2-induced ocean acidification

( pCO2 ¼ 324, 477, 604, 2553 matm) and warming (25, 28, 328C) on the calcifica-

tion rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread,

abundant and keystone reef-builder in the Caribbean Sea. We show that both

acidification and warming cause a parabolic response in the calcification rate

within this coral species. Moderate increases in pCO2 and warming, relative to

near-present-day values, enhanced coral calcification, with calcification rates

declining under the highest pCO2 and thermal conditions. Equivalent responses

to acidification and warming were exhibited by colonies across reef zones and

the parabolic nature of the corals’ response to these stressors was evident

across all three of the experiment’s 30-day observational intervals. Furthermore,

the warming projected by the Intergovernmental Panel on Climate Change for

the end of the twenty-first century caused a fivefold decrease in the rate of

coral calcification, while the acidification projected for the same interval had

no statistically significant impact on the calcification rate—suggesting that

ocean warming poses a more immediate threat than acidification for this

important coral species.
1. Introduction
Atmospheric pCO2 has increased from pre-industrial levels of ca 280 matm to cur-

rent levels exceeding 400 matm [1,2], primarily due to the burning of fossil fuels,

cement production and deforestation. This anthropogenic elevation of atmos-

pheric pCO2 has already decreased surface ocean pH by ca 0.1 pH unit [3].

Atmospheric pCO2 is predicted to exceed 600 matm by the end of the twenty-

first century [4], which would cause surface ocean pH to decline by an additional

0.3 pH units [5,6]. This process of ‘ocean acidification’ reduces the carbonate ion

concentration of seawater, which in turn reduces its saturation with respect to the

calcium carbonate mineral aragonite, from which scleractinian corals and other

marine invertebrates and algae build their protective shells and skeletons.

Atmospheric pCO2 is also a greenhouse gas and its elevation has caused sea sur-

face temperatures within the habitats of tropical scleractinian corals to increase by as

much as 0.78C over the past several decades [7,8]. The relationship between sea-

water temperature and calcification rates of tropical corals has been well explored

[9–12]. In general, calcification rate increases with increasing seawater temperature

up to an optimal temperature, which typically coincides with the mean summer

seawater temperature of the coral’s natural habitat [11]. At sufficiently elevated

temperatures, corals lose their symbionts through a process known as bleaching,

resulting in a further decline in calcification. Because maximum summertime temp-

eratures on tropical reefs already approach the temperature at which corals bleach

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2014.1856&domain=pdf&date_stamp=2014-11-05
mailto:karl_castillo@unc.edu
http://dx.doi.org/10.1098/rspb.2014.1856
http://dx.doi.org/10.1098/rspb.2014.1856
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20141856

2
[13], even a small increase in average seawater temperature may

negatively impact their fitness.

The number of studies investigating the impacts of ocean

acidification on coral calcification has increased exponen-

tially [14–20], with several reviews published on the subject

[21–23]. With each additional study, it is increasingly apparent

that the calcification response of scleractinian corals to ocean

acidification varies widely among taxa [16,20,24,25], and can

vary within the same coral species when other experimental par-

ameters (e.g. feeding, light, temperature, method of acidification)

are modified [20,24]. Many of these experimental studies have

shown that calcification rates of scleractinian corals decline rela-

tively linearly with reductions in seawater pH [15,16,19,26–35].

However, other experimental studies have shown that scleracti-

nian corals can also exhibit no response, a nonlinear threshold

response or even a positive response to CO2-induced reductions

in seawater pH [14,18,36–39]. The complexities of the

relationship between seawater pH and calcification rates of scler-

actinian corals are compounded by interactions between thermal

and pH stress that are still not fully understood. For example, the

negative effects of reduced seawater pH on coral calcification

have been shown to increase under elevated temperatures,

suggesting a synergistic effect [30,36,40], while other studies

have shown that elevated temperature has either no effect or a

mitigating effect on the response of scleractinian corals to

ocean acidification [25,29,38,41,42]. This variability in corals’ cal-

cification response to ocean acidification, compounded by the

interactive effects of other stressors, complicates efforts to predict

and potentially mitigate the impacts of CO2-induced ocean acid-

ification on coral reefs.

Although the most adverse impacts on corals may arise from

the combined effects of acidification and warming, the objective

of this study was to isolate the impacts of these two stressors.

Here, we present results of 95-day laboratory experiments

designed to investigate the impacts of CO2-induced ocean acid-

ification ( pCO2 (s.d.); 324 (89), 477 (83), 604 (107) and 2553

(506) matm) and warming (temperature (s.d.); 25 (0.14), 28

(0.24) and 32 (0.17)8C) on calcification rates of the tropical reef-

building zooxanthellate coral Siderastrea siderea—an important

and ubiquitous component of Caribbean reef systems [43].
2. Material and methods
(a) Coral collection, transportation and maintenance
In July 2011, eighteen 20–30-year-old colonies of S. siderea were

collected by hammer and chisel at 3–5 m depth from near shore,

backreef and forereef reef zones in southern Belize [8] (see the elec-

tronic supplementary material for a detailed description of coral

collection sites). Whole corals were transported to the Aquarium

Research Center at the University of North Carolina at Chapel

Hill by aeroplane. At UNC-Chapel Hill, each coral colony was sec-

tioned into 18 comparatively sized specimens (surface area: 3 �
2 cm; thickness: 1 cm) with a diamond-embedded petrographic

saw and glued with cyanoacrylate to acrylic microscope slides.

The coral specimens were allowed to recover for 30 days under lab-

oratory conditions in two 500 l recirculating artificial seawater

systems maintained at a salinity of 35, temperature of 288C and

an irradiance of ca 250 mmol photons m22 s21. The corals were

visually inspected each day of the recovery period and no evidence

of bleaching or disease was observed. The corals were then accli-

mated for 15 days following the recovery period, after which the

coral specimens were incrementally exposed to the modified

pCO2 and thermal conditions.
(b) Growth conditions
(i) Ocean acidification experiment
Siderastrea siderea coral specimens from each of the 18 colonies

were reared for 95 days (5 August–8 November 2011) in each

of twelve 38 l glass tanks (18 specimens per tank; 216 specimens

in total) filled with artificial seawater formulated at a salinity

(s.d.) of 35.13 (0.32) with Instant Ocean Sea Salt and deionized

water. Although the trace elemental composition of Instant
Ocean Sea Salt differs subtly from that of natural seawater, its

major and minor elemental composition and its carbonate chem-

istry are the most similar to natural seawater when compared

with eight other commercial sea salt mixes [44]. Four CO2 partial

pressures (s.d.) (324 (89), 477 (83), 604 (107), 2553 (506) matm)),

corresponding to a near-pre-industrial, a near-present-day, an

end-of-century and an extreme year 2500 pCO2 level were

selected to define the shape of the pCO2-calcification response

curve for S. siderea. CO2 partial pressures were established by

mixing pure CO2 with CO2-free compressed air (CO2 was removed

with a Parker Hannifan FTIR Purge Gas Generator) using high-

precision digital solenoid-valve-based mass flow controllers

(Aalborg Instruments and Controls; Orangeburg, NY, USA). The

experimental seawater was bubbled with microporous ceramic

airstones into triplicate glass tanks (12 total). The pCO2 of the

mixed gases was measured with a Qubit S151 infrared pCO2

analyser (Qubit Systems; Kingston, Ontario, Canada) calibrated

with certified air-CO2 gas standards (precision¼ +2.0%;

accuracy¼+1.8%). Coral specimens from the 18 colonies were

reared in each of the 12 replicate tanks. The pCO2 treatments were

maintained at an average temperature (s.d.) of 28.10 (0.28)8C.

(ii) Temperature experiment
Experimental growth conditions for the temperature experiment

were similar to those for the acidification experiment described

above. Siderastrea siderea coral specimens from each of the 18 colonies

were reared for 95 days (5 August–8 November 2011) in each of nine

38 l glass tanks (18 specimens per tank; 162 specimens in total)

maintained at seawater temperatures (s.d.) of 25.01 (0.14), 28.16

(0.24), and 32.01 (0.17)8C. Salinity (s.d.) was maintained at 35.01

(0.12) by dissolving Instant Ocean Sea Salt in deionized water.

These temperatures correspond to the corals’ approximate annual

minimum, mean and maximum seawater temperature as deter-

mined from more than 10 years (2002–2014) of in situ seawater

temperature records obtained near the coral collection sites

[8,45,46]. Thus, this range of temperatures was selected to capture

this species’ calcification response to the temperature variability

occurring at present within a given year, as well as to the range of

average annual seawater temperatures predicted for the next cen-

tury. Coral specimens were reared in triplicate glass tanks at each

of the three temperatures (nine tanks total). Mixed gas with an aver-

age pCO2 (s.d.) of 488 (88) matm was bubbled with microporous

ceramic airstones into the tanks. The pCO2 of the temperature treat-

ments were slightly higher than present-day atmospheric value of

400 matm due to slightly elevated pCO2 in the aquarium culture lab-

oratory. Nevertheless, the pH range in the temperature experiment

(7.9–8.0) was within the range observed for present-day reefs [47].

(c) Tank conditions
Seawater within each tank was continuously filtered (757 l h21) with

a power filter. Circulation and turbulence of seawater was enhanced

with a 400 l h21 powerhead. Each tank was covered with a transpar-

ent 3-mm Plexiglas sheet and both the tank and filtration system

were wrapped with cellophane to promote equilibration between

the gas mixtures and the experimental seawaters and to minimize

evaporative water loss. The tanks were illuminated for 12 h each

day with compact fluorescent lights (ultra-actinic and white; 96 W,

10000 K) and with standard white fluorescent lights (32 W, T8
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Figure 1. Parabolic calcification responses of the coral S. siderea to elevated pCO2 and temperature across the 95-day experiments. (a) Calcification rates for corals at
mean pCO2 (s.d.) of 324 (89), 477 (83), 604 (107) and 2553 (506) matm and at mean temperature (s.d.) of 28.10 (0.28)8C. (b) Calcification rates at mean temp-
eratures (s.d.) of 25.01 (0.14), 28.16 (0.24) and 32.01 (0.17)8C and at mean pCO2 (s.d.) of 488 (88) matm. Ninety-five per cent (thin bars) and 83.5% (thick bars)
confidence intervals of the means are shown.
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6500 K), with a maximum photosynthetically active radiation (PAR)

of ca 250 mmol photons m22 s21. The intensity and timing of the pre-

scribed irradiance within the tanks was designed to replicate the

light cycle of the corals’ native habitat (see the electronic supplemen-

tary material for a detailed description of light conditions). PAR in

the field and in the experimental tanks was measured using a LI-

1400 datalogger affixed with a LI-192 underwater quantum sensor

(LI-COR; Lincoln, Nebraska; see the electronic supplementary

material, figures S1 and S2).

The nominal 28 and 328C temperature treatments were

maintained with 50-W heaters, while the 258C treatment was main-

tained with a 1-hp aquarium chiller paired with a 50-W heater for

stability. Seventy-five per cent seawater changes were performed

weekly. Seawater pH and temperature returned to target values

within 60 min of water changes. Each week, 250 ml seawater

samples were obtained in ground-glass-stoppered borosilicate

glass bottles for analysis of dissolved inorganic carbon and total

alkalinity (TA). Seawater samples were obtained midway between

weekly water changes in order to acquire average values for the

water chemistry parameters in the treatment tanks. Small aliquots

of deionized water were periodically added to the experimental

tanks in order to replenish water lost through evaporation, thereby

maintaining target salinity (35). Each coral specimen was hand-fed

20 mg of frozen Artemia sp. every other day using a 1-ml transfer

pipette. Feeding trials conducted prior to the start of the exper-

iment revealed that this amount of food was sufficient to

adequately nourish the coral specimens.
(d) Measurement and calculation of carbonate
system parameters

Weekly seawater samples were analysed for DIC via coulometry

(UIC 5400) and for TA via closed-cell potentiometric Gran titration

calibrated with certified TA/DIC standards (see the electronic sup-

plementary material for detailed methods). Temperature, salinity,

and pH were determined via standard methods [48] approxi-

mately every other day. Additional carbonate system parameters

(seawater pCO2, pH, carbonate ion concentration, bicarbonate

ion concentration, aqueous CO2, and aragonite saturation state)

were calculated with the program CO2SYS [49], using Roy et al.
[50] values for K1 and K2 carbonic acid constants, the Mucci [51]

value for the stoichiometric aragonite solubility product and an

atmospheric pressure of 1.015 atm (see tables S1 and S2 and
figures S3 and S4 of the electronic supplementary material for

seawater chemistry data).

(e) Quantification of calcification rates via buoyant
weighing

Siderastrea siderea calcification rates were estimated using an empiri-

cally calibrated buoyant weight technique [14,52] (see the electronic

supplementary material for empirical derivation of the buoyant

weight–dry weight relationship for this species (figure S5)).

Calcification rates were estimated from the change in the

coral specimen’s dry weight normalized to its surface area and

observational interval. Coral surface area was quantified from

scaled top-view photographs of each coral specimen using the

imaging software IMAGE J.

( f ) Statistical analyses
Hierarchical mixed-effects models were employed to account for the

combined repeated-measures/split-plot design to assess the overall

effect of treatment on S. siderea calcification rates for the 95-day exper-

iments and the impact of treatment duration on coral calcification

response towarming and acidification (see the electronic supplemen-

tary material for details of statistical methods employed and tables S3

and S4 for description of observational intervals). All mixed models

were estimated with the lme4 package [53] of R 3.0.2 [54].

Data are archived in the US National Science Foundation’s

Biological and Chemical Oceanography Database at (http://

data.bco-dmo.org/jg/dir/test/OA_MarineCalcifiers/).
3. Results
(a) Ocean acidification experiment
Calcification rates for the coral S. siderea exhibited a parabolic

response to increasing atmospheric pCO2 (figure 1a). Over the

entire 95-day experiment, calcification rates increased from the

near-pre-industrial pCO2 value of 324 matm to the near-

present-day value of 477 matm, remained relatively unchanged

at the predicted end-of-century value of 604 matm and returned

to near-pre-industrial rates at six-times the modern pCO2 value of

2553 matm (see the electronic supplementary material, table S5).

http://data.bco-dmo.org/jg/dir/test/OA_MarineCalcifiers/
http://data.bco-dmo.org/jg/dir/test/OA_MarineCalcifiers/
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Figure 2. Effects of exposure duration on S. siderea coral calcification response to pCO2 and temperature. (a) Calcification rates at three monthly observational
intervals for S. siderea corals reared at mean pCO2 (s.d.) of 324 (89), 477 (83), 604 (107) and 2553 (506) matm and maintained at mean temperature (s.d.)
of 28.10 (0.28)8C. (b) Calcification rates at three monthly observational intervals for S. siderea corals reared at temperatures (s.d.) of 25.01 (0.14), 28.16 (0.24)
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(b) Temperature experiments
A parabolic calcification response pattern was also exhibited

by the coral S. siderea in response to increasing seawater

temperature (figure 1b). Over the entire 95-day experiment,

calcification rates increased from the lower end of the

corals’ temperature range of 258C to their average annual

temperature of 288C and then declined under a temperature

of 328C, near the upper end of their annual thermal range

(see the electronic supplementary material, table S6).

(c) Effect of exposure duration on coral calcification
response to CO2-induced acidification and warming

Differences in coral calcification rates were also assessed across

three ca 30-day observational intervals (0–30, 31–60 and 61–90

days) using difference-adjusted confidence intervals [55,56] to

assess the impact of duration of exposure to pCO2 (see figure

2a and electronic supplementary material, table S7) and temp-

erature treatments (see figure 2b and electronic supplementary

material, table S8) on S. siderea calcification rates.

(i) Ocean acidification experiment
Comparisons within pCO2 treatments (i.e. within-panel com-

parisons; figure 2a; confidence interval ¼ blue bars) reveal

that calcification rates for S. siderea corals reared at 324, 477,

604 and 2553 matm increased significantly between the first

observational interval (0–30 days) and the second observa-

tional interval (31–60 days), but declined (except for corals

reared at 477 matm, which remained constant) between the

second observational interval and the third observation inter-

val (61–90 days). Notably, calcification rates for the third

observational interval were significantly greater than at the

first observational interval for the two lowest pCO2 treatments,

but not for the two highest pCO2 treatments.

Comparisons between pCO2 treatments (i.e. across-panel

comparisons; figure 2a; confidence interval ¼ pink bars)
reveal that calcification response patterns to acidification are

parabolic for each of the three observational intervals.

(ii) Temperature experiment
Comparisons within temperature treatments (i.e. within-panel

comparisons; figure 2b; confidence interval ¼ blue bars)

reveal that calcification rates increased across the three obser-

vational intervals for corals reared at 258C, increased across

the first two observational intervals for corals reared at

288C and decreased across the first two observational inter-

vals for corals reared at 328C. However, coral calcification

rates were constant between the second and third observa-

tional intervals for corals reared at 28 and 328C.

Comparisons between temperature treatments (i.e. across-

panel comparisons; figure 2b; confidence interval ¼ pink

bars) reveal that calcification response patterns to warming

are parabolic for each of the three observational intervals.

(d) Effect of reef zone on coral calcification response to
CO2-induced acidification and warming

Calcification rates of S. siderea corals were not significantly

different across reef zones (i.e. forereef versus backreef

versus near shore colonies) within any of the pCO2 or temp-

erature treatments (see the electronic supplementary material,

figures S7 and S8, and tables S9 and S10).
4. Discussion
(a) Parabolic calcification response to acidification
Calcification rates within the coral S. siderea increased with

moderate elevations in pCO2, but declined with extreme

elevation, yielding a parabolic response to CO2-induced ocean

acidification. Previous experimental studies, most of which

did not use a pre-industrial pCO2 level, showed that corals
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exhibit either no response [16,25,30,40], a threshold-negative

response [14] or a linear negative response to CO2-induced

ocean acidification [15,16,20,25,30], although in a recent study

the cold-water coral Lophelia pertusa exhibited slightly enhanced

calcification under acidified conditions [57].

There are two important factors involved in the process of

coral calcification that are impacted by CO2-induced ocean

acidification in potentially opposite ways: seawater saturation

state with respect to the calcium carbonate mineral aragonite

(VA) and photosynthesis (figure 3). Increasing pCO2 causes

seawater pH to decline, which results in a reduction in car-

bonate ion concentration ([CO3
22]) and thus VA, which

should impair calcification (red curve, figure 3). Conversely,

increasing pCO2 causes the amount of CO2 dissolved in sea-

water, i.e. aqueous CO2 (CO2-aq), to increase, which should

fertilize photosynthesis by the coral’s algal symbionts, yield-

ing more photosynthate and thus more energy for coral

calcification [39] (green curve, figure 3). Recent studies on

Symbiodinium phylotypes previously isolated from reef-build-

ing corals suggest that the diffusive uptake of CO2-aq from

the external medium within at least one of four Symbiodinium
phylotypes is at least partially dependent upon the concen-

tration of CO2-aq [59,60]. Thus, CO2-induced ocean

acidification may increase the concentration of CO2-aq

available to this symbiont type, potentially elevating photosyn-

thetic capacity of the coral holobiont that could confer

supplemental energy for calcification.

A generalized model of the relationship between aragonite

saturation state (red curve), rate of photosynthesis (green

curve) and rate of coral calcification (blue curve)—each con-

strained by measurements from the present experiment (solid

circles)—is rendered in figure 3. Aragonite saturation states

and rates of calcification were measured directly, while rates

of photosynthesis were estimated indirectly from pulse ampli-

tude modulated fluorometry (see the electronic supplementary

material (figure S6) for details of how photosynthetic rates
were estimated). This analysis reveals that rates of symbiont

photosynthesis (green curve in figure 3) increase with increas-

ing pCO2 from 324 to 604 matm, and then decline slightly

between 604 and 2553 matm. Thus, moderate elevations in

pCO2 (324–604 matm) appear to enhance photosynthesis of

Symbiodinium within S. siderea, while extreme elevations

cause symbiont photosynthesis to plateau or slightly decline

[59], perhaps because CO2 is no longer limiting for photosyn-

thesis at these elevated levels. The model (figure 3) suggests

that calcification rates for S. siderea corals may increase

(figure 1a) as pCO2 rises from 324 to 477 matm because the chal-

lenge of calcifying under lower VA is outweighed by the

benefits of enhanced symbiont photosynthesis (e.g. increased

energy and/or more favourable carbonate chemistry at the

site of calcification) under moderately elevated pCO2 (324–

477 matm; figure 3). As pCO2 rises from 477 to 604 matm, VA

continues to decrease while the benefits to calcification con-

ferred by CO2-enhanced photosynthesis should continue to

increase. It is therefore possible that the observed lack of

change in coral calcification rate from 477 to 604 matm (figure

1a) results from the benefit of enhanced photosynthesis being

effectively neutralized, in terms of its impact on coral calcifica-

tion rate, by the decline of VA towards undersaturated

conditions. Likewise, the increase in pCO2 from 604 matm to

the ultra-high value of 2553 matm translates to an extreme

decrease in VA—nearly to the point of undersaturation (VA ,

1)—which may outweigh the now relatively minor benefit of

CO2-enhanced photosynthesis as the corals’ symbionts transition

away from strict CO2-limitation [30,61] (figure 3), resulting in the

substantial decline in coral calcification rate observed across the

604–2553 matm range (figure 1a).

The surprising ability of S. siderea corals to continue

building new skeletal material under all experimental treat-

ments, even at the nearly undersaturated (VA , 1) level of

2553 matm, may arise from the corals’ capacity to manipulate the

carbonate chemistry at their site of calcification [14,31,62–64].
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Some calcifying organisms, by elevating pH of their calcifying

fluid, facilitate the deprotonation of bicarbonate ions—whose

concentrations are increased under conditions of elevated

pCO2—resulting in elevated carbonate ion concentrations and

VA at the site of calcification. Indeed, in situ microelectrode

measurements of pH within the calcifying medium of the tropi-

cal scleractinian coral Galaxea fascicularis reveal greater than one

pH unit increase above that of ambient seawater [65]. Similar

increases in pH have been measured within the calcifying

fluid of the temperate scleractinian coral Astrangia poculata
[15] and inferred for the tropical scleractinian corals Stylophora
pistillata [66], Porites sp.[31], Cladocora caespitosa [67], Desmophyl-
lum dianthus [68], Favia fragum [69] and various species

of cold-water scleractinia [70]. A recent study also reveals

spatial variations in the calcifying fluid pH of the coral

S. pistillata, with polyp tissue exhibiting apparently greater

control over calcifying fluid pH than coenosarc tissue [71].

Yet, despite the ability of S. siderea corals to continue build-

ing new skeletal material at pCO2 of 2553 matm, the decline in

calcification rate from 604 to 2553 matm reveals there is a

limit to the extent that they can manipulate carbonate chem-

istry at their site of calcification under conditions of elevated

pCO2—beyond which coral calcification rates will decline.
(b) Parabolic calcification response to warming
A parabolic response pattern was also exhibited by the S. side-
rea corals in response to increasing seawater temperature, with

calcification increasing from 25 to 288C, reaching a maximum

at 288C, and then decreasing from 28 to 328C (figure 1b). This is

consistent with a typical thermal performance curve, in which

biological performance increases with rising temperature,

reaches a maximum at an optimal temperature, and then

declines as temperature continue to rise [72–74].

The parabolic shape of the thermal performance curve is

usually attributed to a combination of thermodynamic effects

of temperature on reaction rates and the destabilizing effects of

temperature on a range of intermolecular interactions [75].

Specifically, the increase in coral calcification from 25 to 288C
may result from thermal acceleration of coral metabolism,

including acceleration of zooxanthellate photosynthesis or

increased rates of respiration by the coral animal, which would

increase thermal energy (as described by the Arrhenius

equation) and thus increase rates of chemical reactions involved

in calcification [76]. The thermally driven increase in aragonite

saturation state may also contribute to the increase in calcifica-

tion rate observed between 258C and 288C. The waning phase

of the thermal performance curve results from the destabilizing

effects of temperature on a range of intermolecular interactions,

ultimately leading to the destruction of the coral–dinoflagellate

symbiosis—a process known as coral bleaching [13,77].

The parabolic shape of S. siderea’s calcification response to

both warming and acidification suggests that parabolic

responses to environmental stressors may be the norm and

that linear responses arise when the range of the independent

stress variable (e.g. temperature, pCO2) is too narrow to capture

the full parabolic geometry of the response pattern. However,

our observation that the calcification responses of S. siderea to

both warming and acidification are parabolic does not necess-

arily mean that the corals’ response to future combined

warming and acidification will be parabolic.

Although target temperature and pCO2 levels were gener-

ally maintained throughout the 95-day experimental interval,
there was moderate variability in TA and associated carbonate

system parameters within both sets of experiments. These vari-

ations in TA were driven by progressive sequestration of

carbonate ions through the coral calcification process. Although

weekly water changes were performed, only 75% of the exper-

imental seawater was exchanged in order to avoid shocking

the corals. Thus, 25% of the TA drawdown was passed on to

the next week’s treatment, causing the weekly drawdown in

TA to be semi-cumulative throughout the duration of the exper-

iment. This resulted in two trends in TA among treatments:

variability in weekly TA within treatments and variability in

average TA among treatments (see the electronic supplementary

material, tables S1 and S2, and figures S3 and S4).

These trends were most pronounced in the temperature

experiment due to the relatively large difference in average

calcification rates between the 328C (TA ¼ 2725 mM) and

288C (TA ¼ 1951 mM) treatments, which translated to pro-

portional differences in TA (and associated carbonate

system parameters) between the treatments. However, after

controlling for the effect of temperature on pH, the elevated

TA in the 328C only imparts an approximately 0.1 unit

effect on pH relative to pH of the 288C treatment. Differences

in calcification rates between the high-calcification-rate pCO2

treatments (i.e. 477, 604 matm) and the low-calcification-rate

pCO2 treatments (i.e. 324, 2553 matm) yielded similar but

more muted trends in TA for the pCO2 experiment.

Since elevated calcification was causing the decline in TA

in both the temperature and pCO2 experiments (rather than

depressed TA causing the decline in calcification), corals exhi-

biting the slowest calcification rates occupied treatments with

the highest, most geochemically favourable TA. Therefore, it

is reasonable to conclude that the observed differences in

TA among treatments only dampened the fundamental calci-

fication trends that were observed, rather than modifying

their directions. Had the intermediate pCO2 and temperature

treatments that supported the faster calcifying corals been

fixed at the higher TAs that were maintained for the low

and high pCO2 and temperature treatments, then the faster

calcifying corals in the intermediate treatments would have

experienced higher aragonite saturation states and thus pre-

sumably exhibited even higher calcification rates—thereby

enhancing the parabolic shape of the calcification trends

observed in both experiments.

Many studies on coral calcification [78,79] use such coral-

induced drawdown of TA in a closed system to estimate coral

calcifications rates (2 moles of TA ¼ 1 mole of CaCO3 pro-

duced), an approach known as the ‘alkalinity anomaly

technique’. Indeed, this approach is recommended as one of

the ‘best practices’ for quantifying calcification rates in

ocean acidification research [80]. Nevertheless, the observed

differences in coral-induced drawdown of TA and associated

carbonate system parameters among treatments should be

duly considered in the interpretation of these results.

(c) Duration of exposure to CO2-induced acidification
impacts coral calcification rate

The increase in calcification rates of S. siderea between the

0–30-day and the 31–60-day observational intervals suggests

that the corals continued acclimating to their treatment con-

ditions throughout these intervals (figure 2a), despite the

prescribed acclimation period and gradual adjustment of

temperature and pCO2 to the treatment levels. The difference
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in coral calcification rate between these two observational

intervals suggests that a coral’s response to an ocean acidifi-

cation experiment is impacted by its duration of exposure,

and may partly explain the wide range of calcification

response patterns exhibited by identical or similar organisms

in experiments that differ in their duration [14,16,22,23].

Despite these within-treatment differences in calcification

rate across the three observational intervals, the corals exhib-

ited comparably parabolic response patterns to acidification

within each of the three observational intervals.

Although corals reared at 477 matm maintained constant cal-

cification after the second observational interval, calcification

rates for corals reared at 324, 604 and 2553 matm declined

between the second and third observational intervals. Perhaps

during shorter term exposure of these corals to elevated (604,

2553 matm) or reduced (324 matm) pCO2, the corals are able to

maintain their calcifying medium at a suitable VA via pH regu-

lation of the calcifying medium [66], which requires energy.

More prolonged exposure to pCO2 perturbation, however,

may deplete the corals’ lipid energy reserves, which would

limit their ability to regulate VA at the site of calcification, result-

ing in the reduced calcification rates evident in the third

observational interval (61–90 days). Siderastrea siderea corals

reared at the near-present-day pCO2 level of 477 matm would

have experienced the least change in energetic demands associ-

ated with regulating carbonate chemistry at their site of

calcification, which is consistent with their calcification rates

remaining constant between the second and third observational

intervals. Although it is assumed that calcification consumes

more energy under acidified conditions [23,37], a recent study

[25] shows that lipid reserves of four coral species did not decline

after approximately 30 days as pCO2 was elevated from 382 to

741 matm. Thus, the findings of that study are not consistent

with our assertion that S. siderea lipid reserves are progressively

depleted when the corals are exposed to prolonged periods of

acidification. These disparities may arise from interspecific differ-

ences in energetic demands of calcification or from differences in

the duration of the corals’ exposure to elevated pCO2.

(d) Duration of exposure to warming impacts coral
calcification rate

The increase in calcification rates across the three observational

intervals for corals reared at 258C suggests that they continued

to acclimate to the low temperature conditions throughout the

duration of the experiment. Conversely, the relative stabilization

in calcification rates between the second and third observational

intervals for corals reared at 28 and 328C suggests that they had

fully acclimated by the end of the second interval (figure 2b). Yet,

despite these within-treatment differences in calcification rate

across observational intervals, the corals’ general calcification

response patterns to warming were parabolic within each of

the three observational intervals.

It is unlikely that the effects of exposure duration on the cal-

cification response of S. siderea corals in this study simply arose
from the corals’ experimental conditions differing from their

natural habitat as such effects should have been constant

among treatments and thus impacted corals in all treatments in

approximately the same manner. This was not borne out in the

experiments, as exposure duration generally had less of an

impact on corals in the control treatments than on corals in the

high/low pCO2 and temperature treatments—suggesting that

the variable effects of exposure duration were indeed linked to

the experiments’ independent variables (temperature and pCO2).

(e) Near shore, backreef and forereef colonies exhibit
equivalent responses to ocean acidification and
warming

No statistically significant differences in calcification rates

were observed among forereef, backreef and near shore colo-

nies reared under replicate treatments in this study (see the

electronic supplementary material, figures S7 and S8, and

tables S9 and S10). However, it is possible that a longer exper-

iment, across narrower ranges and finer increments of

temperature, would reveal the differential responses among

S. siderea corals from different reef zones that were evident

in recently obtained cores of this species [8].

( f ) Ocean warming poses a more immediate threat
than ocean acidification for the coral Siderastrea
siderea

This experimental studyshows that calcification rates of S. siderea
corals exposed to IPCC projected end-of-century tropical sea-

water temperatures (328C) declined nearly 80% relative to the

control treatment (288C), while calcification rates for corals

reared at IPCC projected end-of-century pCO2 levels

(604 matm) were unchanged relative to the control treatment

(477 matm). Thus, given IPCC’s projections for end-of-century

climate and oceanic change [81], the results of this study suggest

that ocean warming poses a more immediate threat than ocean

acidification for the coral S. siderea. That said, interpretation of

these isolated impacts of warming and acidification on coral cal-

cification should be tempered by the understanding that these

two stressors are occurring and will continue to occur in tandem.
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